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Abstract

One of the benefits of the Engle and Granger (1987) two-step

procedure for modelling the relationship between cointegrated variables

is that the "long run equilibrium" relationship can be estimated

consistently by a straighforward OLS regression involving the levels of

the variables. Test statistics with appropriate asymptotic

distributions can also be computed fairly easily by applying the

modifications of Park and Phillips (1988). However, the omission of

dynamics may well be detrimental to the performance of the estimator in

finite samples.

In this paper we use a Monte Carlo study to compare various

estimators of the long run parameters. It is found that estimates which

include the dynamics are much more reliable, even if the dynamic

structure is overspecified. Furthermore, even though t statistics based

on Park and Phillips' fully modified estimator are asymptotically valid,

they do not have good finite sample properties. In contrast, the sizes

of t tests based on an estimator which does make use of dynamics are

very reliable.

*The author would like to thank Peter Burridge, Rob Engle, Clive Granger,

Bruce Hansen, Keith McLaren, Adrian Pagan and anonymous referees for

helpful discussions.



1. INTRODUCTION

The Engle and Granger (1987) two-step procedure for modelling the

relationship between cointegrated variables has received a great deal of

attention in recent years. One of its benefits is that the long run

equilibrium relationship can be modelled by a straightforward regression.

involving the levels of the variables. All dynamics can be ignored and

endogeneity of any of the variables has no effect asymptotically. In

fact, the Ordinary Least Squares (OLS) estimator is "super-consistent";

it converges to the true value at a rate faster than in normal

asymptotics. The attractiveness of these results can be seen easily by

considering the vast number of applications of the procedure in recent

literature.

There have, however, been concerns expressed at the approach taken

in the two-step procedure. Some authors (for example, Banerjee et al.,

1986) stress that although the dynamics are asymptotically irrelevant in

the first step, ignoring lagged terms may lead to substantial bias in

finite samples. The small Monte Carlo study reported in Banerjee et a/

lends support to this allegation. Others (in particular, Park and

Phillips, 1988) are more concerned with the fact that the OLS estimator

in the first step has an asymptotic distribution which is non-normal,

and depends on nuisance parameters. This makes inference difficult, and

in particular the standard t statistics that are produced by most

regression packages will not even be valid asymptotically.

Because these two groups of critics emphasise different aspects of

the problem, naturally they recommend different solutions. Banerjee et

al (1986) and many others, advocate estimating long run parameters in an

unrestricted Error Correction Model (ECM) form, incorporating all the
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dynamics. Stock (1987) also recommends this, describing the estimator

as nonlinear least squares (NLS). On the other hand, Phillips and

Hansen (1990) (based on results in Park and Phillips, 1988) advocate

using semi-parametric corrections to the OLS estimator to eliminate

dependency on the nuisance parameters, and to give an estimator which

follows a normal distribution asymptotically. They call this the Fully

Modified OLS estimator.

Recent papers by Phillips and others have put a strong case for

Modified OLS in preference to what we will describe as the Unrestricted

ECM estimator. Phillips (1988) shows that the latter approach is not

asymptotically optimal, as it takes no account of the possible

endogeneity of the explanatory variables. A simple Monte Carlo study

reported in Phillips and Hansen (1990) showed the ECM estimator to

perform fairly well compared with Modified OLS, but t-statistics on the

long run parameters can be quite misleading in the former case.

In this paper, we make the following contributions to the debate:

1. We show that Phillips and Hansen's (1990) Monte Carlo design is

'biased' in favour of Modified OLS, and when a more realistic Monte

Carlo is undertaken, the Unrestricted ECM estimator performs far

better than OLS or Modified OLS.

2. We demonstrate that the semi-parametric corrections applied to OLS

can also be applied to the ECM estimator, giving a Fully Modified

Unrestricted ECM estimator which is asymptotically optimal.

3. We find that the effects of endogeneity on the bias and

distribution of the ECM estimator are minimal.
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The model and estimators are described in section 2. A Monte Carlo

comparison is presented in section 3, with conclusions and

recommendations in the final section.

2. THE MODEL AND ESTIMATORS

2.1 The Model

In this paper we focus on the modelling of one variable, yt

although many of the issues discussed will apply to a system of

equations. We consider the autoregressive model

a(L)yt = µ + gimxt + ut , (t=1, , T) (1)

where yt is a scalar, x
t 

is a kxl vector of explanatory variables,

u
t 

is a stationary error term, and a(L) and g(L) are lag

polynomials. Specifically,

a(L) = 1 - a
1 
L - a

2
L
2 

ape (2)

where a
1 ' 

a
2 

• • a are unknown scalar parameters, and

g(L) = 0 + glL + g2L
2 
+ .

where go , • • •

(3)

g are kxl vectors of unknown parameters. We

assume that x
t 

is a vector of random variables and in particular that

+ v
t '

X
t 

= X
t-1

• (4)

where •v
t 

is stationary. By (4) we are implying that each of the

regressors are integrated of order 1, or I(1) , and we further assume

that yt and

y
t 
is I(1) .

are cointegrated (see Engle and Granger, 1987), so
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The specification of the xt vector as a random walk may seem

rather restrictive, but the asymptotic results allow for v to followt

a general ARMA process, so in a sense (4) could possibly be seen as a

set of 'reduced form' equations for xt . We allow for Cov(u
t ' 

v
t
) #

0 , in which case x
t 

is endogenous.

Equation (1) can be rewritten as

where

cal)yt µ + tw(l) pi(L) 7 wmixt [0(1) - caLnyt + ut

A IV (1) 43(L) - gmigi-L) 
t«TIT -aTIT xt a(1)(1-L)

u
t[a(1) - caLM(1-1.) 

a(1)(1-L) c7F.1

= A
l 
+ 

2
x
t 
+ 7

2
(L)Ax

t 
+ 7

1
(1..)Ay

t 
+ e

t '

-
= ii/c(l), X2 = 13(1)/a(1), 72(L) = cc(1)(1-L)

c(l) - a(L) 
and '1(L) =

a(1)(1-L) •

Alternatively the model can be written in ECM form:

(5)

- [X a(1) Lllyt - 
(1-L) 

g(1) ((11:111 LliXt
(L) (1-L)

(1-L) A [PM (1-1,) -

- a(1)LPyt g(1)LPxt + ut

simpyt . A + yL)Axt - m(1)[yt_p - A xt_13] ut,

a(L) - a(1)LP g(L) - (me
where 3

1
(L) =  and 52(L) -

(1-L) 1-L

(6)

The parameter A2 measures the long run impact of x on y, and hence if

primary interest is in the long run equilibrium relationship between x

and y, A2 is a key parameter of interest.
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2.2 OLS Estimator

Considering the version of the model given in (5), Engle and

Granger (1987) point out that since y
t 

and x
t 

are I(1) , and thus

and Ax
t 

are I(0) , if we are interested only in A2 , this can
AYt

be estimated consistently by OLS, even if we omit the I(0) variables.

In fact, Stock (1987) and others have shown that the OLS estimator of

1
A
2 

converges to the true value at a rate of 0( ) instead of 0 1 in
1

(1/f

traditional asymptotics applied to I(0) variables. It has thus become

a very popular practice in applied research where interest is focused

only on long run behaviour to estimate equations with yt regressed

only on a constant and xt . This is also the recommended approach for

the first stage of the Engle and Granger two-step procedure which has

been widely used. In this case (5) can be written

y
t 

= A
1 
+ Aix

t 
+ w (7)

2 t '

where w
t 

is an I(0) disturbance.

Phillips and Durlauf (1986) derive the asymptotic distribution of

the OLS estimator of A in (7), where A' = (A
1 ' 

A
2
). They show that

A
A has a distribution which is a ratio of integrals of functions of

Brownian motion, and that this distribution is highly dependent on

nuisance parameters. Similarly, the standard t and F statistics

based on A have equally complicated asymptotic distributions. So

while it is relatively simple to obtain consistent estimates of A by

OLS, it is not possible to make inference by the use of standard test

statistics.
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2.3 Fully Modified OLS Estimator

In order to enable hypothesis tests to be carried out on A ,

Phillips and Hansen (1990) (see also Park and Phillips (1988)) have

proposed a Fully Modified OLS estimator. This estimator removes some

second order bias in OLS, and also gives t statistics which follow a

standard normal distribution asymptotically. Following Phillips and

Hansen (1990), we assume the disturbance vector et = (wt,vt)' -(wt is

from equation (7) and v
t 

from equation (4)) is strictly stationary

with zero mean, finite covariance matrix E and long run covariance

matrix 0 . We decompose 0 as follows:

= Z + A + A' ,

co

where• E = E(e
0 
e') and A = EE(e0 ) , and we define A = E + A .
0

k=1

We also let X = [1, 
xt ]t=1 

The Fully Modified OLS estimator is
,...,T*

given by

where

-+ -1 
A = (X'X) [Xly - DT(A - a, 0 )]

21 22 22 21 '

v = v _
Jt 't 12 22 t '

D' = [0 I
k

(8)

. and a
21' 

a
22'12'22 

are consistent estimates of the variances and

covariances, based on OLS residuals wt 
and v

t
.

Hansen and Phillips (1990) give the form of the t statistic for

an element of A, say Ai, based on the modified estimator:

-+ 0
A
i 
- A

i
t(A) =  1

/2
[(X'X)-1

11.21

(9)



where W
11.2 

=
11 

-
12-21221. 

It can be shown that t 4 N(0,1) as

T 4co.

The use of fully modified OLS estimates and their associated t

statistics thus provides a workable means of both estimating and

performing hypothesis tests on the long run parameters of a model. The •

estimator should have even smaller bias than the already consistent OLS,

and t statistics should have valid size asymptotically.

The main potential difficulty with the OLS and fully modified

estimators is that they ignore the I(0) terms in (5). This will most

likely have some effect on the precision of the estimators, and it will

certainly have implications for the performance of t statistics. The

disturbance w
t 

will clearly display substantial serial correlation,

.which is only dealt with in a non-parametric way in the developments of

t statistics like (9). It is well known that the presence of

undetected autocorrelated disturbances can lead to serious biases in

estimates of standard errors and t statistics. Thus although the t

statistic in (9) has a standard normal distribution asymptotically it

may well be far from normal in finite samples. The Monte Carlo evidence

of the next section confirms this fear.

2.4 Unrestricted ECM Estimator

It was shown above that if one's purpose is to estimate the long

run parameter A2, it is asymptotically valid to omit the I(0) terms in

(5), and estimate (7). However, there seems to be no reason why the

full model cannot be estimated - one might expect this to lead to an

improvement in efficiency in finite samples. The most obvious way to

estimate the long run parameters would seem to be to estimate (1) or (6)
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by OLS, and then solve for A2. A nonlinear least squares algorithm

could be used to obtain standard errors for the estimates. Either

formulation would give the same inference on A.

If nonlinear estimation is seen as an obstacle, identical results

can be obtained by estimating (5) directly in a manner proposed by

Bewley (1979). Bewley's estimator involves estimating (5) by

instrumental variables (IV), with instruments for Axt and Ayt being

x
t-1 

and y
t-1 

. This estimator gives the same values for A
2 

and

their standard errors as if (1) or (6) had been estimated by OLS [see

Bewley (1986, p.69-73), and Wickens and Breuch, (1988)]. The only

difference is the possible computational convenience of obtaining

estimates and t statistics directly.

Phillips (1988) has shown that when xt is exogenous, the above

procedure is asymptotically equivalent to his fully modified estimator.

In fact, the inclusion of the lagged terms in the estimated equation is

an alternative to estimating 0 as a means of adjusting the OLS

estimator. However, when x
t 

is endogenous, Phillips shows that the

unrestricted ECM estimator does not adequately adjust OLS - it should

yield some improvement, but the asymptotic distribution of the estimator

is not free of nuisance parameters. Consequently, the t statistics do

not have a standard normal distribution asymptotically.

2.5 Fully Modified Unrestricted ECM Estimator

Recall that the unrestricted ECM estimator is equivalent to

estimating (5) by IV. The form of (5) suggests that the semi-parametric

corrections advocated by Phillips and Hansen (100) could be applied to .

the estimate of A
2' 

the coefficient of the I(1) variable in (5). This
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would give an estimator which has the . efficiency of using the full

model, as well as the benefits of asymptotic optimality and an

asymptotic distribution free of nuisance parameters.

To obtain this estimator we would proceed in two stages (see

Gregory, Pagan and Smith, 1990).

1. Obtain unrestricted ECM estimates of A and the coefficients .of the

lag polynomials 71(L) and 72(L), called X . il(L), i2(L).

2. Define yt = y
t 
- i

2
(L)Ax

t 
-

1
(1..)Ay

t'
and find the Fully

Modified OLS estimator of A in a regression of y* on X.

Tests of hypotheses about A can be based on the appropriate t

statistics that come from the Fully Modified estimates in the second

stage (see equation (9)).

This estimator does not suffer from the criticisms levelled at OLS

and Modified OLS, namely that they omit possibly important dynamics. It

also has the advantage over the standard Unrestricted ECM estimator of •

being asymptotically optimal, even in the presence of endogenous

regressors. The Monte Carlo study to follow will explore just how much

improvement it gives.

3. MONTE CARLO COMPARISON

3.1 Estimator precision

In *their comparison of the OLS, Modified OLS and ECM estimators

(among others), Phillips and Hansen's (1990) and Phillips and Loretan's

(1991) Monte Carlo design allow for serial correlation in and dependence

between u
t 

and v
t' 

but restricts the model by having g1 = a1 = 0.

In other words, the true data generating process has no dynamics (except

10



via the error), so naturally it favours the OLS and Modified OLS

estimators. The Unrestricted ECM estimator is based on an overspecified

model, particularly as they allow for up to three lags of xt and yt

in the ECM estimation. Despite this handicap, the ECM approach does

reasonably well in most cases. It would seem only fair, though, to

allow for some dynamics in the experiments, to see how Modified OLS

performs in non-ideal situations.

In the light of these comments, we specify the following model in

our Monte Carlo study of the estimators:

Yt
+ + (t=1, . 

= gOxt glxt-1 alYt-1 ut

(t=1, T),X
t 

= X
t-1 

+ V
t

where u
t 

and v
t 

are generated by the processes:

•, T), (10)

(12)u
t = P11711t

vt = P21/11t P22712t P23/71t-1 ' 
(13)

with .4
lt 

and n 
2t 

being independently and identically distributed
- 

standard normal variables.

We will focus attention on the long run parameter

A
2 
= (g0 + g1)/(1 - a1)' compar

ing the precision of the four estimators

described in section 2. Bias, Root Mean Squared Error and Probability

of Concentration are used to assess the estimators.

study:

The following sets of parameter values are used in our Monte Carlo

11



T = 50, 200; k = 1; xo = 1; yo = 1; µ = .

(g
0' 

13
1) 

a
1
) = {(1, 0, 0), (.6, 0, .4), (.2, 0, .8).

(.6, .4, 0), (.4, .2, .4), (.1, .1, .8)1.

p
11 

= .2; (p
21' 

p
22' 

p
23
) = {(0, 1, 0), (.5, .866, 0), (.5, .707, .5)).

The various combinations of the pa allow for correlation between

u
t 

and vt, and hence the endogeneity of xt, and for some serial

correlation in v
t
.

A few brief comments need to be made about how the estimators are

computed. The estimates of n and A used in the modified estimators

are based on the residuals u and from (10), (11) and (7)t vt w
t

respectively. The lag truncation number used in calculating 0 and A

for fully modified OLS depends on the values of gi, al and on the

autocorrelation in v
t
. Values chosen range from zero when and

p
23 

are zero through to 11 when gi = .1, al = .8 and p23 = .5. The

Modified ECM estimator uses a lag truncation of zero whenever p23 = 0,

and one when p23 = .5. In both cases this lag truncation represents as

close as possible to the "correct" truncation if all parameter values

were known, so if anything the results should favour the modified

estimators.
1

Tables 1 and 2 present results on the precision of the estimators.

We observe the following:

01 In most cases the modified OLS estimator yields no improvement on

OLS. When there is an improvement, the reduction in bias is fairly

minimal, and clearly not adequate, in cases where al # 0. It seems the

semi-parametric correction is insufficient to remove the autocorrelation

12



in the error when the data generating process includes a lagged

dependent variable.

(ii) The Unrestricted ECM estimator appears to perform very well. There

is a huge improvement in precision over OLS and modified OLS in cases

where a
1 

or g
1 

are non-zero. In a large number of cases it is the

closest to the true value. This confirms the claim that the I(0) terms

play a vital role in the precision of estimators in finite samples.

When a
1 
= 1 = 0, the ECM estimator is 

based on an overspecified

model, while OLS and modified OLS utilise the "correct" model. Despite

this, the ECM estimator still performs very well in these cases. Its

bias, RMSE and Pr(Concentration) is similar to the better of OLS and

modified OLS In each situation. These results suggest the possible

broad conclusion that it is better to overspecifv the dynamics of the

model than to underspecify.

(iii) The other striking observation from the tables is that the

precision of the ECM and modified ECM estimators is quite similar. The

difference in bias, RMSE and Pr(Concentration) is negligible in almost

every case. Recall that the modifications to the estimator are intended

to deal with autocorrelation in and cross-correlation between u
t 

and

vt. We would thus expect little difference between the estimators when

p
23 

= 0, where u
t 

and v
t 

are independent of each other and over

time. However, in the last block of the tables ut 
and v

t 
have a

covariance of 0.5, so we would expect the ECM estimator of the long run

parameter to display simultaneity bias, which is then corrected by the

modified ECM. However, it is obvious from the tables that the bias is

not substantial in these experiments.

13 .



This point obviously requires further investigation, but it does

suggest that the effects of simultaneity bias on long run parameters are

much smaller than on short run parameters. In particular, the present

evidence suggests that it may be unnecessary to use the modified ECM

estimator: the standard unrestricted ECM estimator performs as well, if

not better.

3.2 Hypothesis Testing

To examine the performance of t tests based on each estimator, we

add a second explanatory variable to the model and perform tests on its

coefficient. The model is

Yt 130xt (31x t-1 70zt "lYt-1 ut '

with x
t' 

u
t 

and vt generated by (11), (12), and (13), and

Z
t 

= Zt.i + W
t '

where

wt = P21771t P2271  3t P237)1t-1 '

(14)

(15)

(16)

and 17
3t 

is another standard normal variate, independent of and
711t

2
712t:

We will consider tests on the long run parameter X
3 
=

We test H
0 

A
3 
= 0 against the two-sided alternative H1 A

3 
# 0

using critical values from the standard normal distribution. Nominal

sizes of 5% and 1% were used, although results are given for the 5%

values only. Under H
0' 

rejection probabilities are evaluated with

To = A3 = 0, and under H1, A3 = .04 for T = 50 and .008 for T = 200.
3

These values were chosen to give a realistic range of powers.
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Tables 3 and 4 give the results on the sizes and powers of the

various tests.
4

We first discuss their performance under H0. The

following general observations can be made.

(i) The rejection probabilities for the OLS based test are

unacceptable. In only two situations is the probability close to the

nominal value - the cases where g = a = 0. Other values of the
1 1

parameters give sizes up to 66% for a nominal size of 5%.

Modified OLS gives t-statistics whose sizes are generally no better

than the OLS results. Neither test procedure shows any improvement for

the larger sample size. This is not unexpected for OLS, since the t

statistics are not based on the estimator's asymptotic distribution.

The poor performance of t-statistics based on modified OLS suggests that

- in this case a very large sample is required for the asymptotics to take

effect.

(ii) Rejection probabilities for the Unrestricted ECM estimator

represent a vast improvement on OLS and modified OLS. With a nominal

size of 5%, actual probabilities range from 1.9% to 7.4%, much more

reasonable than the alternatives. It seems that the sizes of ECM-based

tests are less vulnerable to changes in the values of the parameters of

the data generating process: fluctuations in size are minimal, and seem

not to follow any pattern. Significantly, the ECM estimator has

reasonable sizes when g1 = a1 = 0; that is, when there is no dynamics

and estimation is based on an overspecified model.

(iii) Sizes of tests using the modified ECM estimator are inferior to

those based on ECM. In some cases, in particular, where the errors are .

autocorrelated - the modified ECM has rejection probabilities of up to

15
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27%, and in other cases the size is an small as zero! As with modified

OLS, it seems that a very large sample is necessary for the test's

asymptotic superiority to be apparent.

Power results are difficult to compare because of the widely

disparate sizes, but we can observe the following.

(i) Power of the tests deteriorated dramatically as a
1 

increases and

hence 7 decreases. For example, in the first column of Table 3,
0

• sizes for the ECM test are relatively stable, but its power drops from

74.9% to 11.3% as a
1 

increases, even though A
3 

is the same in each
• 

case. This suggests that tests of long run parameters are more

difficult to perform when adjustment to the long run is slow.

(ii) Tests based on the ECM estimator seem to be slightly less powerful

than OLS when there is no dynamics in the model, and hence ECM has been

over-specified. For example, OLS has a power superiority of 2% in the

first column of Table 3 with no dynamics. It is clear, though, that

this overspecification has not led to a substantial loss of power.

(iii) In many other cases where reasonable sizes allow for valid power

comparisons, it is clear that the ECM estimator gives tests with a

substantial power superiority. For example, in the second block of

Table 4, with 
(130' 

g
l 

a
1
) = (.6, .4, 0), the ECM-based test has a

size of 5.3%, well below OLS-based size of 16.7%, and yet its power is

76.1% compared to 46.4%.

(iv) The semi-parametric corrections used in the modified OLS and

modified ECM estimators appear to lead to some loss of power. For

example, consider the last block of Table 4 with no dynamics: OLS has a

16



power almost double that of its modified version, when both tests have

similar size.

4. Concluding Remarks

In modelling long run relationships between I(1) variables, the.

researcher requires an estimator of the parameters which has good

precision, and an hypothesis testing procedure which is reliable and

powerful. The results contained in this paper suggest that if there is

any possibility that the true relationship includes lagged values of

variables, then it is unwise to use the OLS regression of yt on x
t

to estimate and perform tests on the parameters. The estimates can

contain substantial bias, and test statistics are hopelessly unreliable.

The Monte Carlo results of section 3 also suggest that the

semi-parametric approach used in Phillips and Hansen's (1990) fully

modified OLS does not solve all the problems encountered by OLS. The

bias is smaller, but still substantial, and t tests based on modified

OLS can be just as misleading as those based on OLS.

The alternative advocated in this paper involves using the

Unrestricted ECM estimator; in other words, including the dynamics in

the estimation of long run parameters. The evidence suggests that this

approach gives precise estimates and valid t statistics, even in the

presence of endogenous explanatory variables. The long run parameters

and their standard errors can be estimated directly using the instru-

mental variables method advocated by Bewley (1979), or by using a

standard nonlinear least squares algorithm to estimate the model as

given in (1) or (6).

17
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..

If there is concern about residual autocorrelation or endogenous

regressors, the modified ECM estimator and associated test statistics

could be used. This estimator has a 'valid' asymptotic distribution,

although its finite sample properties are not entirely convincing.

18



Footnotes

1. The Newey and West (1987) weights are used to ensure that is

positive definite in each case.

2. All parameter values for this set of experiments are the same as

given in section 3.1.

3. Obviously as al varies, To also varies so as to keep A3 fixed at

these values.

4. Results are based on 10,000 replications, so an estimate of the

standard error of size estimates is .002 when the true size is .05.

Standard errors are generally larger than this for power estimates.
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Table 1

Precision of Estimators of Long Run Parameter A2: T = 50

(P21' P22' P23) ) (P21' P22, P23)=(.5"
=(0, 1, 0 866, 0) (p21 ' 

p
22' 

p
23
)=(.5, .707, .5)

cg0'g1,a1) ESTIMATOR BIAS RMSE Pr(Conc) BIAS RMSE Pr(Conc) BIAS RMSE Pr(Conc)

OLS .0000 .0129 .998 .0098 .0170 .983 -.0002 .0082 1.000

(1, 0, 0) Modified OLS .0002 .0140 .996 .0111 .0191 .973 .0060 .0017 .996

ECM .0002 .0136 .997 -.0010 .0117 .999 -.0037 .0081 .999

Modified ECM .0005 .0146 .996 -.0000 .0123 .996 -.0002 .0070 1.000

OLS -.0634 .0801 .459 -.0483 .0608 .595 -.0422 .0542 .653

(.6, 0,.4) Modified OLS -.0694 .0899 .441 -.0519 .0683 .566 -.0381 .0511 .702

ECM .0004 .0243 .952 -.0009 .0204 .969 -.0129 .0206 .968

Modified ECM .0000 .0258 .943 -.0008 .0218 .960 -.0040 .0149 .990

OLS -.2886 .3323 . .061 -.2517 .2912 .059 -.2281 .2671 .089N.)
1--, (.2, 0,.8) Modified OLS -.3040 .3543 .059 -.2655 .3110 .057 -.2248 .2675 .093

ECM -.0072 .0899 .522 -.0058 .0782 .599 -.0369 .0703 .664

Modified ECM -.0062 .0946 .505 -.0054 .0824 .590 -.0101 .0584 .734

OLS -.0406 .0526 .681 -.0304 .0403 .803 -.0272 .0360 .854

(.6,.4, 0) Modified OLS -.0454 .0608 .646 -.0340 .0463 .767 .0240 .0337 .881

• ECM .0002 .0140 .994 -.0002 .0120 .996 -.0073 .0117 .997

Modified ECM .0005 .0150 .992 -.0002 .0128 .995 -.0019 .0083 1.000

OLS -.0952 .1185 .295 -.0787 .0987 .358 -.0672 .0860 .423

(.4,.2,.4) Modified OLS -.1043 .1330 .275 -.0863 .1109 .346 -.0639 .0846 .457

ECM -.0000 .0245 .950 -.0006 .0209 .969 -.0112 .0193 .974

Modified ECM .0004 .0260 .943 -.0004 .0223 .959 -.0021 .0145 .988

OLS -.3247 .3734 .048 -.2876 .3321 .050 -.2611 .3057 .084

(.1,.1,.8) Modified OLS -.3421 .3980 .047 -.3033 .3546 .049 -.2581 .3068 .080

ECM -.0066 .0906 .525 -.0049 .0794 .600 -.0352 .0698 .670

Modified ECM -.0056 .0952 .504 -.0045 .0835 .591 -.0082 .0586 .727

1
Pr(Conc) is the proportion of times the estimator is within .05 of the true value.



Table 2

Precision of Estimators of Long Run Parameter A2: T = 200

(P21' P22' P23) 
=(0, 1, 0) 

(p21' P22' 
p23)=(.5,.866, 0) (p21, P22' P23)=(.5"707'.5)

030'g1,a1) ESTIMATOR BIAS RMSE Pr(Conc)
1 

BIAS RMSE Pr(Conc)
1

BIAS RMSE Pr(Conc)
1

OLS -.0000 .0032 1.000 .0025 .0042 1.000 -.0000 .0019 1.000

(1, 0, 0) Modified OLS .0000 .0032 1.000 .0026 .0044 1.000 .0015 .0027 1.000

ECM -.0000 .0032 1.000 -.0000 .0027 1.000 -.0009 .0019 1.000

Modified ECM .0000 .0033 1.000 -.0000 .0028 1.000 .0001 .0016 1.000

OLS -.0165 .0219 .965 -.0125 .0167 .991 -.0114 .0146 1.000

(.6, 0,.4) Modified OLS -.0169 .0228 .959 -.0128 .0174 .986 -.0096 .0127 1.000

ECM -.0001 .0055 1.000 -.0001 .0047 1.000 -.0030 .0046 1.000

Modified ECM -.0000 .0056 1.000 -.0001 .0048 1.000 -.0005 .0029 1.000

OLS -.0913 .1153 .316 -.0804 .1010 .347 -.0754 .0931 .370

N (.2,0,.8) Modified OLS -.0929 .1182 .315 -.0818 .1033 .343 -.0723 .0901 .392
N ECM -.0006 .0181 .981 -.0004 .0149 .992 -.0074 .0128 .999

Modified ECM -.0004 .0183 .980 -.0004 .0152 .993 -.0004 .0092 1.000

OLS -.0101 .0135 .997 -.0076 .0103 1.000 -.0069 .0090 1.000

(.6,.4, 0) Modified OLS -.0104 .0141 .995 -.0079 .0108 1.000 -.0056 .0075 1.000

ECM -.0000 .0032 1.000 -.0000 .0028 1.000 -.0018 .0027 1.000

Modified ECM .0000 .0033 1.0.00 -.0000 .0029 1.000 -.0002 .0017 1.000

OLS -.0247 .0326 .892 -.0207 .0272 .928 -.0182 .0232 .962

(.4,.2,.4) Modified OLS -.0254 .0338 .887 -.0213 .0282 .918 -.0162 .0211 .977

ECM -.0001 .0055 1.000 -.0001 .0047 1.000 -.0026 .0043 1.000

Modified ECM .0000 .0056 1.000 -.0001 .0048 1.000 -.0000 .0028 1.000

OLS -.1027 .1296 .272 -.0918 .1152 .295 -.0864 .1066 .321

.1,.1,.8) Modified OLS -.1045 .1328 .275 -.0935 .1178 .294 -.0830 .1033 .340

ECM -.0005 .0181 .981 -.0003 .0149 .992 -.0071 .0126 .999

Modified ECM .0003 .0184 .981 -.0003 .0152 .993 .0007 .0093 1.000

1
Pr(Conc) is the proportion of times the estimator is within .05 of the true value.



Table 3

Performance of t tests of Long Run Parameter A3: T = 50

H
0
: A

3 
= 0. Nominal size = .05. Powers calculated for A

3 
= .04

(p21, P22' P23) 
=(0, 1, 

0) (P21' P22' 
p23) = (. 5, .866, 0)

P21' P22' (123)=(.5"707'.5)

(g0 ' g 1 ' al) 
ESTIMATOR SIZE POWER . SIZE POWER SIZE POWER

OLS .058 .771 .138 .897 .056 .708

(1, 0, 0) Modified OLS .069 .793 .254 .949 .236 .821

ECM .072 .749 .068 .853 .073 .942

Modified ECM .109 .804 .108 .892 .146 .963

OLS .334 .421 .353 .568 .376 .556

(.6, 0,.4) Modified OLS .526 .577 .550 .691 .604 .700

ECM .070 .434 .065 .567 .036 .352

Modified ECM .118 .528 .117 .649 .212 .532

OLS .608 .605 .606 .616 .627 .630.

(.2, 0,.8) Modified OLS .623 .628 .637 .644 .658 .662

ECM .074 .113 .070 .140 .035 .035

Modified ECM .153 .213 .154 .250 .267 .225

OLS .144 .366 .156 .563 .171 .531

(.6,.4, 0) Modified OLS .455 .638 .465 .790 .537 .756

ECM .063 .730 .060 .843 .028 .693

Modified ECM .102 .791 .103 .887 .192 .802

OLS .354 .393 .362 .459 .390 .469

(.4,.2,.4) Modified OLS .579 .599 .599 .646 .635 .674

ECM .064 .423 .061 .550 .027 .306

Modified ECM .112 .520 .112 .640 .210 .497

OLS .609 .607 .606 .617 .627 .630

(.1,.1,.8) Modified OLS .640 .642 .649 .653 .672 .674

ECM .071 .110 .067 .136 .034 .032
Modified ECM .150 .210 .151 .246 .266 .222



Table 4

Performance of t tests of Long Run Parameter A3: T = 200

H
0
: A

3 
= 0. Nominal size = .05. Powers calculated for A

3 
= .008

(P21' P22' P23)=(°' 1' ( 23 , . 866 0) i, to
P21 ' P22' 

p) = (. 5 
21 ' P22' P23) (' 5 707 5)

(R0'gl'a1) 
ESTIMATOR SIZE POWER SIZE POWER SIZE POWER

OLS .052 .643 .133 .819 .052 .581

(1, 0, 0) • Modified OLS .000 .160 .015 .524 .066 .307

ECM .058 .639 .055 .763 .067 .908

Modified ECM .000 .174 .000 .306 .003 .602

OLS .362 .412 .369 .524 .388 .512

(.6, 0,.4) Modified OLS .484 .334 .520 .576 .606 .644

ECM .054 .491 .055 .453 .024 .245

Modified ECM .000 .033 .000 .072 .070 .101

OLS .655 .655 .658 .659 .660 .662

1..) (.2, 0,.8) Modified OLS .618 .618 .629 .629 .619 .622 •
.g

ECM .055 .091 .058 .103 .020 .016

Modified ECM .000 .002 .000 .003 .071 .044

OLS .146 .304 .167 .464 .183 .442

(.6,.4, 0) Modified OLS .205 .353 .214 .504 .403 .521 *

ECM .053 .633 . .053 .761 .022 .579

Modified ECM .000 .167 .000 .300 .069 .256

OLS .379 .400 .375 .446 .405 .452

(.4,.2,.4) Modified OLS .586 .584 .615 .629 .651 .669

ECM .054 .334 .054 .449 .019 .214

Modified ECM .000 .032 .000 .070 .068 .070

OLS .657 .655 .659 .658 .659 .660

(.1,.1,.8) Modified OLS .632 .632 .641 .641 .628 .630

ECM .054 .090 .056 .101 .020 .016

- Modified ECM .000 .002 .000 .003 .070 .042
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