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ABSTRACT

The exact saddlepoint approximation as developed by Daniels [4], is an

extremely accurate method for approximating probability distributions.

Recent applications of the technique to densities of statistics of interest

have been hindered by the requirement of explicit knowledge of the cumulant

generating function, and the need to obtain an analytic solution to the

saddlepoint defining equation. In this paper we show the conditions under

which any approximation to the saddlepoint is justified, and suggest a

solution that does not affect the usual merits of the exact expansion. We

illustrate with an approximate saddlepoint expansion of the Durbin-Watson

test statistic.

* I am grateful to Grant Hillier for suggesting the problem and for numerous
helpful discussions. I am also thankful to Randolph Tan and Merran Evans
for their comments, and to John Small for his assistance with the data.
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1. INTRODUCTION

In recent years there has been renewed interest in saddlepoint

approximations in statistics. Given that the limiting distributions of

many statistics are notoriously inaccurate in small samples, and that

the corresponding exact densities are difficult to derive analytically,

it seems that this approximation is endowed with a superior small sample

accuracy over other comparable asymptotic expansions, see for example,

Reid [17].

The Edgeworth expansion in particular, which only requires

knowledge of the first few moments of the distribution and (hence) is

relatively easy to implement, is renowned for poor performance in the

tail area of the distribution, where the Hermite polynomials may be

unbounded, and can in fact assign .negative values to the approximate

density. Its truncation at the r
th

term gives an absolute error of

On the other hand, the saddlepoint expansion (which was first

introduced by Daniels [4], and then revived by Barndorff-Nielsen & Cox

[21), appears to perform well in the tail area and has a relative error

-
of 0(n

1 
), so that convergence to the limiting distribution is quicker

than that of the Edgeworth expansion, and small sample performance is

superior to the latter approximation.

The relative merits of the saddlepoint approximation raised hopes

for good small sample asymptotic approximations, and consequently a

considerable body of literature has been dedicated to the issue by,

among others, Phillips [14], Reid [17], Barndorff-Nielsen [1],

Barndorff-Nielsen & Cox [3], McCullagh [13]. However, exact applications

of the approximation appear to have been at a stand-still for a while,
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possibly due to its major drawback compared with the Edgeworth

expansion, namely, the requirement of explicit knowledge of the cumulant

generating function.

In practice, even full knowledge of the latter does not guarantee

an analytical solution to the saddlepoint defining equation, and

instead, numerical methods if applied, are often computationally

expensive, and may inflict severe violations to the usual features of

the expansion. The motivation for this paper is to provide a

theoretically justified approach to an approximation of the saddlepoint

expansion which leaves the qualitative merits of the exact expansion

almost unaffected, and further, saves computing time considerably. In

section 2 we introduce notation and the approximate saddlepoint

expansion. A practical example via the Durbin-Watson test statistic

follows in section 3, and section 4 concludes the paper.

2. THE APPROXIMATE SADDLEPOINT EXPANSION

Let X1,... ,X be independent, identically distributed random

variables, each with a density function fx(x), moment generating

function M
x

 (A), and cumulant generating function Kx
(A)=tnM

x
(A). Assume

that M
x
 (X) exists in some non-vanishing interval that contains the

origin. Also assume that the first two moments of X, µ and T
2
, are

fixed, and that higher order cumulants are bounded. Let X = nE1 X.

Following the approach taken by Barndorff-Nielsen and Cox [2], we embed

the density of 5i, f;(x), in the exponential family

f-(X:A) = expfn[AX-kx(
A)]) (1)



•

_
where R denotes the random variable defined above, and x is a given

value of R at which the density is evaluated. We now proceed by fitting

an Edgeworth expansion to the conjugate density, f;-c(x:A),. such that

p 
3 
(X)H (z)

3  i 4 4 + [ p (A)H (z)
f-(x:A) = Ekx" (MAI]

-1/2
0(Z){1

6 WI 24

p23(A)H6(z)

72
+ 0(113/2) 1, (2)

x-k1(X)x-E
A
(x)

where z=   -- 1/2
[var

A
(x)] 

rk"(2011/2
L x

()
0(z) is the standard normal PDF, pr

 (X) = k
r
0

x 
(Ak"(X))1,/2

.
r 3, and H (z) is the j 

th
 degree Hermite polynomial defined as

H (z) = (-1) 
a-195(z) // 0(z).
az

In particular, the Hermite polynomials appearing in (2) are

••
H 
3
(z) = z3 - 3z

H (z) = Z4 - 6z
2 
+ 3

4

H (z) = z6 - 15z
4 
+ 45z

2 
- 15.

6

At this point, we choose A = X such that

k'(X) -X=0,

(3)

(4)

(5)

which implies (from (3)) that z = 0, hence H3(z) = 0. With this choice

of X, we substitute (2) into (1) and rearrange to get

3
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f-(X) = [2ITk" (X)/n]-1/2 expfn[k (X) - XI
p4(X) 5p(X)1

8 24 j

+ 0(n-2)1 (6)

(6) is the saddlepoint approximation for the density of R, which was

first derived by Daniels [4], who applied the complex variable technique

of steepest descents to the Fourier inversion formula. In the same

paper, Daniels proved that the saddlepoint, X, is real and unique.

In practice, even if known, the cgf is often algebraically

complicated and the saddlepoint defining equation, (5), cannot be solved

analytically for X. Numerical methods such as Newton-Raphson, have been

suggested. See for example Easton and Ronchetti [9], or DiCiccio et al.

[6]. The problem is that there are almost always numerical errors in

these procedures, and they can take considerable time to compute. Any

approximation to X, say by X, such that the two points are in the same

neighbourhood, but still with X * implies that ic;() * X, hence z and

j 3 and odd, will no longer vanish in the construction of (6).

Unless X is suitably chosen, the approximate saddlepoint expansion with

X 
, 

replacing X will have an error of 0(n
1/2
- ) rather than 0(n-1), and the

leading term in (6) will become

[ic;',(X)/n] -1 / 2 ct. z expfn [kx ( - (7)

These consequences can be circumvented by choosing A such that

z = o(n )71/2.,
which implies that

fo(n-1/2)
H (z) =

4

if j is odd

if j is even.
( 8 )



Although 113(z) is no longer zero, it is 0(n-1/2) and the correction

factor involving it in (2) becomes 0(n ). Further, in view of (8) and

as z * 0, H4(z), H6(z) are no longer 3 and -15 respectively, but still

0(1). Lower order correction terms retain steps of 0(n-1). For

a detailed discussion on the Hermite tensors, the reader is referred to

McCullagh [13], ch.5.

—
From (3), the requirement of z = 0(1.1

1/2 
i) s equivalent to choosing

A such that

x - k' (A)
  - 0(n

-1
).

i 
AJJ

r,nr,N11/2
Mxt 

(9)

On expansion of the derivatives of the cgf about the origin, (9) becomes

- [µ+T2A+k3A2/2+k4A3/6+...]

1/2
[o'2+k A+k A

2
/2+...]

3 4

(10)

Clearly, from the numerator of (10), the saddlepoint is a function of

x-µ. Daniels [5] observed that for R in the range x-µ=0(n-1/2), where

most statistical applications are, X=0(n-1/2). For fixed Tc-µ, it is

0(1). Reid [17], section 2, further discusses the saddlepoint as a

function of Tc-µ. The order of magnitude of the approximate saddlepoint

is in effect the key to its justification.

Now let A = - 
2 

This choice is not arbitrary as will be

shown a little -later-on. -Substitution of 'A' into 00) gives

k - k —
3 (X-11 ) 2 4(X-1113) 

2 2 6 2

3( 2

5

k,-
4 X—p. ) 2
2 2



When 51 is in the range x-g=0(n
-1/2

), the highest order term in the
k,-
3 X-p. ) 2 -1

2
numerator is = 0(n ). The order of magnitude of successive

2 
m

terms decrease in powers of n1/2. In the denominator, the highest order

term is m
2
 = 0(1), and so the whole expression in (11) is 0(n-1). Hence

(9) is 0(n-1) and z = 0(n
-1/2

), as required. In the far tails of the

x-µ
distribution, = 0(1), hence (11) is 0(1). Unless the saddlepoint

m
2

defining equation is solved exactly, the approximation will be justified

-
only for the range Tc-µ = 

0(n1/2).

It has already been mentioned that the choice of = x P is not
m
2

coincidential. As X locates the minimum of f(X) = kx
(X) - Ax, the

Newton-Raphson algorithm

fqX
- 

n
)

X
n+1 

= X
n 

f"(X
n
)

with X = 0, gives X
1 

= x-1/ 
• 

The applied researcher who has
0

m
2 

implemented this procedure, may feel somewhat relieved to know that the

end of the first iteration is sufficient for z to be 0(n-1/2), but only

-
for R in the range x-µ = 0(.1

1/2 
). For the normal distribution,

k(A) = µX + cr2X2/2, and so 'A' is in fact the exact saddlepoint.

In general, this choice of 'A' is not expected to yield reliable

results as soon as X moves away from the mean (at x = µ, = = 0), as

information on higher order cumulants is ignored. Instead, an easily

implemented choice of an approximate saddlepoint, starts by a series

reversion of the saddlepoint defining equation, namely

(- 

k
2

x-µ 3 X - g )2+ [ 3 4

2
2m
2

m
2

2m
4

6m
2

6

2
0'

- 1.1 ) 3
+.. (12) •



For then, approximation of X by the first three terms in this series,

and substitution into (10) gives

{5k
3

40.
4

k
2

3

2cr
2

k 1 - 4
4 5 - 

0 r 0.-2 153
24cr

2 
Cr
2

(T2 4.... )1/2
. (13)

-
As the highest order term in the numerator of (13) involves 

x 

T
2

this expression is 0(n-2) for x-µ = 0(n
-1/2

), implying that z, 113(z)

are 0(n
-3/2

). The saddlepoint expansion (6) becomes

f-(-c) = 
[k"(X*)/n]

-1/2 0(z) expfrik
x
(A*) - A*Tcil

p (A*)H
4
(z) p3

2(A*)H
6
(z) 

+ 0(n
-2
)
1

-{1 +[  4
24 72

(14)

where A* is the RHS of (12), truncated after the third term, and the

0(n-2) term in (14) incorporates in it the factor p
3
(e)H (z)/6143. This

3

choice of A = A* serves as an excellent approximation, as will be

demonstrated in the next section, and the computation time of the

saddlepoint expansion with it is reduced dramatically, as the line

search for X is avoided. To obtain the approximate tail area

_
probability, Qn(X) 

= fmax x 
f-(x)dx, we can either integrate (14)

-numerically, or much more elegantly follow one of the approaches

discussed in Daniels [5]. For A = e and R in the range X-µ = 0(n-1/2),

an expansion -of-the exponent-in the inversion formula

1 
ic+ico

ex
(A) - Ax) dA

Qn(Tc) = J c-im211i -X
(c > 0), (15)

about e and allowing for k;(A*) * X, leads to the approximate tail area

probability



Qn(X) = ll(-V*) + e
n[k

x
(A*)-A*Tc] + 1/2(v*)2

{[H(v*) - Cv*)]

[ p (A*)(V*)
3 
1 p4(A*)(V*)

4 
p
3

2
(A*)(V*)

6
)]

1 -  3 24 72
6n

1/2

+ 0(v*)
[  

1/2 

p
3 
(A*) 

1 
[p

4
(A*)

((V* )2 - 1) - 
24 

((v*)2v*)

6n 
n 

p
2
(A*)
3 

((V*)5- (V*)3 + 3V*)]] f 1 + O(n-3/2 )1 , (16)
72

where v (*AnK" 
(A*))1/2,

* = 11(v*) = 0, 1/2, 1 when v* < 0, = 0, > 0

respectively, and (1)(v*) is the standard normal CDF. See appendix 2 for

rationale.

3. PRACTICAL EXAMPLE: THE DURBIN-WATSON TEST STATISTIC

Consider the classical-linear regression model, Y = xp + u, where Y

is CT x 1), X is CT x K), non stochastic and of rank K(<T), R is (K x 1)

and fixed, and u is a CT x 1) disturbance vector. The Durbin-Watson

test statistic for a first order autocorrelation in the disturbances is

given by

u'MAMu
u' Mu

where M = I
T 

X(X'Xrir, and A is the first differencing matrix

A =

- 1 -1   0

-1 2
2

-1 • '2 -1
0 -1 1

8

(17)



There are a number of other statistics of the general form of d and so

the discussion is not restricted to the Durbin-Watson test statistic

alone. Given that the exact density of (17) is unknown, most applied

econometricians either still use the traditional bounds test due to

Durbin and Watson [7], or calculate exact CDF values by the Imhof [11]

routine. Henshaw [10] derived the Beta approximation for the

distribution of this statistic, and a recent algorithm which avoids the

eigenvalue approach has been proposed by Shively et al. [15]. Except

for the bounds test, all these methods require numerical integration.

Under the Null hypothesis of no autocorrelation, u ~ N(0, T2 IT).

The cgf of d is then

co A J(1/2)
K
d
(A) = En E   C (L)

j=0 j!(m/2) [j] '
(18)

where m = T-K, (a) E a(a+1)...(a+k-1), L=MA, and C[]
 
(L) is the zonal

polynomial of L, see Smith [16] equation (3.7). A tabulation of zonal

polynomials up to sixth degree is given by James [12].

From (5) and (18), the saddlepoint defining equation is

j=1 
(j-1)!(m/2) 

C(L)

.2 
-j

j=0  C (L)
[J.]

a (19)

where a is a given value of d. An analytical solution for X in (19) is

evidently difficult. This is a -typical situation of having to

approximate A by one of the methods discussed above. In addition, we

have the practical problem of (18) being an infinite power series, but

this can be conveniently overcome by a quadruple approximation of Kd(A),

so that

9



d
(X) = µX + (r2X2/2 + K 

3 
X3/6 +. K 

4
X4/24. (20)

The error is uniformly 0(n-1), see Easton & Ronchetti [9]. The first

four cumulants are readily derived from (18) and are reported in

appendix 3. They agree with the first four moments appearing in Henshaw

[10].

We compare three (11(a) values in Table 1, appendix 1, where (21(a)
r..x a,

f
d
(a) da and max a

i 
being the largest eigenvalue of L, is the

upper bound of a. The first is obtained by the Imhof [11] procedure and

is regarded as "exact". The other two correspond to the approximate

saddlepoint tail area probability (16), with X* as the approximate

saddlepoint, and once again (16) with X
o 
as the saddlepoint, where Xo 

is

obtained by the Newton-Raphson algorithm, satisfying it:1(X0) - a < 10-6.

Strictly speaking, even if kiciao) = a, o is only a true

saddlepoint if K, r 5,_are all zero. The numerical results willr 

suggest that the advantage in the line search over.a direct application

of (16) with X* in terms of additional accuracy is minimal.

A range of data sets, covering a variety of econometric scenarios,

have been included in this study to account for the well known

.dependence of the cumulants of d on the X matrices. The regressors in

each data set are:

Watson:
ca ,)2 

and
ca )
3 T-2 /

Y2 , where a
i 
are the non-zero

eigenvectors of the A matrix, i1,... ,T-1.

Spirit: Log real income per head and log relative price of spirits in

the U.K., commencing 1870. As in Durbin & Watson [8].

10



POP: Household population, Households, and Household headship

ratios, all in 1966 and 1971, in Australia.

Trend: A linear time trend.

An intercept was included in all the above. The author has also, tried

other data sets which have been used in previous studies of the

Durbin-Watson test statistic, but they all exhibit very little

variability in the cumulants and in the (21(a) values. The X matrices

selected for demonstration here, are those with the greatest such

variability.

The main results are summarised in Table 1. Table 2 provides the

first-four cumulants of d for the different X matrices. A few issues

are to be attended. First, although only an approximate cgf has been

used, both saddlepoint approximations are generally accurate to

the third decimal place. The comparative advantage of the approximation

with X over the one with A* is minimal, whereas the extra CPU time
0

designated for the line search for the former is substantial. Second,

accuracy increases with T, and when considering the fact that the Imhof

routine requires the calculation of the eigenvalues of a (TxT) matrix,

as well as a costly numerical integration, the comparative speed of the

approximate saddlepoint expansion over Imhof increases with T very

rapidly. Third, additional accuracy can be obtained by normalization of

either approximations, but this requires knowledge of max ai, as well as

numerical integration. The costs have already been mentioned.

•

When T is small, both approximations can break down in the tails.

It reflects through k'ci(X0) or k(X*) becoming negative. The true cgf

though, Kd(A), is convex. See for example McCullagh's [13] (section

6.2) treatment of the Legendre transformation of Kx(A), or Daniels [4] .

11



section 6. It suggests that higher order cumulants than 4 are

significantly different from zero, at least when T is small. The

conventional 957. level for testing does not pose any difficulties, even

for sample sizes smaller than 20. On the pure basis of simplicity and

computational advantage then, the approximate saddlepoint tail area •

probability which does not require eigenvalues, numerical integration

and line searches, has very much to commend it.

4. CONCLUSION

Costly numerical methods are often required to solve the

saddlepoint defining equation. Unless the error in the approximation to

X is such that z = 0(n
-1/2

), r 1, none of the advantages of the

saddlepoint expansion over the Edgeworth expansion is retained. The

approximate saddlepoint, A*, only requires knowledge of the first four

cumulants of the distribution, not the form of the cgf. For R in the

range x-µ = 0(n
-1/2

), where_ most of the statistical interest lies, the

approximate saddlepoint expansion with X* is theoretically justified,

accurate, and very quick to compute. .

12

•



REFERENCES

1. Barndorff-Nielsen, 0.E., On a formula for the distribution of the

Maximum Likelihood estimator. Biometrika 70 (1983): 343-365.

2. Barndorff-Nielsen, O.E. & D.R. Cox, Edgeworth and Saddlepoint

approximations with statistical applications (with discussion). Journal

of the Royal Statistical Society Series B 41 (1979): 279-312.

3. Barndorff-Nielsen, O.E. & D.R. Cox, Asymptotic techniques for use in

Statistics. New York: Chapman and Hall LTD, 1989.

4. Daniels, H.E. Saddlepoint approximations in statistics. Annals of

Mathematical Statistics; 25 (1954): 635-650.

5. Daniels, H. E., Tail probability approximations. International

Statistical Review, 55 (1987): 37-48.

6. Di Ciccio, T.J., Martin, M.A. & G.A. Young. Fast and accurate double

Bootstrap confidence intervals. Technical report No. 369, Statistics

Department, Standord University.

7. Durbin, J. & G.S. Watson, Testing for serial correlation in least

Squares Regression, I. Biometrika 37 (1950): 409-428.

8. Durbin, J. & G.S. Watson, Testing for serial correlation in least

squares regression, II, Biometrika, 38 (1951): 159-178.

9. Easton, G.S. & E. Ronchetti, General Saddlepoint approximations with

applications to L Statistics. Journal of the American Statistical

Association 81 (1986): 420-430.

10. Henshaw, R.C., Testing single-equation least squares regression models

for autocorrelated disturbances. Econometrica 34 (1966): 646-660.

11. Imhof, P. J., Computing the distribution of quadratic forms in normal

variables. Biometrika 48 (1961): 419-426.

12. James, A.T., Distributions of matrix variates and Latent roots derived

from normal samples. Annals of Mathematical Statistics 35 (1964):

475-501.

13. .McCullagh, P., Tensor methods in statistics. London: Chapman and Hall

LTD, 1987.

14. Phillips, P.C.B., Edgeworth and Saddlepoint approximations in first

order non-circular-autoregression. -Biometrika.65.(1978): 91-98.

15. Shively, T. S., Ansley, C. F. & R. Kohn. Fast evaluation of the

distribution of the Durbin-Watson and other invariant test statistics in

Time Series Regression. Journal of the American Statistical Association

85 (1990), No. 411: 676-685.

16. Smith, M.D., On the expectation of a ratio of quadratic forms in normal

variables. Journal of Multivariate Analysis 31 (1989): 244-257.

17. Reid, N., Saddlepoint methods and statistical inference. Statistical

Science Vol. 3, No. 2 (1988): 213-238.

13



APPENDIX 1

Table 1: Tail area probabilities

T=40 . T=20

Data Imhof a SP APSP a SP APSP

Watson .9990 1.3353 .9899 .9897 1.1722 .9899 .9896

.9500 - 1.5240 .9498 .9496 1.4054 .9500 .9496

.9000 1.6274 .8998 .8997 1.5346 .8998 .8996

Spirit .9900 1.3911 .9898 .9896 1.2045 .9944 .9903

.9500 1.5930 .9498 .9497 1.4822 .9499 .9500

.9000 1.7038 .9000 .8999 1.6376 .9005 .9008

Pop .9900 1.3854 .9898 .9897
.9500 1.5926 .9499 .9499 1.3978 .9515 .9480

.9000 1.7059 .9001 .9001 1.5456 .8989 .8983

Trend .9900 1.3440 .9898 .9896

.9500 1.5443 .9497 .9494 1.4104 .9490 .9485

.9000 1.6545 .8998 .8997 1.5598 .8995 .8992

a: DW values.
SP: "exact saddlepoint" (Newton-Raphson).

APSP: Approximate saddlepoint.

Table 2: DW cumulants

Data T kl k2 k3 k4

Watson 40 2.0000 .0835 -4.0E-09 -.0007

20 2.0000 .1298 -6.0E-10 -.0022

spirit 40 2.1014 .0942 -.0008 -.0012

20 2.1938 .1798 -.0071 -.0075

pop 40 2.1101 .0971 -.0014 -.0013

20 2.2511 .1860 -.0119 -.0079

trend 40 2.0524 .0946 -.0004 -.0012

20 2.1095 .1772 -.0029 -.0078

14



,g

APPENDIX 2

The tail area probability is given by

c+iw
1

e
nEk

x
(A) - Ax] dA

(c > 0) (2.1)
Q.(x) 

c-iw

Using Daniels' [5] approach, expansion of the exponent in (2.1) about

A*, and allowing for k;(A*) * x, we have

- j
1 n[k (A*) - A*xl 

c+iw 
1/2nk"(A*)(A-A*

Qn(X) = 2Tri e x e x
c-iw

x (A-A*) + k(3)(A*)(A-A*)3 +
6 X

2

expfn[(k;(A*)-X)

1 0
x
4)(e)(x_e)4 .

24 

dA
--x

n[k
x
(A*) - 

A*;
-c] 

e
1/2nk

x
"(A*)(A-A*)2{

1 +-- e  
2ni

c-iw

() 4
x (A-A*) + 

1 
- k

3 
(A*)(A-A*)

3 
+ k

(4)
(A*)(A-A*)

6 X

2,

+ 
(A_20,2t 1 (k(3)(e)(A A.,12

E i+ rle(A*) 
L x• 36 x2 

x 
(3)+ lic; (A*) — x k (A

* )(A-A*)4 1 
(k1(A*) - x)

12 x

(4)
x k

x 
(A*)(A-A*)

5 
+ . .

Now, write V = Aink"(A*

becomes

• •

3
+ _n

3 
(lc, (A* ) ;c1 3 (A_A*) 1 dA

6 x A •

(2.2)

) 1/2,
V* = A*(nk"(A*))1/2 then (2.2)
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„ " (X*)  .1/2tKx

then have

jc+im
e
n[k

x
(X*)-X*x] + 1/2 (V*)

2 
1

e
1/2 V

2
-VV* 1

1 + 
le(X*)-X

2ni
c-im (nk"(X*))

1/2

X

p
3
(A*) p (As)

x (V - V*) +   (V - V*)
3 
+  

4
(V - V*)

4 
+

6n
3/2

24n2

n
2

(ki(X*)-X)2 
2
(A*)

nk"(X) 

p (X*)(1e(X*)-x)
X 3 X 

(V - V*)2-+ p3  (V - V*)
6 
+ (V - V*)

4

[*
36n3 3n

2
(WI WI))

1/2
X 

p (X*)(1e(X*)-x)
4 X 

(V - V*)
5 
+ .

12n
5/2

(k"(X*))
1/2

• •

_ 
n
3/2

(ki (X*)-x)
3

x ) dV
(V - V*)

3
+.../ -v

(1C;(A*))3/2

(2.3)

From (13), when X is in the range X-µ = O(n-1/2) ,

k'(X*)-X
  = 0(n

-2
). Rearranging (2.3) in decreasing powers of n, we

j
e
n[k

x
(X*)-X*X] + 1/2 (V*)2 1

e
1/2 VVV

2
-

c+im 
*

1 + 
p3(X*) 

(V - V*)3
2ni 6n

1/2

1 [ P4(X*)
24

2
p (X*)

(V - V*)4 +  3
72

• • • (2.4)

•

Except for an obvious change in notation, and for X* replacing the

true saddlepoint, X (2.4) is identical to equation (3.7) in Daniels

[5]. Hence, from equations (3.11) and (5.3) of that paper, the desired

result follows.
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APPENDIX 3

Let L = MA, and denote the trace of a matrix by tr. Then under

the Null hypothesis of •no autocorrelation, the first four cumulants of

the Durbin-Watson test statistic are:

trL
k = g =
1 m

k = -
2 mtrL2 - (trL)2 1
m 

2 12
m (m+2)

k3 = 
- 3mtrLtrL2 + 2(trL)3

3 
- 8

m3(m+2)(m+4)

k = 12 m3

f 

[4trL4 + (trL2)2] - 2m2[8trLtrL3 + trL2(trL)2]
4

+ m[24trL
2
(trL)

2 
+ (trL)

4
] - 12(trL)4}f m4(m+2)(m+4)(m+6) - 3k2.2
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