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FRACTIONAL MATRIX CALCULUS

INTRODUCTION, APPLICATIONS AND FUTURE DEVELOPMENTS.

by

Kees Jan van GARDEREN

Department of Econometrics *

Monash University

ABSTRACT: Fractional Calculus gives a generalisation of the common

techniques of integration and differentiation. Although the origin of

Fractional Calculus lies more than 150 years behind us, it is still

quite unknown.

Recently however, Phillips (1984,1985) used fractional calculus to

derive the distributions of the Stein-Rule and SUB estimator and Knight

(1986b) used it to find the moments of the 2SLS estimator.

This paper gives an introduction to fractional calculus by showing

the ideas behind the definitions, giving examples and some applications.

At the end an attempt is made to show the relevance of this calculus for

the different fields of Econometrics and to put it in a more general

mathematical perspective.

* Much of the research was done as part of a Masters Thesis at the

Departement of Actuarial Science and Econometrics, University of

Amsterdam. I would like to thank Heinz Neudecker for his comments and

support.



1. INTRODUCTION

Fractional Calculus is the generalisation of integration and

differentiation. In the familiar calculus of integration and

differentiation the order of the operations is restricted to integer .

values larger than zero. Differentiating a function n times, neN, gives

the n-th derivative and integrating a function n times leads to the

n-fold integral. The relation between integration and differentiation is

given by the fundamental theorem of calculus from which it follows that

the n-th derivative of the n-fold integral is equal to the original

function. Hence differentiation can be seen as the inverse of

integration.

The question arises if an operator can be found that extends the

order of the operators to non-integer values and combines both

integration and differentiation into one operator. An operator that

extends the order from integers to fractions, or real numbers, is called

a Fractional Differential Operator.

• It is shown in this paper that a fractional operator can be found

and that it makes sense. It is a natural extension of the classical

operators, meaning that it has the same properties as the original ones,

and even more important, it can be used in Econometrics.

After deriving two different one dimensional operators we develop

two multivariate analogues. Examples show how the definitions are

applied and that the results are in line with what we expect. To show

the relevance of fractional calculus in Econometrics, a few applications

are given and some ideas on possible use are presented. Since success
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and development of the calculus depend on knowledge in a range of allied

subjects, an attempt to put fractional calculus in a more general

mathematical perspective concludes this paper.

2. GENERAL CONDITIONS ON FRACTIONAL OPERATORS

Since fractional calculus gives an extension of the ordinary

techniques of integration and differentiation, the properties of the

extended operator ought to be similar to the original operators. Using

these properties we impose five conditions on a fractional operator.

Let DA denote the fractional operator; i stands for the order of
a

the operation, p>0 meaning differentiation, g<0 meaning integration, and

a stands for the lower bound of the integration.
1

f:R9R is a real function which, apart from existence

assuring regularity conditions, is arbitrary.

Any fractional operator D should satisfy the following five

conditions:

An
(a) DA f(x) = f(x) ,

a
dx

x x
l

= S...S f(x c) dx dx
0 0 -n-1 '

a a

if p= n E N

if g=-n E N.

For integer values of g, D11 reduces to ordinary differentiation

if A is positive and ordinary integration if g is negative.

(b) D
o 
f(x) = f(x) ;

a

1 For differentiation this bound is irrelevant, but for a-fold

integration it is an essential part of the operator since the

difference (DAf(x)-Dilf(x)), g<0 does not only depend on a and b but
a b

also varies with x.
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D
o 
is the identity (mapping).

a

(c) DII[Kf(x) + Ag(x)] = K DII[f(x)] + A DI:[g(x)] .
a a

The operator DI: is linear.

(d) For every analytic function f(x), DII[f(x)] is also analytic.
a

A function f(x) is (real) analytic if it can be written as a power

series in x.

µ X+µ
(e) 

DA 
a 
D
a

 [1.(x)] = unless A<0 and g>o.

This is referred to as the Exponential Law.

In cases where A and µ are both positive (negative) integers,

condition (e) says that differentiting (integrating) µ times followed by

differentiating (integrating) A times equals (A412) times differentiating

(integrating). If A and µ have different signs it will in general matter

if we integrate first and then differentiate (2 < 0, A > 0) or

differentiate first and then integrate. A simple example illustrates

this fact: Choose f(x) = 4 and the lowerbound a = O. Then

D
1
D
0
-1
[f(x)] = D

1
 [4x] = 4 = D°[f(x)] ,

0 0 0

which is not equal to:

-1
D
0
-1
D
1
[f(x)] = D [0] = 0 * D°[f(x)]
0 0 0

which furthermore shows that integration is not the inverse of

'differentiation and that A<0 and g>o simultaneously should be excluded

from the exponential law.

3. FRACTIONAL CALCULUS

This section contains the derivation of two fractional operators

that satisfy the five conditions. Two examples show how they are applied

and that the results coincide with our intuition.
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The GrUnwald definition starts from first principles with the

definition of differentiation and integration. Define the increment

x -a
6
N 
= The derivative of f(x) is then by definition equal to:

-[f(x)-f(x-3
N
)1 -1

f(x) = lim   - lim
dx 

6 
6
N N400 

0°

and with the same definition of the increment one can define the integral

as the limit of the Riemann-sum:

N-1
-1 1
D
a 
f(x) = S f(y) dy = lim E 8N f(x-j aN)

a N4co j=0

Repetition of these definitions leads to expressions involving

binomial coefficients. Replacing factorials by gamma functions gives

The GrUnwald definition

-g N-1
DA f(x) = lim (x-a) E  

r(j-µ) x
-a))f(x-j (--

a N r(-Ami+1)N4. j=0
(1)

We have used the Gauss or Euler limit definition of the gamma

function, which allows the argument to be negative. See Oldham and

Spanier (1974) for further details.

It is clear that the Grunwald definition is not very attractive to

use for more complicated functions. The relevance of the GrUnwald

definition is, in the first place, the natural way in which integration

and differentiation are extended from first principles. A second

advantage is the generality of µ, which can take any value.

The Riemann-Liouville definition on the other hand, divides µ into

11=na, neN and aa
+
, integrates to the order m and thereupon

differentiates n times in the usual way.

4
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Consider Cauchy's or Dirichlet's formula for repeated integration

D n[f(x)] - 1 3,1(' (x-y) -/f(y) dY •TH7ITT
a

If we replace (n-1)! by r(n) it is no longer necessary to limit n to

integer values. Substitution of -n by -a and bearing in mind the

exponential law, the following definition is valid:

The Riemann-Liouville Definition

-
DA[f(x)] = D

a
n
[D
a 
[f(x)]]; n e

a

Ca[f(x)] = f6 (x-y
a

a

n d
n

D
a 
=

dx
n

a e OR; A = n a

f(y) dy

f 0 g < 0
=n 

+ 1 g 0 ; [ ] the entier of its argument

a = n -EL.

This definition coincides with a number of different 'traditional'

fractional operators depending on the value of *a. The definition

coincides with Riemann's definitiop for a=0, with both Liouville's

definition and with one of the Weyl definitions for a=m, and with the

second Weyl definition for a=-co and integrating from x to a. See Ross

(1975) for further details and history.

Examples illustrate how the Riemann-Liouville definition is applied:

Example 1 Et x131 -  r(P+1)  xP-A
r(p+1-µ) -

Proof:
x

D00[x] - 
r(a) 
I (x-y

0

Substitution of x = y/x gives

5
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y
p
dy .
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1 
x
p+a

r() 
B(a,p+1); a>0, p>-1 and B(,) the Beta function.

a 

Expressing the Beta function in terms of the Gamma function, and n-fold

differentiation, leads to

r(p+1) p-µ
x .

Np+1-µ)

A formula that reduces for integer values of µsneN to

p(p-1)(p-2) (p-n) xp-n

as one would expect.

Example 2

Proof:

DA ecx = cilecx

1
(x-y)

-1 
e
cy
dy .D E- ecx] =

-co r(a)
-03

Substitution of z = c(x-y) gives

c
ec I z e

a-1-z
dz .

r(a)
0

c > 0

The last integral is just another definition of the gamma function and

hence equal to r(a). Therefore we obtain after differentiating to the

order n:
pp 

[e ]=c 
c-acnecx 

cpecx-03

A sensible result.

4. FRACTIONAL MATRIX CALCULUS

In Section 3 we were only concerned with real functions of one

variable and a fair amount of literature exists on this topic. See Ross

(1974). In this section we shall extend the definitions to real

functions f with multivariate arguments. Some of the mathematical

background necessary to extend to Multivariate .Fractional Calculus is

given in the appendix.
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Notation: M
km 

is the space of all real (kxm) matrices of maximal rank.

S
m
={SEM IS'=S} is the set of all non-singular symmetric matrices.

111111

is the transpose of X. Vmk il a= f lkm 11-1101=Iml the set of all

semi-orthogonal kxm matrices, k>m (the Stieffel manifold). 0 = V the
m mm

orthogonal group. det( )cl = (det( ))cl the qth power of the determinant,

tr(X) = trace(X) = EXii 
and etr(X)=exp(tr(X)). X>0 denotes that X is

positive definite. X>Y 04 (X-Y)>0. All A (X)>0 denotes that all the

eigenvalues of the possibly non-symmetric X are larger than 0.

m+1 1
p- -dim(S

m
) and finally define pij=1 if i=j and =- if i#J.

2 Pij 2

There are at least three different ways leading to a definition of

D4 = det(2-)4 for arbitrary values of 4. (See appendix for the meaning ofax

D4 and an explanation of differential operators in general). All three

methods use the division of i=n-, leave D
n
=det(

2-)n unchanged and find aax

fractional integral operator D-a, similar to the one dimensional

Riemann-Liouville definition.

Method 1 generalises the different terms that appear in the Riemann-

Liouville definition to elm. Replace r(a) by the multivariate Gamma

-
function r

m
(a) and hence also a>0 by a>

m
---
2
1
=p-1 (assuring existence of

rm), a-1 by a-p and the distance (x-y) by the generalised distance

det(X-Y).
2

Finally change the integration area to O<Y<X for the Riemann

definition and to (X-Y)>0 for the Liouville definition. It remains

unclear however why det(X-Y) is chosen and not some other generalised

distance. The following two methods do make this explicit and give a

a
connection with the differential operator det(-55-).

2 Det(X-Y) can be reduced to the Lorentz distance. See arding (1951)



Method 2 rewrites the polynomial P(a) in a formal way. Meaning that if

the equation Nera = Q(a;e) holds, we replace

=

e by 40 and it follows:

a a 
In our case where P(--) = det(--) it follows from (A.8) that:ax ax

(4.1)

det(e)-a - r ) s det(s)a-Petrc-sivds Q(a4e); a>p-1 (4.2)

S>0

Replacing e by (-) leads to:ax
a-D

D-a[f(X)] 
1 r (a) det(S) 'etr(-S'2—) dS f(X)axm
1 

S det(S)a-Petr(-S'LL) f(X) dS .r
m
(a)S>0 

ax

Using Taylor's theorem (A.12), etr(-SIR) f(X) = f(X-S) we obtain

The Liouville definition:

If f:H 412 is a symmetric function then:
nun

-P
D 

1 -a
 [f(X)] f(X-S) det(S)" dS

r(a)
m

 S>0

(4.3)

D
n 
:= det(

a )nax •

This is exactly the approach Phillips (1985) uses. Phillips does not

A
give conditions under which D exists and a remark is in order. Formula

(4.2) is valid for positive definite e. The determinant is a symmetric

function and therefore the Laplace transform Q(a,e) of det(S)a-P is also

symmetric. By remark (iii) in the appendix, we may extend the definition

to all square matrices XEHmm. If however the symmetry condition on

S(=S1) is not changed then f has to remain a symmetric function. We

shall not develop this point.

Method 3 uses the Laplace transform and its properties. The properties

that will be used are given in the appendix. Under suitable conditions,

ensuring existence, we have
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and

= P (2-)a2-1{2{f(X)11 = 2-1{P(S)a.Eff(X)11 (4.4)
w ax w ax

= f(X) . (4.5)

Hence g(a;X) E 2-1{P(S)-a.Eff(x)}1 is a solution to the partial

differential equation:

a a
f(X) . (4.6)

In this way we have constructed an inverse for the differential operator

a a
Pw(737) . For obvious reasons we call this operator D-a. If we set Q = S

a
and P(S) = det(S) we have as conjugate operator Pw() = det( -

2--)Pijax ,.

(see appendix (A.4)). Da takes the form:

D-a[f(X)] 2m(P-1) f det(S)-af(Y)etr(-S1Y)dY etr(S'X)dS

(2ni)mPIm(S)ES Y>0
Re(S)=U>0

0

2m(p1)

= S f(Y){ det(S)-aetr(S/(X-Y))dS 1 dY . (4.7)

Y>0 (2ni)P U=U0>0

With Z=(X-Y) we recognise the inner integral as Cauchy inverse of

det(S)-a and hence by (A.7) equal to det(Z)a-P/rm(a); Z>0 and 0

elsewhere. Substitution in (4.7) gives

The Riemann definition

D-a[f(X)] 
1 

f(Y) det(X-Y)a-PdY
r(a)m

 (X-Y)>0;Y>0

X
1 

f(X-S) det(S)a-PdSF(a)m
 0

D' 
• a

D = det(p
ij

(4.8)

(ignoring sign)

Examples show how the definitions can be applied. The first illustrates

a 
the Liouville definition. Recall that in this case D

n
=det()

n 
and

9



XE111
mm
.

Example 1

Dij[etr(B'X)] = det(B)4 etr(B'X); All (B)>0

Proof: D-a[etr(AXA')] -  1  S etr(A(X-S)A') det(S)a-P dS,F (a)
m S>0

(4.9)

= etr(AXA')r 1(a) etr(-A'AS) det(S)a-PdS

m S>0

r
m
(a)

= etr(AXA') TTz; det(S)-a . (4.10)

in view of (A.7). Differentiating (4.10) gives Dn etr(A'AX) det(A'A) a =

det(A'A)n etr(A'AX) det(A'A)-(4. Since all these functions are symmetric

we can extend (4.10) to the desired result (4.9). (See Herz (1955)).

The condition that all eigenvalues of B should be larger than zero, all

X.(B)>O, is necessary and sufficient for convergence of the integral.

The second example illustrates the Riemann definition. Recall that

,
XES

m 
and 

Dn 
s 
= 

det(pij 
a 
)
n

---- 
ax..

Example 2

r (p+q)
D4 [detocn - r (p+q_4) det(x)q-4;

Proof: D-sa[det(X)q] - 
1  

$ det(S)q det(X-S)a-P dS .F(a)
m

 
0

4>p+q -1

Through substitution of Z = X
-1/2

SX
-1/2 

and dS = det(X1/2)m+idZ the

expression reduces to

.= det(X)q+a
1

B (p+q
' 

a) .r
m
(a) m 

After expressing the multivariate beta function Bm as a quotient of gamma

functions we obtain

D-scc[det(X)q] = det(X)q+a r rm(P+q)m(p+q+a) •

10
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If we rewrite det(X)(141:4 as the Cauchy inverse of det(S)-q-a-P (see (A.8))

and differentiate to the order n we obtain:

r (p+q) a_a
DM[det(X)q] - m r (q+p+a)2 Dnetr(S1X)det(S) 

_
p-^ dS

rm(p+q+a) m
(271)mip Re(S)=U >0 s

m(p-1)

= r 2
m(p+q) 

etr(S'X) det(S)
n-q-a-p 

dS

(2ni)mP
 
Re(S)=U>0

F (13-1--4)
Ill 

rm(p+q_n+a) det(X)q-nill

5. APPLICATIONS

In this section we present two applications and some ideas to show

that Fractional Calculus is more than an exquisite mathematical nicety.

Application 1: Wilks' generalised variance.

A result that generalises Wolfe (1975) and which is useful in

Econometrics is given by:

Theorem 1

Let X be a random matrix with distribution function F(X), Moment

Generating Function Mx(T), and let the support S
u 

of X be

definedasS={XalallA AX)>O1 thenII 
mm

i) Di1[MX
(T)]l

T=0
< co E[det(X)4] < co

If both expressions converge then:

ii) E[det004] = D4IMx(T)11T.0

Proof: We start with ii) and i) follows naturally.

ii) If both expressions converge we have for a > p - 1:

D-a[Mx(T)] - r 1(a) S { S etr[(T-SYX]d f(X)1 det(S)a-P dS (5.1)

m S>0 XES
u

Because the integral converges, we may interchange the order of

11



integration by Fubini's theorem and we obtain:

1 f   $ etr[(T-SYX] det(S)a-P dS d F(X). (5.2)

XeS 
r
m
(a) 

S>0

But the inner integral is just the fractional integral of etr(T'X).

Note that T is the variable and X E S
u 

is the constant satisfying the

condition in Example 1, Section 4. Using that example it follows:

= S etr(T'X) det(X)-a d F(X) .
XeS

u

After n-fold differentiation, we obtain

DII[Mx(T)] = S etr(T'X) det(X)4 dF(X) . (5.3)

XeS
u

Letting T 4 0, it follows from Lebesgues monotonic convergence theorem

(since lim det(X)4 etr(T'X) = det(X)4) that
T40

D4Mx(T)1
T=o 

= 5 det(X)4 dF(X) = E[det(X)4]
XeS

(5.4)

ii) It follows from Fubini's theorem that E[det(X)4] converges if

D4[Mx(0)] converges and vice versa. Hence if one converges the other

cannot diverge.

Remarks:

- The support Su is chosen to assure existence of the integrand in (5.2)

- X does not need to be symmetric since all functions are symmetric

(remark (iii) in the appendix).

The theorem states that we can find the moments of the density function

F(X) to any order using Fractional Calculus. In the univariate case

Theorem 1 ii) reduces to E(x4) = Dil[M
x
(0)] which is just a generalisation

of the classic result E(xn) =-- EM (0)1, i.e. the n
th 

moment can be

dx
n x

found by differentiating the MGF to the appropriate order and setting t

equal to zero.

12
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Application 2: Estimation using Fractional Moments.

Marzoug and Ahmad (1985) use fractional moments to estimate the

parameters of a Burr (type XII) distribution. They equate two fractional

moments of the theoretical distribution with corresponding fractional

sample moments and solve for the two parameters a and g, analogous to a.

method of moments estimator.

The Burr distribution is univariate, but with the help of theorem 1

we could apply the same method to multivariate distributions. With

fractional moments we can estimate a larger number of parameters without

the need to use very high moments.

Application 3: Anti Projection.

Consider a random (mxn) matrix X, mn with (joint) density function

f(X). If we partition X as X=(Y,Z), with Y (mxk) and Z Cm x(n-k)), mn-k,

we can find the (marginal) distribution of Y by "integrating Z out".

Richards (1984) shows that for a specific class of density functions we

can reverse the integration by means of fractional calculus.

If f is a hyperspherical distribution, i.e. f (X) = hmn
(XX') and

mn

rapidly decreasing on S, i.e. f(X) and all its partial derivatives

decrease faster than any polynomial in the entries of X then

f (Y) a S det(S-YY')
(n-k-m-1)/2

g
mn
(S)dS = g

mk
(YY')

mk
S>Y11"

(5.5)

and the major result that g is uniquely determined by gmk through the

relationship:

(n-k+m+1)
t-

g (XX') m $ (D
t 
g (T)) det(T - XX' 

2 
dT (5.6)

mn SW mk
T>XX'

where a means proportional to, D
t 

= (-1) D and t is any non negative
SW

integer such that D
SW
[g

mk
(T)] is absolutely integrable on {T>0}.

Remark: Richards uses a Weyl definition of the fractional operator and

13



tD therefore Dt = (-1) s 
in our notation.

SW

&Emig) If Y N (0 E I ) then X - N (0, E, I
n
)

mk " k mn

Or: if all columns of Y are i.i.d. Nm
(0, E) then so are the columns of X.

1 -1
Proof: f(Y) = g (YY') etr(- E YY')

mk

If we substitute T for YY' then T>0 a.s. if

1 - 1 -
D

W 
g (T) P (- E

1 
) etr(- E

1 
T)

S mk SW -2 -f

n-1
- p

D
-t+(n-k)/2

[D 
1 1

SW 
g (T)] S etr(- 2E T)det(T-XX')

t- 
2 

_ 
dT (5.7)

SW mk
T>XX'

1 -
etr(- E

1 
XX')

And it follows that X - N(0, E, In
).

There are many other applications. Phillips (1984,1985) and Knight

(1986a, 1986b) use fractional calculus in a number of articles on exact

distributions of estimators in small samples. It needs no explanation to

realise how important this is in econometrics. Another application that

one might think of is in large sample theory. Some theorems require that

the variance or the third moment of a random variable exists where it

1 2

suffices that EX12- or EX25 exist. With fractional calculus we may prove

2

EX23 < co (without deriving the distribution) or find lim E(e).
1142

If we shift towards the more economic fields of econometrics, we

might think of dynamic models where differential equations play an

important role. Another application arises if we apply Fractional

Calculus to diffusion of, for instance, money in the economy. Oldham and

Spanier (1974) solve a number of diffusion problems that arise in

chemistry and physics, although the application of physics to economic

problems is not always very fortunate.

14



In operations research a large number of problems boil down to

solving integral equations. For instance loss, profit and risk functions

(in a non deterministic situation) are all integral transforms. And more

specifically in semi-Markov programming we minimize q(.) = Sh( )Q( ) dX

under the condition q( ) dX = 1. Fractional calculus can help in

solving these equations.

7. CONCLUSION

In the last section we saw that Fractional Calculus can be useful in

Economics and Econometrics. It can on the other hand be related to many

mathematical areas. Differential operators and equations, Greens

function and fundamental solutions, pseudo differential operators,

integral transformations, innerproducts, special functions are all

directly linked to Fractional Calculus. At a fundamental level we should

have a closer look at integration and differentiation through the theory

of exterior differential forms. These forms can be integrated and

differentiated and there exists a generalisation of the fundamental law

of calculus through "Stokes (general) Theorem". Differential forms are

in turn closely related to manifolds. Calculus on manifolds can and will

be an important tool in multivariate statistics, etc.

We could continue, but the general idea is clear: success and

development of fractional calculus depend on our knowledge in a range of

mathematical subjects. On the other hand development of fractional

calculus will generate insight in these subjects. This symbiosis may

prove very useful. Together with significant applications this might

develop fractional calculus from an unknown mathematical theory into a

useful tool of econometrics.
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APPENDIX.

Definition: Differential Operator.

A mapping (or operator) M of a function space F to a function space

G is called a differential operator if the image g of f, g = M(f) (feF,

geG), in every point X of an open .set ..2 is determined by

- a finite number of (partial) derivatives of f,

- the value of X E 0 through functions aa(X).

We shall only concern ourselves with linear differential operators

of the form:

00()al...(_2ax 
_)anP(X;a) = E a (x)(X)a° a (A.1)

3

,...,a ax
[a]..r. a a +...+a :sr

a 
1 n

1 n

P must be regarded as working on a function f E F that succeeds P :

P(X;a)f(X). The terms aa[f(x)] represent the partial derivatives as

meant in the definition. The simplest example of differential operator

a
is, of course, .ax

Some criteria:

- We call P an ordinary differential operator if dimension (0) = 1

and a partial differential operator if dimension (0) > 1.

- The order of P is the largest value of [a] associated with a

function a
a 
not identically zero. In (3,1) it is assumed to be r.

- The sum of all terms with [a] = r is called the principal part Pr

3 a = (a ..., a
n
); a multi-index and,

[a] = a
1 
+ a

2 
+ + a

n 
its "length".

a
a
(X) : analytic functions on an open set 0(X e 0) of dimension n.

a
n 

a a a
2 a a

n
aa = a

a2 
. a

n2 
= «-i)AT) 1 «-i)aR—) ((-i)ax ) is

2

often omitted.

16



of P : P
r
(X;a) = Z a

a
(x)e.

[a]=r

- P has constant coefficients if P(X;a) = p(a), i.e. does not depend

on X.
a.

- Ifwesubstituteforeverya.areal variable g. then P(X,g) is a

polynomial in g. Pr(X,g) is called the characteristic polynomial.

A differential operator with constant coefficient is called:

Elliptic if Ng) = o has no real roots apart from g = o •

Parabolic if PCV = 0 has only the solution g = o

Hyperbolic with respect to g # o if

P
r
(g) # o A lIm(t)1>t0>0= Pag+70#0; for certain toER, n E Q.

The Hyperbolic definition implies that p(tg + 71) = o only has real

roots t (if P is homogeneous).

Examples of operators that are very common in. econometrics, mathematics

and physics are:

a2 a
2

A = + ... 
•' 

the Laplace operator is elliptic.
2 2 8x 8xax

n

ax
is parabolic since p(g)=o has the m-fold solution g=o

a
2 

a
2 

a
2

w = - + + .. . + • the wave operator is hyperbolic
2 

,
ax

1 
ax
2 

ax2
2 n with respect to (1,0,...,0).

a
2

= det(ax..); if = H .
mm

lj

1 i=j is hyperbolic with
a 

D
s 

= det(  ), if 2=S with p. = 1
jPij ax.. mm i — i*j respect to -Imij 2

. We shall proof that Ds is hyperbolic. det(piigii) = det(-Im) = (-1)m and

det( 
.Pi
.tg + p. 

i
m..) = det(Pijn - tIm

) = 0 has only real roots since
j ij j 

p..n. is a symmetric matrix and t are its eigenvalues.

Conjugate Operator P(a)

17



Conjugate Operator Pw(a)

An important role will be played by the function f:Rilm9R defined as:

S X +...+S X
11 11 nm nm

f(X) = etr(S'X) = (A.2)

If the elements in X are independent and we let P(a) "work" on f(X) we

obtain

P(a)f(X) = P(8) etr(S'X) = P(S)f(X) . (A. 3 )

If the elements in X are dependent, this will show in the exponent and in

the derivatives and (A.3) will no longer hold. We can, however, find for

every polynomial P(S) and 0 (that satisfy some basic conditions) a

corresponding operator Pw(a) such that:

P
w
(a) etr(S'X) = F(S) etr(S'X) (A.4)

We refer to P
w
(a) as the CONJUGATE operator of P(S).

It is easily checked that Pw
(a) = D

s 
for = S

m 
and P(S) = det(S).

Remarks: i) D det(X)4 = 0 and D
s
det(X)4 = c det(X)4-1 (if dim 0 > 1)

ii) D[F(X)] * J(F(X)), the Jacobian.

Laplace Transforms

Without concerning ourselves with conditions or proofs we shall

give some definitions, properties and examples that are important in

deriving multivariate fractional operators. Let S = U + iV; U, V E S.

The Laplace transform .(f(X)) = f(S) E g(S) of a function f(X) is unique

and defined as:

g(S) : = f etr(-S'X) f(dX (A.5)

X>0

The Cauchy Inversion f(X) of a function g(S) has g(S) as its Laplace

transform:

2m(p1) f(X) ; X > 0
  S etr(S'X) g(S) dS =

(27a)m13 U=U >0 0 ; elsewhere

VES
m

18
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•

Examples.

2(11(X)) = Fm(P) det(S)-P; H(X) 
= fl; X > 0: The Heaviside

0; elsewhere 
function

(A.7)

2(det(X)a-P) = det(S)-a rm(A) Re(a) > p-1

and hence by Cauchy's inversion formula

2m(p1) det(X)a-P 
  S etr(S'X) det(S)- s -   X>0 . (A.8)

r
m
(a)

2(ni)mP 
;

U=U >0
0

The Convolution Formula: The convolution product

X
f
3
(X) = $ f1

(X-Y)f
2
(Y)dY

0

of f
1 
and f

2 
has Laplace transform;

2{f
3
(X)} = ffeff

1
(X)}2{f

2
(X)1 .

Integration and  Pw(a)-differentiation may be interchanged.

For instance:

a
P
wag

)Setr(-S1 X)f(X)dX = S P(-X)etr(-S1 X)f(X)dX .
X>0

(A.9)

(A.10)

Definition: f(X) is a Symmetric function if f(H X H') = f(X); X E Sm

for all orthogonal matrices H. f(X) can be written as a complex analytic

function of the m elementary symmetric functions

xii
c 1J c = det(X) .= tr(X); c2 = det
1 x.. m

i<j 
x. 
lj jj

Remark: iii) Because f(W
1/2

XW
1/2
) = f(XW) = f(WX) for every W>0

symmetric function can be extended from X E Sm
 
to X E Hmm as long as f(X)

is defined.

Taylor's Theorem:

'1 aa
f(X-S) = [tr(-S'aR)]

k f(X) = etr(-S' )f(X)
k! aR

k=0

19
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