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Summary

The problem of computing estimates of the state vector in a

non-stationary dynamic linear model is considered. Such estimates

cannot be obtained with the usual Kalman filter because it fails,

on finite precision computing machines, when seeded with the

infinite variances associated with the required diffuse or

partially diffuse prior probability distribution. The response in

the literature has been the development of a number of relatively

complex hybrid filters specifically designed to avoid the

problem. However, it is argued in this paper that this response

has been largely unwarranted. Rather, it is established that any

square root implementation of the Kalman filter is capable of

producing satisfactory results, so long as the required

triangular orthogonalisation calculations are undertaken with

standard fast Givens transformations, rather than the more usual

Householder or Gram-Schmidt procedures.

Key words: dynamic linear model, structural model, Kalman filter,

square root filter, Givens transformations.
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1. Introduction

The dynamic linear framework used in this paper involves an

observable random variable yt associated with typical period t,

which depends linearly on a random r-vector g of so
t-i

state variables, together with a random p-vector

disturbances, as follows:

yt xigt...1 
+ We

t'
(la)

called

e
t 

of

x and h being commensurate fixed vectors. The state variables

themselves are assumed to evolve over time according to the first

order Markovian relationship

t
=Tf3 +Ac

t
,

t-i

T and A being

disturbances e
t

contemporaneous

(lb)

fixed rxr and rxp matrices respectively. The

which all have a mean of zero and a

variance matrix cr
2

V, are intertemporally

independent. Slightly different definitions are also conceivable

(eg see Harvey and Phillips, 1979) but the general ideas outlined

in this paper also apply to them.

The importance of the dynamic linear framework can be gauged from

the fact that it encompasses all linear models of series which

evolve over time. It has been used as the basis for estimating

ARMA models (Akaike 1978, Harvey and Phillips 1979, Gardner et al

1980) and ARIMA processes (Harvey and Pierse, 1984, Ansley and

Kohn, 1985). It also forms the basis of the structural approach

(Harvey and Todd 1983, Snyder 1985) for the analysis and

prediction of economic time series.

In many practical cases of interest, it has been found that the

state vector may contain elements with a mixture of zero, bounded

or unbounded variances. For

non-stationary time series model

example,

at least

when seeding a

one of the state

variances will be undefined. If linear constraints are also

incorporated then some variances will also be zero.

3



Example: Damped Trend Corrected Exponential Smoothing

Consider the damped trend corrected exponential smoothing-model

y = + +c
t tt-1 t-1
A
t 
=A + + a c

t-i t-i it
Oa

t-1 
+ a c (2)

t
a =

2t

for which the initial conditions can be shown to be

[ 
It 

ao [ 0 , [ 
v12 ] IA 0

where v
12

V V
12 22

(00c22 1_02 )0cioc2)

(1-0)(1-02)
V

• 22

tX2
2

(1-02)

(3)

and T is an arbitrarily large number representing, in effect, an

infinite variance. The model (2) is non-stationary and the

distribution given by (3) is partially diffuse. If seeded with

(3), the conventional Kalman filter breaks down.

Conventional covariance filters require the covariance matrix to

be defined and, therefore, are unable to cope with the
^

non-stationary case. Information filters, on the other hand,

which are based on the inverse covariance matrix, are unable to

cope with zero variances. Square root versions of these filters,

although able to offer improved numerical properties, do not

address this fundamental problem. This poses somewhat of a dilemma

for the practitioner wishing to compute reliable estimates of the

state vector and its covariance.

To address this problem a number of hybrid filters have been

proposed in the literature - see, for example, Ansley and Kohn

(1985), De Jong (1988) and Snyder (1988). For a mixed

covariance-information approach to the problem also refer to

Paige (1985). These approaches are complex and, in the case of

Paige's approach, require substantial modifications to the form

of the conventional state space model. As such, practitioners are
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likely to be slow to adopt these methods, relying instead on the

computationally inferior standard covariance filter.

In section two the covariance and information approaches to the

filtering problem, together with some hybrid filters, are

reviewed. In section three a covariance square root filter is

described. It is shown that Stirling's (1983), now standard

approach for performing the necessary matrix factorisations,

automatically caters for the infinite and zero variance cases,

without making any special provisions for them in the filter

itself. As such, it is suggested that the proposed method is not

only more elegant than the available alternatives, but is

preferable in that it entails lower computational loads.

2. Covariance and Information Filtering Techniques

Assume that the distribution of ft given y1, y
t 

is known
t-i 

and has a mean b and a covariance matrix T213 . The

covariance filter for obtaining bt and cr2Bt, conditional on

y 
-1 

and a new observation y
t
, for a problem of this general

t 
form was derived by Jazwinski (1970 pp 210-212) and involves the

relationships

b = Tb + (TB x + AVh)(x1B x + h'Vh)-1(yt 
- x'b ) (4a)

t t-1 t-1 t-1 t-1

and

B
t 
=TB T' + AVA' -

t-1

(TB x + AVh) (TBx + AVh)'(x'B x + h'Vh) .
t-1 t-1

(alb)

Such recursions must be initialized with bo 
and cr2B

co
, where b

o 
and

B
o 
are assumed to be known.

For the case where all of the inverses exist standard matrix

inversion techniques can be used to derive, from the original

covariance equations, formulae for propagating the inverse

covariance. Because of the relationship of the inverse covariance

to the Fisher Information matrix, such filters are termed
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information filters (see, for example, Anderson and Moore 1979,

-
section 6.3). These filters obtain B

t
1 

and B ib from their
t t

lagged counterparts and a new observation yt along similar lines

to the covariance equations (Kaminski et al 1976 demonstrates

an interesting duality between the two sets of equations).

Seeding with a diffuse prior distribution is performed by setting

-1
B
o 

equal to zero.

During the course of the calculations on finite precision

computing machines it is possible for rounding errors to cause a

state covariance matrix (or its inverse) to be computed that is

not positive semi-definite - a theoretical impossibility. To

circumvent this difficulty various methods for updating the

covariance and inverse covariance matrices in square root form

have been proposed.

Working with the covariance form, Potter (1964) outlined a method

for updating the covariance matrix in square root form in the

absence of process noise. Potter's algorithm was extended by

Bellantoni and Dodge (1967) to handle vector measurements and

subsequently by Andrews (1968) to include process noise as well.

Morf and Kailath (1975) combined the ideas of time and

measurement updates into a single step.

Square root information filters have also been proposed in the

literature. Golub (1965) and Businger and Golub (1965)

demonstrated a square root solution to the least squares problem

using Householder transformations. Hanson and Lawson (1969)

extended this to the case of rank deficient systems, whilst Dyer

and McReynolds (1969) applied the Householder algorithm to obtain

both measurement and time updates of the information square root.

More recently, a regression formulation of the problem has been

suggested (Duncan and Horne 1972) which Paige and Saunders (1977)

have used as the basis of a square root information filter.

Although square root filters provide improvements in accuracy a

number of problems remain. Both the conventional covariance and

square root covariance filters are unable to cope with the diffuse
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or partially diffuse prior probability distributions required in

the non-stationary case. Conversely, information versions of these

filters are unable to cope with the case of zero variances. Harvey

and Phillips (1979) have suggested seeding the ordinary covariance

filter with B
o 

equal to TI, where T is a large number. This

method, however, is inexact and often suffers from numerical

instability brought about by the large numbers involved. To

circumvent these difficulties a number of hybrid filters have been

proposed in the literature.

Ansley and Kohn (1985) demonstrate that when a Kalman filter is

seeded with a variance matrix B
o 
with the general form

B = t B
R] 

+ B
101

0 0 0

then, except for an error term 0(T71) which converges to zero as

T tends to infinity, successive b
t 

and B
t 

generated by a

covariance filter are constant and linear functions of T

respectively. More specifically

and

-
b = b

101 
+ O(t 1) (5a)

t t

B
t 
= t B

11] 
+ B

101 
+ Oer (5b)

By substituting (5a) and (5b), together with their lagged

counterparts, into the covariance filter (4a) and (4b), equations

for obtaining successive b101 B
Ell 

and B101
t 

are obtained. These

equations, which will not be reproduced here, define a hybrid

filter involving more equations and therefore more calculations.

Normally B
[1] 

= 0 when t > r, r being the dimension of the state

vector gt' in which case the hybr
id reduces to a conventional

covariance filter. The increased computational loads are,

therefore, temporary.

De Jong (1988) derives an expression for the likelihood function

of a state space model initialized at a starting estimate of zero

and an associated estimation error covariance matrix of zero.

Adjustment for initial conditions is made after filtering. The
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covariance filter can, therefore, be applied without special

consideration of start-up effects. In particular, the initial

conditions can be modelled as diffuse.

Using our notation, minus two times the log likelihood is, apart

from constants, given by

— _
1(y) = loglBo l + b01130

1 
bo + Ent=lloglAt i + 

sn 2

+ logIB 1 + SI - (B-lb + s)1 (13-1 + S)-1(13- + 5).
o o 0 00

where e
t 
and X

t 
are the usual one step ahead prediction error and

its variance. The vector s and the matrix S are calculated in

parallel with the e
t 
and A

t 
as follows

ss = + x' e /X
t-1 t-1 t t

S
t 
=S +Z' xx'Z /X

t-1 t-1 t-1 t

Z = - k x')Z
t t-1

with s and S initialized at 0, Zo= I and with kt being the Kalman

gain vector.

The auxiliary variables, s and S, capture the effect of the

starting conditions. De Jong shows how these may be set to

reflect the appropriate distribution assumptions at the end.

Although this can provide some insight into the nature of the

distribution of b
t' 

because of the need to compute and store

these auxiliary variables, it does appear that, as an operational

method, it is expensive in terms of requiring extra computations

and possessing greater storage needs throughout.

Both Ansley and Kohn and De Jong's approaches are able to handle

the diffuse or partially diffuse prior case. As they are

essentially covariance filters they also have no difficulty in

coping with the zero variance case. An alternative approach that

also meets these requirements was proposed in Paige (1985) and

involves a combined covariance - information approach to the
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problem.

Consider a random vector x with mean X and covariance matrix Q.

Let U and S be the matrices in the factorisation of Q-1- and Q

respectively. As Paige points out both

x = x + Se E[e] = 0 and Veel] = I (6a)

and

Ux = r + e E[e] = 0 and Vee'l = I (6b)

are possible representations for x. Only when S = U-1 are these

equivalent. Interestingly, (6a) allows for some elements of x to

be constant by specifying an S matrix with less than full row

rank. Conversely (6b) allows for some elements of x to be

completely unspecified by specifying a U matrix with less than

full row rank. As Paige indicates, by replacing these with Ux = r

+ Se, with e defined as before, both situations can be

represented. In particular the state vector ft can be modelled as

g = Ub + Se.
o o

3. Square Root Covariance Filter

In this section we propose a square root covariance filter for the

estimation of the problem described in (1). As well as being of

interest in its own right, the solution demonstrates the use of

Givens transformations for the computation of the necessary matrix

factorisations, the main point being that then the diffuse and

partially diffuse cases can be handled without special

modifications to the filter itself (et Ansley and Kohn 1985,

Snyder 1988).

Suppose that R and A
1, 

respectively a unit upper triangular

matrix and a diagonal matrix from the Cholesky decomposition of

B are known from a previous iteration of the algorithm. It is

shown in the Appendix that Givens transformations can be used to

process the matrix
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relative to the weight matrix
A'

to obtain a unit upper triangular matrix

[ 1 k
t 

0
and a diagonal matrix

0 R
t 

0 A
t I

A
t-1

0
(7a)

(7b)

where the r-vector k
t 
is the so-called Kalman gain vector. It is

also shown that the revised state estimates are given by

b
t 
= Tb + k (y - x'b ),

t-1 t t t-1

that, if required, Bt can be computed with

B = R'A R
t t t t

and that A
t 

is the mean squared error of (y
t-xibt-1 

). The

algorithm is seeded with the Cholesky factorization of Bo given

by

B = R
o 000

When some elements of A
b 
are infinite and hence the corresponding

elements of A
o
1 are zero, Stirling's (1983) implementation of

Givens transformations may be applied without special provisions

being made. To see this consider the problem of updating a

diagonal matrix C and a unit upper triangular matrix R to allow

for the addition of successive rows of data to a typical matrix X,

such that

x,v ix . R,c 1R,

-
where V

1 
is diagonal with elements serving as row weights.

Stirling's formula for updating the rows ri of R corresponding to

elements c of C upon addition of a new row x with left-most

non-zero element x , are as follows.
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Case 1 ( o < c < co )
2

V • = V + C X
I i

c
+
= C V/V

+

1 1

r
+
= (v/v+)r + (c x /N./4.)x

x • =x-xr
i 1

Case 2 c 
1
= 0 )

X • =x-xr
i

Case 3 c = co. )

x
+ 
=0

These formulae are applied repetitively until x is reduced to a

null vector. It is apparent that in cases 2 and 3, which are

special versions of case 1, the algorithm has a particularly

simple form and involves lower than normal computational loads.

When applied to (7) the algorithm is particularly appealing.

Initialisation with a diffuse prior probability distribution

requires setting the elements of Ao to infinity, corresponding to

case 3. Thus processing the first r rows of (7a) involves reduced

computational loads. For the remaining rows and upon subsequent

iterations of the algorithm, conventional Givens transformations

are used. Computational loads are, therefore, reduced during the

"run-in". The particularly appealing factor, however, is that all

of these cases are transparently handled by Stirling's algorithm

without modifying the basic structure of the filter.

4. Conclusion

The basic message of this paper is that hybrid procedures for

estimating non-stationary time series models that might also

incorporate linear constraints are, in fact, unnecessary.

Conventional square root filters whether they be based on
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covariance or inverse covariance matrices, may be used without

any basic structural changes, provided that fast Givens

transformations are employed for the required triangular

orthogonalisation transformations. This, therefore, considerably

simplifies what has hitherto been a daunting computational issue

in the area of Kalman filtering.
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Appendix : Derivation of the square root covariance filter

1. Assume that the distribution of g conditional on y1,...,

Yt-1 
is known and given by 

N(Di. 
,T

2,
B 

i
). Hence we can write

t- t-
g = b + g where g - N(o,T2B 

i
). Substitute this into

t-
(la) and (1b) to give

and

y = x'b + (x'g )
t-1 t-1

13 = Tb

so that

(Tgt-1 
+ Act),

t-1

y
t 

x'b x'B x + h'Vh x'B T'+
t-1 2 t-1 t-1

[ gt] - [ Tbt..1 it TB x + AVh TB T' + AVA' 
.(8)

t-1 t-1

By Cholesky factorization this can be rewritten as

Yt]gt

Hence

N 
[Tb 

Cr[ 1 0  

t 

A
t 
0 [ 

t 

1 kt' H
21 II

R'1 1 0 A 0 R
t t

^

[ 1 0 11 yt] 1 0 -1 x'b A 0
2[ t

k R' g N
[[ k [ Tb t-1], T 0] 1.

t t t t t t-1

(9)

It follows, after explicitly inverting and expanding, that gt =

Tb
i 
+ k (17 - x'b 

i 
) + R'71 where nt matt), and that ytt- t t t- t t'

t
N(x'b 

1 
,A ). Accordingly, 

13t 
conditional on v

- 1 -t
together with yt, has the distribution

gt N(Tb + k (y - x'b ), R'A R ).
t-1 t t t-1 t t t

In other words the new mean and variance are

and

b
t
=b +k (y -x'b )

t-1 t t t-1

B = R'A R .
t t t t
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2. It is not particularly efficient to form the variance matrix

(8) and then use the Cholesky factorization algorithm to obtain

the triangular representation in (9). An alternative strategy is

to recognize that Bt_1 will be available in decomposed form as

B =R' A R
t-1 t-1 t-1 t-1

in which case (9) can be rewritten as

[

t 
x'b

t-11 
h'il A 0 Rt_ix Rt_iT'

N 

[[ 
Tb IT TR' A 0

t-1
V h A' 

. (10)

t. t-1 t-1

Givens transformations can then be used to obtain the triangular

decomposition of the variance matrix as described in the paper

without explicitly having to compute either Bt or Bt..1. Not only

does this reduce computational loads but it also leads to a more

accurate algorithm because "squaring" operations are avoided.
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