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ABSTRACT

Serious alternatives to the AR(1) disturbance model in econometric

applications of linear regression include MA(1) disturbances and the sum

of independent white noise and AR(1) disturbance components. All three

are special cases of ARMA(1,1) processes. This paper reports an

empirical power comparison of tests for AR(1), MA(1) and ARMA(1,1)

disturbances assuming ARMA(1,1) disturbances. Tests compared include

the Durbin-Watson test, the locally best invariant test and various

point optimal invariant (POI) tests. The results suggest that the power

of the POI test is largely invariant to the choice of AR(1) parameter

value at which power is maximized. This conclusion is strengthened by a

theoretical result.

KEY WORDS: autoregressive-moving average processes; Durbin-Watson

test; locally best invariant test; point optimal invariant test;

power.
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1. INTRODUCTION

Since the seminal work of Cochrane and Orcutt (1949) and Durbin and

Watson (1950, 1951), the first-order autoregressive (AR(1)) error process

has played an important role in econometric applications of the linear

regression model. Lately, increased attention has been paid to the

first-order moving average (MAU)) error process as an alternative (see

for example Nicholls, Pagan and Terrell (1975), King (1983a) and King and

McAleer (1987)). There is also the disturbance process based on the sum

of independent white noise and AR(1) components proposed by Revankar

(1980). When one examines the usual reasons for including an error term

in the regression model; these being to account for the effects of

omitted regressors, errors in the measurement of the dependent variable,

arbitrary human behaviour and functional approximation; Revankar's

proposal is appealing because some of the effects are typically

autocorrelated while others are independent (see King (1986)). All

three error processes have one thing in common - they are special cases

of ARMA(1,1) processes.

This suggests we need to have confidence in the power properties of

tests for independence of regression errors against ARMA(1,1)

alternatives rather than just AR(1) or possibly MA(1) alternatives. The

most popular test, the DW test, is approximately locally best invariant

(LB I) against AR(1) alternatives (Durbin and Watson (1971)) and MA(1)

alternatives (King (1983b)) and is approximately uniformly LBI against

ARMA(1,1) alternatives (King and Evans (1988)). While this property

ensures close to optimum power in the neighbourhood of the null

hypothesis (H0) of independent errors, it guarantees nothing about the

test's power some distance from H
0 

when wrongly accepting H
0 

might have

damaging consequences. King (1983b, 1985a, 1987) has demonstrated that
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an attractive alternative is to use a point-optimal invariant (POI)

test, i.e., a test that optimizes power at a pre-determined point under

the alternative hypothesis.

In an empirical power comparison, King (1983b) showed that POI tests

for MA(1) disturbances have a clear power advantage over the DW test

against MA(1) alternatives some distance from Ho. It seems that the

choice of point at which power is optimized plays an important role in

determining the power of the POI test. Some suggestions about optimal

choices of points are made by King (1985b). A different picture emerges

from empirical power comparisons of tests against AR(1) disturbances

(see King (1985a)). Here, for most typical econometric applications,

POI tests have a very slight power advantage over the DW test and are

largely invariant to the choice of point at which power is optimized.

However, a few important cases have been found in which there is a

substantial power advantage from using a POI test in place of the DW

test. It would seem that the ordinary least squares (OLS) estimator

is relatively inefficient in such cases making a powerful test even

more desirable.

The aim of this paper is to see whether existing tests designed to

have high power against either AR(1) disturbances or MA(1)

disturbances, have good power against ARMA(1,1) disturbances. Are there

clear advantages in using a POI test for ARMA(1,1) disturbances or can

we recommend the use of one of the existing tests? An empirical power

comparison is conducted in order to answer to this question.

The plan of the paper is as follows. In Section 2 we give details

of the model under test while POI tests for ARMA(1,1) disturbances are

introduced in Section 3. The empirical power comparison is outlined in
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Section 4 and its results are reported in Section 5. The results

suggest that the power properties of the POI test are largely invariant

to the choice of AR(1) parameter value at which power is maximized.

This conclusion is strengthened by a theorem which shows that for

certain design matrices, the POI test is approximately Uniformly Most

Powerful Invariant (UMPI) along a ray in the ARMA(1,1) parameter space.

The final section contains some concluding remarks.

2. THE MODEL

Consider the linear regression model

y = X13 + u ( 1 )

where y is n x 1, X is an n x k nonstochastic matrix of rank k < n, g is

a k x 1 vector of parameters and u is the n x 1 disturbance vector. It

is assumed that the components of u are generated by the stationary

ARMA(1,1) process,

ut = put_i + et + 7et_1 , t = 1, . , n , (2)

where p and 7 are parameters such that Ip<1, I71<1 and et ~ IN(0,c),

t = 0, n . Thus u ~ N(0, c
2
Wp,7)) where

Q(Pa) =

w
1 

w
2 

. w
n-10

w
1 

to
n-20

to2
wl w0

to  totow
n-2 • 0
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in which

and

= (l+'
2 

4- 2v))/(1 - p
2
)w

0
(3)

= (1 + p7)(p + 7)/0. - p2) (4)
1

wj = Pwj-1 ' 
j = 2, 3, ..., n - 1 .

Note that when p = 0, (2) reduces to a MA(1) process while when

7 = 0, it reduces to a stationary AR(1) process. Also observe that if

p > -7 then wi > 0 which implies positive first-order autocorrelation

while p < -7 implies negative first-order autocorrelation. When p = -7,

u N(0, 21)

Our Our interest is in testing

against

H
0 
: p = -7

H
a

p > - (or H
a
: p < -7) 7

We focus on one-sided alternatives because typically these are of

greatest interest. Omitted effects that are correlated over time lead

to positive first-order autocorrelation in the errors (Hi.) while
a

differencing the dependent variable often leads to negative

autocorrelation (H
a
).

3. POI TESTS FOR ARMA(1,1) DISTURBANCES

From King (1987), the POI test of Ho' 
which optimizes power at

(p,T) = (p0,70), is to reject Ho for small values of

4



,

„ -- - -
s(p0,70) = u'O(p.

0 a0 
)1 

u/e'e (5)

where il is the generalized least squares (GLS) residual vector from (1)

assuming covariance matrix Wp0,70) and ; is the OLS residual vector.

In order to calculate (5), note that it can also be written as

s(p0,70) =

where ell are the OLS residuals from the transformed regression

G
-1

y = G
-1xg + G-1u

in which G is an n x n matrix such that

Wpo,T0) = GG'.

Following Ansley (1979), the G-1 transformation can be applied

conveniently as follows. First define

-
1 o o o

o- P o o

W = 0 - 1
PO

1 0

0 0 -p
0 

1
-

-

_

and V = WO(p0,70)14'. It is straightforward to show that
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a 0
0

2
70 

1+7
0 

7
0

V = 0
o 

1+7
2
0

2
1+7

0 70

2
0 0   7

0 
1+7

0

in which a = (1 + 7
2 
+ 27

0 
p
0 
)/(1 - p

2
) . Therefore V has the Cholesky

0 0

decomposition

V = HH'

where H is an n x n matrix whose only non-zero elements are those in the

main diagonal and the lower off-diagonal. If these elements are denoted

by hii and respectively, i=1, n, then they can be computed, h,

by the recursive scheme:

h
1,1

= ,

7h
i,i-1 0 1-1,1-1

h. . _2) _ 11/2 ,
1,1 °O) 14-1

i = 2, .. , n

Suppose z denotes an n x 1 vector (either y or a column of X) to be

transformed to z* = G
-1
z. Because G

-1 
= H

-1
W, this can be achieved by

performing two transformations, the first being = Wz and the second

-1-
being z* = H z . The latter can be performed recursively by:

z =
1 

h
1,1

i = 2, .. , n
z. . - h. . z. Vh. . ,
1 1,1-1 1-1 1,1
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If m = n - k, X* = G 1X and M* = In 
- X*(X*'X*) 1X*', then from

King (1987), critical values for s(p0,70) can be found by solving

Pr[s(p0,70) <clu- N(0,cr2In)]

Pr[ (Ai -
i=1

2
< 0 I N(0,Imd = a

for c, where a is the desired significance level and Al, ..., m 
are the

non-zero eigenvalues of A = (G
-1
)1M*G

-1
. This can be solved iteratively

using Imhof's (1961) algorithm, coded versions of which have been

published by Koerts and Abrahamse (1969) or Davies (1980). The power of

the test when u N(0, c
2
E) can be calculated in a similar manner by

noting that

Pr[s(p0,70) < c u N(0,T2E)]

= Pr [ E
i=1

< 0 I N(0,Irad

where vl, ..., um are the eigenvalues of (A - cM)E excluding k zero

roots and M = I
n 
- X(X'X)-1X'.

4. AN EMPIRICAL POWER COMPARISON

An empirical power comparison was conducted in order to see whether

existing tests, designed to have high power against either AR(1)

disturbances or MA(1) disturbances, have good power against ARMA(1,1)

disturbances. A related question is whether there are clear advantages



in using a POI test for ARMA(1,1) disturbances.

Powers were calculated under both Ha 
and H

a
. Tests included were

the DW test; King's (1981) modified DW (MDW) test, which is a true LBI

test against AR(1) and MA(1) disturbances and a true uniformly LBI test

against ARMA(1,1) disturbances (King and Evans (1988)); King' (1985a)

recommended POI test for AR(1) disturbances (s(0.5,0) against H: and

s(-0.5,0) against H-a); King's (1983b) recommended POI test for MA(1)

disturbances (s(0,0.5) against H: and s(0,-0.5) against HD and the POI

test for ARMA(1,1) disturbances based on s(0.5,0.5) against H: and

s(-0.5,-0.5) against H. The following design matrices were used in the

comparison:

Xl: (n x 3; n = 20, 60). The first n observations of Durbin and

Watson's (1951, p.159) consumption of spirits example.

X2: (r) x 4; n = 20, 60). The eigenvectors corresponding to the four

smallest eigenvalues of the DW first differencing matrix Al. Note

that the eigenvector corresponding to the zero root of Al is the

constant dummy regressor.

X3: (n x 4; n = 20, 60). The eigenvectors corresponding to the zero

and three largest eigenvalues of Al.

X4: (n x 5; n = 20, 60). A constant, three quarterly seasonal dummy

variables and the quarterly Australian Consumers' Price Index

commencing 1959(1).

X5: (n x 3; n = 20, 60). A constant dummy, quarterly Australian

household disposable income and private consumption expenditure

(both seasonally adjusted) commencing 1967(2).
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(p,7) =

X1, X4 and XS were included as examples of design matrices from annual

and quarterly time series applications. The DW test against AR(1)

disturbances is approximately UMPI for X2 and X3, the former design

matrix being comprised of smoothly evolving sine curves while the

nonconstant regressors of the latter are sine curves with periods of

two, three and four observations, respectively.

For each design matrix and against Ha' 
powers were calculated at

(-0.5, 0.5), (0, 0), (0.5, -0.5), (-0.4, 0.8), (-0.2, 0.6),

(0, 0.4), (0.2, 0.2), (0.4, 0), (0.6, -0.2), (0.8, -0.4), (0, 0.8),

(0.2, 0.6), (0.4, 0.4), (0.6, 0.2), (0.8, 0), (0.4, 0.8) using exact

critical values at the five per cent significance level. Against fra,

powers were calculated at the analogous set of points with the signs of

the p and 7 values reversed. All powers and critical values were

computed using a modified version of Koerts and Abrahamse's (1969) FQUAD

subroutine with maximum integration and truncation errors of 10
-6
.

5. RESULTS

Selected calculated powers for X2 and X5 against Ha 
are presented

in Tables 1 and 2, respectively, while the corresponding powers against

H
a 

are given in Tables 3 and 4. In Tables 1 and 2, powers for (p,7) =

(0.4,0.8), (0.6,0.6), (0.7,0.4) when n = 60 are omitted because they are

always 1.000. Corresponding powers in Tables 3 and 4 were also omitted

for the same reason.

Against H:, a striking feature is that the trio of AR(1) tests,

namely the DW, MDW and s(0.5,0) tests, always have very similar powers,

particularly for n = 60. Power differences are rarely greater than

0.01. The largest power differences occur between the MDW and s(0.5,0)

9



tests for n = 20 and large values of p+7. With some minor exceptions

for X2, X3 and X4, the s(0.5,0) test is typically slightly more powerful

than the DW test and seems to have the best overall power of these three

tests.

The remaining two tests, which are based on s(0,0.5) and s(0.5,0.5)

and therefore test for an MA(1) component, also have very similar

powers. Power differences greater than 0.01 are extremely uncommon,

particularly when n = 60, and neither test dominates the other in terms

of power performance. The s(0,0.5) test is slightly more powerful for

(pa) values near (0,0.5) while the s(0.5,0.5) test has a slight power

advantage for parameter values closer to (0.5,0.5).

The powers of the trio of AR(1) tests typically increase as p

increases while p+7 is held constant, although X2, particularly when n =

20, provides a notable exception. On the other hand, the powers of the

remaining two tests typically decrease as p increases with p+7 held

constant although the reverse is the case for X3.

Comparing the two groups of tests, we find the AR(1) tests have a

power advantage when p is positive and 7 is negative or near zero. For

positive 7 values and p negative or near zero, the two tests which

recognise an MA(1) component dominate the other three tests. Taking the

s(0.5,0) and s(0,0.5) tests as representative of the AR(1) and MA(1)

component tests, respectively, maximum power differences when n = 60 in

favour of the s(0,0.5) test range up to 0.24. On the other hand,

maximum differences that favour the s(0.5,0) test when n = 60 range from

0.17 for X2 to 0.1 for X3. The s(0,0.5) and s(0.5,0.5) tests do appear

to have better overall power than the AR(1) tests.

10



Analogous patterns occurred for the powers against Ha with the

following exceptions. The power of the DW test was dominated by that of

the MDW and s(-0.5,0) tests with a noticeable power difference when

n = 20. Also, the powers of all tests show a greater tendency to

increase as p becomes more negative while .p+7 is held constant,

particularly when n = 20. In this regard, the behaviour of the MA(1)

component tests, namely s(0,-0.5) and s(-0.5,-0.5), differs from that of

their H
+
a 
analogues when n = 20.

Overall, the results strongly suggest that the power properties of

the s(p0,70) test are largely invariant to the choice of po but not to

the choice of 70 value. This conclusion is strengthened by the

following theorem, a proof of which is given in the appendix.

Theorem: Let D be the n x n matrix

O 0 0   0

1 0 0 0

O 1 0

0 0

O 0 1 0

If the column space of X is spanned by k of the eigenvectors of D + D',

then the POI test, based on rejecting Ho against H: (Ha) for small

values of s(p0,70) where po + 0 > 0 (po + 0 < 0), is approximately

UMPI along the ray 7 = 0 in the (pa) parameter space under H:

A similar result holds for the DW test in the context of testing

against AR(1) disturbances. In fact the above theorem can be regarded

as a generalization of the DW result. For the DW problem, empirical.

power comparisons suggest (see for example King (1985a)) that the DW

11



test is approximately UMPI in most economic applications although excep-

tions do exist. We conjecture that a similar picture holds for testing

against ARMA(1,1) disturbances. Despite the fact that the above theorem

only mentions very specific X matrices, we expect the s(p0,70) test to

be approximately UMPI along the ray 7 = 70 in the majority of typical

economic applications. Our empirical results support this conjecture.

However, we acknowledge the existence of X matrices for which the

s(p0,70) test does not have this property.

6. CONCLUDING REMARKS

In the introduction we argued that tests for autocorrelation in

linear regression disturbances need to have good power against ARMA(1,1)

disturbances. Our empirical power comparison, together with the above

theoretical result, shows that POI tests have good power properties.

Because the power of a POI test is largely invariant to the choice of po

value at which power is maximized, the choice of test therefore reduces

to a choice of 70 value in s(p0' 
7
0 
). Setting 70 to zero is equivalent

to choosing a test designed to test for AR(1) disturbances. Our

investigations suggest a nonzero value for 70 - say 0.5 when testing for

positive autocorrelation or -0.5 when testing for negative

autocorrelation. Alternatively, 7 might be selected in a less
0

arbitrary manner. In the case of testing for MA(1) disturbances, King

(1985b) recommends choosing 70 so that the optimized power is 0.65. For

our problem, this suggests a 70 value such that the power at (p,7) =

(70,70) is 0.65.

12



APPENDIX

Proof of Theorem

In order to prove the theorem, we need to show that for X matrices

whose columns can be written as linear combinations of k of the

eigenvectors of D + D', critical regions defined by s(p0,70) are

(approximately) invariant to the choice of po value. This would imply

that for any po value, we get (approximately) the same critical region

so that the test optimizes power at all points along the ray 7 = 70 in

the (p,7) parameter space.

Observe that W = I
n 
- p

O
D so that

= (I
n 
- p

0
D)
-1

n 
- p

0
D')

-1

-
(I
n 
- pD)

1 
(I
n 
+ 7

0
DM'

n 
+ 7

0
D')(I

n 
- p

0
D')

-1

-
= (I

n 
+ 7

0
D)(I

n 
- p

0
D)

1 
(I

n 
- p

0
D')

-1
(I

n 
+

The last equality follows from

(I
n 
- p D)

-1 
= I

n 
+ p

O
D + p

2
D
2 
+ + p

k-1
D
k-1

0 • 0

Also observe that when p * 0, Wp,7 can be written as

n(Pa) = (w - w1
/p)I

n 
+ (1 - p

2
)w

1 
n(p,O) P

where w and w
1 
are given by (3) and (4). Furthermore,

0

n(P,O) = + p2)In - p(D + D') - p2C]-1

where C = diag(1,0,0,...,0,1). Wp,7) can therefore be approximated by

0*(pa) = (w0 - 
w
1
/p)I

n 
+ (1 - p

2
)co

1
[(1 + p

2
)I
n 
- p(D + Di d p

13



when p * 0 and define

= Q(0,7) = (1 + 7
2
)I
n 
+ 7(1) + D') .

Note that because of the form of Q*(p,7), eigenvectors of D + D' are

also eigenvectors of ir(p,7).

Assume that our testing problem is one in which

u N(0,m
2

(pa)) .

When the column space of X is spanned by k of the eigenvectors of

D + D', the OLS and GLS (assuming covariance matrix 
*(p0,0))7  estimates

of g in (1) coincide (Watson (1967)). If denotes the GLS residual

vector from (1) assuming covariance matrix Ce(p0,70), the POI test

statistic can be written as

-1- -
= e'ir(p0,70) e e'e

-1
z +In + 70D)(In - p0D)-1(In - poW)-1(In + 70D'd ;

= e(I
n
 - poD1 )(In - poD); ;gin + 70D')(In + D);

--
where e = (I

n 
+ 7

0
D)

1 
e. Therefore the critical region

/ < c
10

is approximately equivalent to

e'CI
n 
- p

0
D')(I

n 
- p

0
D); < c

1
e'(I

n 
+ 7

0
D')(I +

0

which is approximately equivalent to

e'De e'e > c2

14



.,

assuming 70 + p0 > 0 or

e'De / ;1; < c2

if 7 + p
0 

< 0, where c
2 

is an appropriately chosen critical value. In
0 

both cases the approximate critical region is invariant to (30 as

required.

15
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Table 1: Powers against H
a 
for X2 at the five percent significiance level

Test

7 DW MDW s(0.5,0) s(0,0.5) s(0.5,0.5)

n=20

-0.4 0.8 0.275 0.282 0.280 0.404 0.398

-0.2 0.6 0.322 0.328 0.327 0.411 0.406

0.0 0.4 0.341 0.347 0.346 0.378 0.374

0.2 0.2 0.338 0.341 0.342 0.329 0.327

0.4 0.0 0.311 0.311 0.313 0.272 0.271

0.6 -0.2 0.257 0.255 0.258 0.208 0.208

0.8 -0.4 0.179 0.177 0.179 0.140 0.141

0.0 0.8 0.648 0.651 0.654 0.839 0.839

0.2 0.6 0.720 0.719 0.724 0.836 0.837

0.4 0.4 0.732 0.727 0.734 0.775 0.776

0.6 0.2 0.689 0.680 0.690 0.667 0.669

0.8 0.0 0.580 0.569 0.579 0.509 0.512

0.4 0.8 0.889 0.882 0.890 0.970 0.972

0.6 0.6 0.908 0.899 0.908 0.958 0.961

0.7 0.4 0.865 0.854 0.864 0.891 0.895

n = 60

-0.4 0.8 0.682 0.686 0.686 0.923 0.922

-0.2 0.6 0.791 0.795 0.794 0.925 0.924

0.0 0.4 0.840 0.842 0.842 0.890 0.888

0.2 0.2 0.860 0.861 0.861 0.839 0.838

0.4 0.0 0.863 0.864 0.865 0.783 0.782

0.6 -0.2 0.853 0.852 0.854 0.722 0.721

0.8 -0.4 0.810 0.808 0.810 0.636 0.635

0.0 0.8 0.994 0.994 0.994 1.000 1.000

0.2 0.6 0.999 0.999 0.999 1.000 1.000

0.4 0.4 1.000 1.000 1.000 1.000 1.000

0.6 0.2 1.000 1.000 1.000 0.999 0.999

0.8 0.0 0.999 0.999 0.999 0.997 0.997
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Table 2: Powers against H: for X5 at the five percent significiance level

Test

DW MDW s(0.5,0) s(0,0.5) s(0.5,0.5)

n=20

-0.4 0.8 0.265 0.271 0.267 0.386 0.374

-0.2 0.6 0.320 0.327 0.323 0.410 0.400

0.0 0.4 0.358 0.364 0.363 0.399 0.393

0.2 0.2 0.384 0.388 0.391 0.377 0.373

0.4 0.0 0.398 0.399 0.406 0.350 0.349

0.6 -0.2 0.397 0.394 0.403 0.318 0.318

0.8 -0.4 0.366 0.357 0.368 0.270 0.272

0.0 0.8 0.649 0.650 0.657 0.842 0.840

0.2 0.6 0.752 0.748 0.761 0.867 0.869

0.4 0.4 0.808 0.800 0.817 0.852 0.855

0.6 0.2 0.831 0.819 0.839 0.818 0.823
0.8 0.0 0.824 0.808 0.829 0.765 0.771
0.4 0.8 0.919 0.910 0.926 0.981 0.984

0.6 0.6 0.956 0.947 0.960 0.985 0.987

0.7 0.4 0.950 0.939 0.954 0.965 0.968

n = 60

-0.4 0.8 0.684 0.687 0.685 0.924 0.919

-0.2 0.6 0.796 0.798 0.797 0.928 0.924

0.0 0.4 0.848 0.849 0.849 0.896 0.892

0.2 0.2 0.872 0.873 0.873 0.852 0.849

0.4 0.0 0.882 0.883 0.884 0.807 0.805

0.6 -0.2 0.886 0.886 0.889 0.769 0.768

0.8 -0.4 0.883 0.882 0.887 0.738 0.741

0.0 0.8 0.994 0.994 0.994 1.000 1.000

0.2 0.6 0.999 0.999 0.999 1.000 1.000

0.4 0.4 1.000 1.000 1.000 1.000 1.000

0.6 0.2 1.000 1.000 1.000 1.000 1.000

0.8 0.0 1.000 1.000 1.000 0.999 0.999
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Table 3: Powers against lc for X2 at the five percent significiance level

Test

7 DW MDW s(0.5,0) s(0,0.5) s(0.5,0.5)

n=20

0.4 -0.8 0.114 0.115 0.114 0.122 0.120

0.2 -0.6 0.168 0.170 0.169 0.183 0.180

0.0 -0.4 0.234 0.239 0.238 0.251 0.247

-0.2 -0.2 0.309 0.318 0.319 0.316 0.314

-0.4 0.0 0.389 0.404 0.407 0.377 0.377

-0.6 0.2 0.478 0.498 0.504 0.439 0.441

-0.8 0.4 0.592 0.618 0.627 0.533 0.538

0.0 -0.8 0.363 0.374 0.374 0.428 0.422

-0.2 -0.6 0.533 0.556 0.560 0.613 0.612

-0.4 -0.4 0.690 0.722 0.732 0.754 .0.759

-0.6 -0.2 0.811 0.845 0.856 0.846 0.853

-0.8 0.0 0.898 0.925 0.934 0.911 0.918

-0.4 -0.8 0.776 0.811 0.822 0.870 0.875

-0.6 -0.6 0.897 0.928 0.938 0.953 0.959

-0.7 -0.4 0.925 0.951 0.959 0.963 0.968

n = 60

0.4 -0.8 0.503 0.509 0.508 0.716 0.712

0.2 -0.6 0.678 0.687 0.686 0.825 0.822

0.0 -0.4 0.786 0.795 0.796 0.846 0.844

-0.2 -0.2 0.850 0.859 0.860 0.841 0.839

-0.4 0.0 0.892 0.899 0.900 0.833 0.832

-0.6 0.2 0.924 0.930 0.931 0.839 0.838

-0.8 0.4 0.958 0.962 0.962 0.883 0.882

0.0 -0.8 0.977 0.980 0.981 0.999 0.999

-0.2 -0.6 0.996 0.998 0.998 1.000 1.000

-0.4 -0.4 0.999 1.000 1.000 1.000 1.000

-0.6 -0.2 1.000 1.000 1.000 1.000 1.000

-0.8 0.0 1.000 1.000 1.000 1.000 1.000
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Table 4: Powers against Ha for X5 at the five percent significiance level

Test

7 DW MDW s(0.5,0) s(0,0.5) s(0.5,0.5)

n=20

0.4 -0.8 0.172 0.174 0.170 0.206 0.196

0.2 -0.6 0.237 0.241 0.237 0.279 0.267

0.0 -0.4 0.299 0.308 0.305 0.331 0.321

-0.2 -0.2 0.361 0.373 0.375 0.368 0.362

-0.4 0.0 0.423 0.440 0.447 0.398 0.396

-0.6 0.2 0.492 0.513 0.526 0.435 0.437

-0.8 0.4 0.589 0.615 0.633 0.511 0.516

0.0 -0.8 0.496 0.515 0.515 0.638 0.628

-0.2 -0.6 0.642 0.671 0.681 0.764 0.766

-0.4 -0.4 0.755 0.789 0.808 0.833 0.840

-0.6 -0.2 0.838 0.871 0.892 0.875 0.884

-0.8 0.0 0.901 0.929 0.945 0.915 0.923

-0.4 -0.8 0.843 0.877 0.896 0.946 0.955

-0.6 -0.6 0.922 0.949 0.965 0.978 0.984

-0.7 -0.4 0.936 0.962 0.975 0.977 0.983

n = 60

0.4 -0.8 0.562 0.568 0.567 0.800 0.797

0.2 -0.6 0.720 0.728 0.728 0.868 0.866

0.0 -0.4 0.812 0.820 0.820 0.869 0.867

-0.2 -0.2 0.865 0.872 0.873 0.853 0.851

-0.4 0.0 0.899 0.906 0.906 0.839 0.837

-0.6 0.2 0.928 0.933 0.934 0.840 0.839

-0.8 0.4 0.959 0.963 0.963 0.881 0.881

0.0 -0.8 0.984 0.987 0.987 1.000 1.000

-0.2 -0.6 0.998 0.998 0.998 1.000 1.000

-0.4 -0.4 1.000 1.000 1.000 1.000 1.000

-0.6 -0.2 1.000 1.000 1.000 1.000 1.000

-0.8 0.0 1.000 1.000 1.000 1.000 1.000
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