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ABSTRACT

A lot of research has been done on comparing the forecasting accuracy of

different univariate time series forecasting methods. The biggest such

study, using empirical data, was undertaken by Makridakis et al. (1982).

The evidence from such comparative studies indicate that there is not

one "best" method for all kinds of data. Furthermore, there also seems

to be evidence to suggest that the simpler methods, such as exponential

smoothing, often perform as well as or even better than the more complex

methods. This is particularly true for short term forecasting.

Unfortunately, there has been limited success in identifying the factors

that contribute to the relative advantage of one method over another.

Consequently a practitioner is still faced with the problem of

objectively choosing one out of several methods available to use in

forecasting a given time series. In this paper we address this problem

by considering certain characteristics of a time series in order to

calculate its discriminant score. This score is then used to calculate

the probability of a particular method being "best" in forecasting that

series. Three forecasting methods, simple exponential smoothing,

Holt-Winters method and basic structural time series model using the

STAMP package, are considered. Quarterly time series from Makridakis

et al. (1982) "M-Competition" are used as data.



1. INTRODUCTION

Forecasting economic time series can be and is often a hazardous

task. There are numerous methods to choose from, ranging from the

sophisticated and complex econometric methods to the simple heuristic

methods based on exponential smoothing. Over the years a lot of

research effort has gone into improving these methods, developing

variations of them and comparing their relative forecasting performance.

Some of the major studies comparing the accuracy of different univariate

forecasting methods have been done by Reid (1975), Newbold and Granger

(1974), Makridakis and Hibon (1979), and Makridakis et al. (1982, 1984).

The results from these studies have not been consistent. For example,

Newbold and Granger (1974) found that forecasts using the Box-Jenkins

method seem to be generally better than forecasts using the Holt-Winters

method, while Makridakis et al. (1982) found that simpler methods, such

as the class of exponential smoothing, compare rather well with the more

statistically sophisticated methods when there is a large degree of

'randomness' in a series. As Chatfield (1988) points out, the lack of

consistency in the results is not surprising given different analysts

and different data sets.

The question that begs an answer is: what features of a given time

series determine what method is most likely to produce the most accurate

forecasts? Most studies seem to give general rules of thumb, that are

based on frequency counts, to answer the above question. As D.J. Reid

pointed out in the discussion following the Newbold and Granger (1974)

paper that compared forecasting performance of three univariate methods:

"Frequencies alone are of limited usefulness in this context and it

would have been more interesting to have seen various multivariate

tools, such as cluster analysis or factor analysis, applied to the
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results of the study to try and find reasons for differences in

performance on different series."

In this paper we attempt to go further than merely giving general

rules of thumb to somebody faced with the decision of choosing the most

accurate forecasting method for a particular univariate time series. We

propose to use discriminant analysis to generate the probability of a

given method producing the most accurate post sample forecasts. Section

2 describes the data set that is used in this study. We have considered

only three forecasting methods in this preliminary study and these are

briefly described in section 3. Section 4 describes the discriminant

analysis methods and section 5 includes the variables that we believe

influence discrimination between the different methods. In section 6 we

consider the criteria for evaluation of the discriminant functions.

Then in section 7 we present the results and finally the conclusions in

section 8.

2. DATA

All 203 quarterly series from the 'M-competition' (see Makridakis

et al. (1982)) are used in this study. As was stated in the above

paper, this set is not random in a strictly statistical sense, but it

does cover a wide spectrum of possibilities. The series are obtained

from different sources, with different starting/ending dates, covering

micro, macro, industry and demographic data. The average number of

observations per series is around 41, with a minimum of 10 and a maximum

of 106 observations. An additional 8 observations at the end of the

series are used for evaluating the forecasting performance of the three

forecasting methods. The series were appropriately scaled so that the

mean value of each of them was between 1 and 10.
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3. FORECASTING METHODS

Three forecasting methods are considered in this study. Each of

the methods is applied to all 203 series. Only the first part of the

series is used to estimate the parameters of the method and only the

last 8 observations are used to calculate the mean squared error of the

one-step-ahead forecasts. It should be noted that a one-step-ahead

forecast made in period T uses all the observations up to and

including period T. The three methods are briefly described below.

3.1 Simple exponential smoothing

Simple exponential smoothing is quite popular in large inventory

management applications, where short term forecasts of thousands of

items are required on a routine basis. The method can be automated on a

computer and requires little human interference. Adopting the notation

from Gardner (1985), the method can be embodied in the following

equations:

S
t 

= aX
t 
+ (1 - a)S

t-1

t(1) = st

(1a)

(lb)

where S
t 

is the smoothed level of the series and X
t 

is the observed

value of the series in period t. t(1) is the one-step-ahead forecast

for period t + 1 made in period t and a is the smoothing parameter.

The parameters were selected using a two-stage grid search

algorithm. The first stage involved a coarse grid of size .1 with

0 < a < 2. During the second stage, a finer grid of size .01 around the

optimum identified in the first stage is used. The wider range for a

was chosen because simple exponential smoothing is equivalent to a

difference equation which is stable in the range 0 < a < 2 (see Brenner
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et al. (1968)). An alternative justification is that simple exponential

smoothing is optimal for the ARIMA (0, 1, 1) process which is

invertible for a in the range 0 to 2 (see Muth (1960)). The value of

a which gave the minimum mean squared error for the one-step-ahead

forecasts within the sample period was considered to be its 'optimal'

value. Initial value was obtained by backcasting. Since backcasting

itself requires a starting value, the average of the last 4 observations

was taken as the starting value for the level.

3.2 Holt-Winters Method

This method generalizes simple exponential smoothing to cope with

trend and seasonality in the data. Holt (1957) developed an algorithm

that allowed for a local adjustment of the trend in a time series. This

was extended by Winters (1960) to include an evolving seasonal pattern.

A multiplicative seasonal factor is assumed in this study. The

equations describing the algorithm are:

St = aX
tt-p 

+ (1 - a )(St-1 + Tt..1) (2a)

T
t 

(2b)= 7(St - + (1 - 7)T
t-1

X
t

I
t 

= 3 + (1 - 8)I
t-p 

(2c)

t(1) =(St + Tt)It-p+1 
(2d)

where T
t 
is the smoothed trend and I

t 
is the smoothed seasonal index. 7

and are the smoothing parameters for the trend and seasonal index

respectively. Once again a two stage grid search was employed to find

the optimal values of the smoothing parameters. The range of values

considered for a and 7 was between 0 and Z and that for between 0 and

1. Backcasting was once again used to obtain the starting values.



3.3 Structural time series models

We have considered the basic structural model as described in

Harvey and Peters (1990). It is defined by

Xt = pt + t + et , t = 1, T (3a)

where gt, 7t and e
t 

are the trend, seasonal and irregular

components, respectively. We assume a local approximation to the linear

trend such that

At = At-1 at-1 nt'

=

t = 1, .

t = 1, .

T (3b)

• T (3c)

where
t 

and
t 

are distributed normally and independently of each

other and over time, with mean zero and variances T
2

and T
2

respectively. The process generating the seasonal component is

p-1

7t 
- E 7t_ + w, t = 1, T (3d)

j=1 t

2
where w

t 
NID(0, T

w
). The irregular component is also assumed to be

Gaussian white noise with mean zero and variance T
2 
.

—
a
t

The state space form of the model consists of a transition equation

... .. 

'''1 1 
.1 ..

.
At At-1

. 0
.

13t 
. 0 

1•

7t-2

t_1

-1 
#
-1 -1 7t-1 +

0 1 0 0 7t-2

0 1 0 7t-3_
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and a measurement equation

x
t 

= [1 0 1 0 0]
t 
+ e

t 
, t = 1, .• • , T (3f)

The covariance of the disturbance term in equation (3e) is Q where

1_2 _2 _ A At2
Q = diag t‘J ii, ,iv n4), Li, WI • Let a,be the minimum mean square

estimator (MMSE) of 
a

at time t-1 and 
Et-1 

the covariance

matrix of the estimation error 2
t-1 

-

Once a new observation, xt, is available, both 2t-1 and E
It-1

can be updated using the Kalman filter. Under the assumption that

a - Ma P ) and known values of a and P one can now obtain the_0 _0, _..0 _0 _0,

T one-step-ahead prediction errors and their variances. Prediction of

future observations can be made using the Kalman filter. The maximum

2 2 2 2
likelihood estimates of the hyperparameters, Te, Tn, (3‘ and Tw, in

the time domain are used in the Kalman filter. A diffuse prior for P
-0

and a = 0 are used to initialise the process. Details of the operation

of the Kalman filter, prediction error decomposition and the maximum

likelihood estimation procedure can be found in Harvey (1989) and Harvey

and Peters (1990). Alternative methods of computing maximum likelihood

estimators and using various starting values are discussed in the above

two references.

The STAMP package was used to estimate the paramaters and produce

forecasts for the basic structural model. The default settings in the

package were generally used. The only exception was that when

estimating the hyperparameters in the Kalman filter, the time domain

method was used for 907. of the series. For the 107. of the series the

time domain estimation seemed to crash the program and hence for these

series the method of scoring was employed.
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4. DISCRIMINANT ANALYSIS

An analysis which leads to the best way in which two or more

populations may be distinguished is known as discriminant analysis. A

function, which is some combination of observed variables, that

maximizes the separation between the populations is a discriminant

function. The discriminant function may be used to describe and

interpret the differences between the populations and may also be used

to predict to which population an unknown observation is most likely to

belong. Applications of discriminant analysis can be found in a wide

variety of fields, from auditing to medicine (see Goudie (1987),

Titterington et al. (1981), Stoodley et al. (1982) ). The pioneering

work in this area was done by Fisher (1936) and Mahalanobis (1936).

In the context of this study we have three populations, simple

exponential smoothing (SE), Holt-Winters (HWM) and structural time

series model (STAMP). A series i belongs to population j if the

series' post sample mean squared error of the one-step-ahead forecasts

is least when method j was used to forecast. An observation x

contains information about the characteristics of a particular series.

We have defined a series in terms of 20 variables so that x is a 20

dimensional vector. The variables are defined in section 5.

Classical discriminant analysis assumes that the M populations

have multivariate normal distribution. Furthermore, if the

populations can be assumed to have equal covariance matrices then a much

simpler linear discriminant procedure can be used, otherwise quadratic

discriminant analysis should be used. The linear discriminant function

has the advantage that, since the function is linear, the coefficients

are easy to interpret. A multivariate generalisation of Bartlett's test

for homogeneity of M population variances can be used to help make a

7



decision as to whether linear or quadratic discriminant analysis is

appropriate.

Although non-parametric methods of discriminant analysis exist (see

Silverman (1986)), they have not been considered due to the

non-availability of reliable computer software.

4.1 Linear discriminant function

We use the generalised squared distance to separate the

populations. The generalised squared distance of a p-variate

observation, x , from population n is defined as

-1
D
L
(, ng) = 

 (x - x )_g (4)

where x g is a vector containing the sample means of the p variables_

in population n and s is the sample pooled covariance matrix of

a p-variate population. The elements of s are given by

- x
= E E 

(x
ikg 

-xigjkg jg)

g=1 k=1
E ni M
i=1

(5)

where x
ig 

is the sample mean of the i
th 

variable of population n n
g
,

is the number of observations in the sample from population n and

x
ikg 

represents the i
th 

variate of observation k from population g.

Hence, an unclassified observation x is classified as belonging to
-0

population g if

DL(, xng 
) = min fD

L 
(x n ))

-0-0' j
(6)

This rule has the property of minimizing the probability of

misclassification. The centroids of each of the populations and the

sample pooled covariance matrix, s, are obtained from a training sample

which consists of observations whose population classification is known.
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4.2 Quadratic Discriminant function

In case the M populations cannot be assumed to have equal

covariance matrices, the definition of the generalised squared distance

has to be modified to

-
D (x n ) (x - x )'s

1 
(x - x ) + log

Q g --- —g --- e 
(7)

where s g is the sample covariance matrix of population g. The_

elements of s g are given by_

j = 
k1 

(x )(x - )/(n - 1).
= 
E ikg xig- jkg jgI g

(8)

• The classification rule for an unclassified observation x is similar_0

to (6) and once again it has the property of minimizing the probability

of misclassification.

4.3 Probability of population membership

In both the linear and quadratic classification rules, the property

of minimum probability of misclassification holds only if the prior

probabilities of population membership are equal, otherwise a

modification to D and D
Q 

must be made. Suppose the prior

probability of an observation x belonging to population n is

then the modified distance measure for linear discrimination is

Di
L
(x, n 

g
) = D

L
(
H
, 7(g) - 2 log

e
p
g— 

and for quadratic discrimination it is

Di(x, it) = D (x, it ) - 2 log
e
p
g
.

- g - g

(9)

P
g

(10)

Now if p(n g Ix) is the probability of an observation belonging to_

population n given its p-variate vector is x , then

9



P P(xlu )

POEg _ lx) = g g 

E P )

j=1

is easily obtained using Bayes' theorem. The assumption of multivariate

normality allows us to simplify (11) to

exp(-Di(x, n 
g 
)/2)

—
p(n lx) =

L 
g _

E exp(- Di
L
(x, n

j 
)/2)

— 
j=1

D' is replaced by Di in (12) for quadratic discrimination.

5. FEATURE VARIABLES

(12)

In order to use discriminant analysis to predict the most likely

forecasting method that will give the 'best' post sample forecasts of a

given time series, some structural characteristics of the time series

that may help in distinguishing between the forecasting methods need to

be defined and measured. We conjecture that all or some of the

following feature variables of the time series may help in this

discrimination:

1. N_OBS - the number of observations in the sample period.

u-2(n-2)/3
2. N_TPS - Non-parametric turning point test,

/r 16n-29

u is the number of turning points. 
v  

90

where

3. N_5TEPS - ratio of number of step changes to the number of

observations. A step change occurs at time t if

I xt - > 2 s
t-1

where x
t-1 

and s
t-1x

t-1
I 

mean and standard deviation of x
1 

x
t-1

.

are the



4. SKEWNS - coefficient of skewness,

5. KURTOSIS - kurtosis,

6. CV

_ 
E(x - x)

3 
/n

-4
E(x. - x) /n

- 
[EN. - x)

2 
/n]

2

- coefficient of variation.

-2 3/2
[E(x. - x) In]

3

7. T_STAT1 - the value of the t-statistic for the test that

coefficient of time, t, is zero when data for the

series are fitted to a cubic polynomial.

8. T_STAT2 - as in 7 for the coefficient of t
2
.

9. T_STAT3 - as in 7 for the coefficient of t
3
.

10. AC1 - autocorrelation at lag 1 of the residuals after a

third degree polynomial in time has been fitted to the

series.

11. AC2 - as in 10 for lag 2.

12. AC3 - as in 10 for lag 3.

13. AC4 - as in 10 for lag 4.

14. PAC2 - as in 10 but now it is the partial autocorrelation at

lag 2.

15. PAC3 - as in 14 for lag 3.

16. PAC4 - as in 14 for lag 4.

17. R1 - ratio of the variance of the first differenced series

to the variance of the series.

18. R2 - ratio of the variance of the second differenced series

to the variance of the first differenced series.

19. RS1 - as in 17 but the series and the first differenced

series are first seasonally differenced.

20. RS2 - as in 18 but the first and second differenced series

are first seasonally differenced.
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6. EVALUATION CRITERION

Two error rates, the apparent and actual, are calculated. The

apparent error rate is the one obtained by resubstituting the training

sample and determining the misclassification. This rate is typically

over optimistic and can badly mislead the user if the sample size is not

much larger than the number of variables in the discriminant rule. The

actual error rate is obtained when the rule under consideration is used

to classify all possible future samples.

Out of 203 series, 50 were reserved in a test set to evaluate the

actual error rate. They were selected on a random basis in such a way

that the proportion from each population was the same for the training

and test sets.

7. THE RESULTS

In order to calculate the post-sample mean squared error of the

one-step-ahead forecasts, Fortran programs were written for the simple

exponential smoothing and Holt-Winters methods. The STAMP package,

developed by Harvey and Peters (1989), was used for structural

time series model. Table 1 shows the number of series in the 3

populations for the training sample and the test sample.

Table 1

SE HWM STAMP TOTAL

TRAINING 51 37 65 153

TEST 16 12 22 50

TOTAL 67 49 87 203
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Another Fortran program incorporating IMSL subroutines was

developed for obtaining the feature variables of each series. Using the

DISCRM procedure in the SAS computer package, the test for homogeneity

of the covariance matrices was found to be significant at the 10% level.

Hence the quadratic discriminant function was adopted as the

discriminator. Proportions of each population in the total sample were

used as prior probabilities.

Table 2 shows the classification of the training sample using a

quadratic discriminant function. The figures in brackets are

percentages rounded to the nearest unit. For example, of the 51 series

in the population SE, 48 or 94% were classified into SE, 2 or 4% were

classified into HWM and 1 or 2% was classified into STAMP. The total

number of series from population SES which were misclassified was about

6%.

Table 2

FROM SE HWM STAMP TOTAL

METHOD

SE 48(94) 2(4)

.

1(2) 51(100)

HWM 3(8) 34(92) 0(0) 37(100)

STAMP 6(9) 7(11) 52(80) 65(100)

TOTAL 57(34) 43(28) 53(35) 153(100)

PRIORS .33 .24 .42

ERROR RATE .06 .08 .2 .12

A similar classification for the test set is shown in Table 3.
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Table 3

FROM
METHOD

SE HWM STAMP TOTAL

.

SE 9(56) 3(19) 4(25) 16(100)

HWM 4(33) 1(8) 7(58) 12(100)

STAMP 8(36) . 2(9) 12(55) 21(100)

TOTAL 21(42) 6(12) 23(48) 50(100)

PRIORS .33 .24 .42

ERROR RATE .44 .92 .45 .56

8. CONCLUSION

The apparent error rate of only about 12% is encouraging. As for

the actual error rate that is obtained using the test set, the error

rate of 56% seems, on first reflection, disappointing. But, if one had

a series which belonged to the population SE, then its chances of being

classified correctly using just a random allocation rule based on

population proportions are .33, while using the discriminant rule its

chances are .56. Similarly for a series from HWM, the corresponding

chances are .24 and .08, and for a series from STAMP they are .42 and

.55. Except for HWM, the discriminant rule does a better job at

classification of a series into its correct grouping than a random

allocation according to population proportions.

One possible reason for the test set having an overall success rate

of 44%, may be due to possible violation of the assumption of

multivariate normality of each of the populations. A more careful

transformation of those variables which fail a normality test may yield

better results. The Box-Cox transform could be a useful tool here.

14



Another problem may be due to the choice of variables used to

characterise a series. Stepwise selection procedures, similar to those

employed in regression, may be employed to reduce the set of variables

to that set which separates the populations most and does it most

'efficiently'. Alternative variables to characterise a series may yield

different results too.

This is a preliminary report and further work is continuing.
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