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NON-LINEAR TIME SERIES MODELLING AND DISTRIBUTIONAL FLEXIBILITY

Jenny N. Lye and Vance L. Martin
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Abstract

Most of the existing work in non-linear time series analysis has
concentrated on generating flexible functional models by specifying
non-linear specifications for the mean of a particular process without much,
if any, attention given to the distributional properties of the model.
However, as Martin (1991) has shown, greater flexibility in perhaps a more
natural way, can be achieved by consideration of distributions from the
generalized exponential class. This paper represents an extension of the
earlier work of Martin by introducing a flexible class of non-linear time
series models which can capture a wide range of empirical behaviour such as
skewed, fat-tailed .and even. multimodal distributions. This class of models
is referred to as GENTS: Generalized Exponential Non-linear Time Series. A
maximum likelihood algorithm is given for estimating the parameters of the
model, and the framework is applied to estimating the distribution of the

movements of the exchange rate.

KEY WORDS: Non-linear time series, generalized exponential distributions,
skewness, fat-tails, multimodality, maximum likelihood




INTRODUCTION

The identification of limit cycles, chaos, self-excitation, asymmetric
distributions, leptokurtosis, sudden jumping behaviouf; time deformation,and
time series exhibiting irreversibility characteristics, has led to the
development of nonlinear time series models. One class of nonlinear time
series models consists of letting the pertinent variable at time t be either
a function of polynomials in the autor;gressive terms (Granger and Newbold,
1977), or a function of polynomials in the moving average terms (Keenan,
1985), or as a product of autoregressive and moving average terms (Granger
and Anderson, 1978; and Rao and Gdbr. 1984). Another class consists of
allowing the dependent variable to switch between linear autoregressive

models (Tong, 1983).

One important implication of nonlinear time series analysis is that in
modelling data it is necessary to consider not only the first two moments of
the distribution, but higher order moments such as the third (skewness) and
the fourth (kurtosis) moments. However, in most nonlinear time series models
higher order moments are not modelled explicitly. For example, in the class
of models suggested by Engle (1982) called ARCH, kurtosis can be modelled by
allowing the (conditional) variance to have an autoregressive
representation. This class' of models can also capture the 'bunching
characteristic of price data that was first observed by Mandelbrot (1963),
and has been extended by Nelson (1991) to expiain'skewness. An exception is

the work of Rao and Gabr (1984) and Ashley and Patterson (1989) which is

based on bispectral analysis and which consists of a double Fourier

transformation of the third moment.

The reason for the implicit treatment of higher order moments can be

attributed to a preoccupation with constructing nonlinear models of the mean




and the variance, with 1little, if any consideration given to the
specification of the stochastics of the model. The approach adopted in this
paper, and in contrast with most of the existing nonlinear time series
models, is to construct a nonlinear time series model which explicitly takes
into account higher order moments. The approach consists of using a
generalization of the Student t distribution to model the error
distribution. This distribution which has been studied recently by Martin
(1990) and Lye and Martin (1990), provides a flexible framework by which to
build nonlinear time series models since most of the observed nonnormal
characteristics often identified in data can be captured directly. A special
feature of the generalized Student t distribution is that it can modél not
only symmetric fat-tailed distributions, but also distributions that are
skewed, and possibly even multimodal. This last characteristic 1is
particularly important when attempting to model the switching regime class

of Tong (1983) and Martin (1991).

The rest of the paper proceeds as follows. The theoretical apparatus of
the GENTS model is given in Section 2. An iterative maximum likelihood
estimation procedure is given in Section 3, while the GENTS model is
contrasted with some existing time series models in Section 4. In Section S
the GENT$ class of nonlinear time series models is applied to modelling the

rate of growth of- the nominal exchange rate. An- important feature of the

estimated model is that the exchange rate distribution is bimodal over the

period 1977 to 1989. This not only suggests that movements in the exchange
rate are the result of the exchange rate jumping between equilibria in a.
zone of multiple equilibria, but it also highlights the difficulties of
modelling the rate of growth of the exchange rate with a linear model. Some

concluding comments and suggestions for future work are given in Section 6.




GENERALIZED EXPONENTIAL NON-LINEAR TIME SERIES (GENTS)

3.1 The Model

Consider the following non-linear autoregressive time series model

Y, = BO(Y Y ...) + U

t t-1" t-2’ t’

where 90(.) represents a non-linear function, and Ut is an error term with

zero mean and variance equal to 05. The distribution of Ut and hence Yt’ is

often assumed to be normal. However, as discussed in the previous section,
there are a number of reasons as to why the distribution of Yt is not
normal. One appropriate class of distributions to be used as a model of Yt
stems from the work of Cobb (1978), Cobb, Koppstein and Chen (1983), Martin
(1991), and Lye and Martin (1990). This class of distributions is based on a
generalization of the Pearson system. In particular, one subordinate in this
class which is able to model the leptokurtosis observed in a number of data
sets, represents a generalizafion of the Student t distribution. The-
generalized Student t distribution is derived from the following

differential equation

df _ -g(u)f(u)
du h(u)

’

where f is the density function of U and 72 is referred to as the "degrees
of freedom" parameter. In the standard Pearson system, g(u) is a polynomial

in U of degree less than or equal to one, whereas h(u) is a polynomial in U




of degree less than or equal to two. The general solution of (2) for M=6 is

6

f(u) = exp[eltan_l(u/q) + Gzlog('ar2 + uz) +
i=3

Giul-z -7 ], —o<u<m,

where the normalizing constant is given by

6
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The conditional distribution of Yt can be simply obtained from using
(1) to transform (5) into a density in terms of Yt‘ This yields a
generaliied conditional Student t distribution which encompasses a number of
well-known distributions. For example, the normal distribution is given by

setting 6.,=6,=0 and 91=0, i>4. The Student t distribution is given by 6,=0,

1 2
ei=o, i>2, and 6

1

2=-(1+72)/2. The Pearson Type 1V distribution is given by

Gi=0, i>4. The generalized normal distribution is given by 91=92=0.

The distribution given by (5) is flexible enough to model distributions
that are fat-tailed, skewed, or even multimodal. In general, the functions-
ei, i=1,6, in (5) can be time varying by assuming that these parameters have

autoregressive representations which need not be linear




An implication of (7) is that there is both a direct and an indirect
relationship between Yt and lagged Yt' The direct relationship ié given by
(1), whereas the indirect relationship is via the distributional parameters
eit’ i=1,2,..., which affect_Ut and hence Yt' An allowance for both direct

and indirect 1linkages makes the relationship between Y, and lagged Yt

t

non-linear. Of course the model is even more non-linear if ei i=0,1,2,...,

t’

are also non-linear.

3.2 Choice of Predictor

In the standard case, the distribution of Ut is unimodal and hence g(.)
in (3) has a single (real) root. The choice of the best predictor of the
random variable, or some function of it, depends upon the adopted loss
function. Whatever the choice of the loss function is,kthe set of predictors
is small in general. If the distribution is both unimodal and symmetric,
this set 1is reduced even further. A typipal choice is the mean of the

distribution.

Difficulties arise when the distribution 1is bimodal, or even
multimodal. In the multimodal case, the usual conventions such as the mean
for example, would seem to be'inappropriate. Some potential new conventions

are (see, for example, Cobb, Koppstein and Chen, 1983):
Global: Choose the global maximum at each point in time.
Deiay: Do not leave a mode until that modé disappears.

Nearest: Choose the mode or antimode closest to the data.

The "global" convention, is based on the assumption that the process

always moves (jumps) to a region of higher probability. With the "“delay"

convention, it is assumed that a process never leaves a stable region (ie




delays moving) until that region becomes unstable. The "nearest" convention
consists of choosing the mode, stable of unstable, which is closest to the
data. This convention allows for the possibility that the process can settle
at unstable equilibria (known as self-organized criticality) as well as
settle at stable equilibria. This convention can also be adjusted to allow
for delays by choosing the mode at timé t which is closest to the data at

time t-tT.
3.3 Interpreting Parameters

Consider the following generalized normal distribution which

special case of the generalized Student t distribution

3 4

f(u) = exp[ .u + 06 u2 - u4/4 - n], —<u<o,

The bimodal region can be determined from the sign of Cardan’s discriminant

_ 2 _ 3
8 = (8,/2)" - (8,/3)7,

Unimodality: 8 >0,

Bimodality: 8§ < 0.
Also note that a necessary condition for bimodality is that 92 > 0.

It can be shown that the parameters 93 and 94 in (8) have the following

interpretations (see Cobb, Koppstein and Chen, 1983)

Unimodality: 61 is a measure of skewness,

92 is a measure of kurtosis.

Bimodality: is a measure of the relative heights of the two

1

i




modes,
92 is a measure of the separateness of the two modes.
In the case of the generalized Student t distribution given by (5),

some of the properties of this distribution are highlighted in Figure 1.

MAXIMUM LIKELIHOOD ESTIMATION

The principle of maximum likelihbod provides a means of choosing a best
asymptotically normal, BAN, estimator which is identified as the global
maximum of the log - likelihood function. Since the model is non-linear, it
is necessary to compute the parameter estimates by an iterative optimization
procedure. Letting 6 be a vector of K parameters, then the generalized

Student t density can be written as

f(u) = exp[E:eiRi(u;e) B n].

1

where R(u;8) is a general function of u which is dependent on the

parameters 6, and the normalizing constant is defined as
n = logJexp[ E: eiRi(u;e)]du.
i
For a sample of size t=1,2,...,T, the log of the likelihood is

Log £ = E: logf(ut) = E: E: eiR(ut;G) - E:‘nt-
t t i

t

Numerical iterative optimization procedures are required to maximize

the log - likelihood function. In this paper both the Newton-Raphson (NR)

and Berndt, Hall, Hall, Hausman (BHHH) algorithms are used. The BHHH




algorithm is a Quasi - Newton method which approximates the Hessian at each
iteration by the cross - product of the first derivatives of the log -
likelihood. For computational convenience all derivatives are computed

numerically.

A property of the log - 1likelihood in this case is that it may be
multimodal, (see, for example, Gabrielson, 1982). To guard against this
problem, it is necessary to choose several sets of starting values to ensure

that the global maximum is achieved.

At each iteration numerical integrations are required to compute the
normalizing constant in (10) since there does not exist closed - form
solutions for these integrations. The authors have found that
Gaussian-Legendre quadrature based on the GAUSS program INTQUAD1l, yields

more than satisfactory results.

RELATIONSHIP WITH EXISTING MODELS

5.1 SETAR

Tong (1983) has introduced a class of models known as self-exciting
threshold autoregressive (SETAR). This class of models fepresents a set of
piece—wiée linear time series models where at each point in time, the model

used to predict the dependent variable is based on

(

E: %Yoy 0 Ygog =9

1
E: Bi¥eey » Ygg 28
S

where T is the delay parameter and § is the threshold parameter. The GENTS




model captures the essential characteristics of the SETAR model in the case
where the distribution in (5) is bimodal. In this case, there are two
predictors and the choice of the predictor is based on the adopted criterion

as given in Section 3.2 of the paper.

5.2 ARCH
The original ARCH model of Engle (1982) is based on assuming that both
the mean and in particular the variance have 1linear autoregressive

representations. For example, the ARCH(M) model is given by

In the ARCH(M) model, the conditional variance has a simple nonlinear

. . . 2
is a nonlinear function of U . However, some other

structure: 02 .
t-1i

t
non-linear conditional variance specifications have been suggested recently
by Nelson (1991). The model 1in this case is called EGARCH and the
conditional variance is given by for the EGARCH(1,1) model

2 _ _ 0.5 2
o = 6g * ¢ (U /o | - @2/m)7T) + g In o+ 65U /oy

In the GENTS model, estimates of the conditional variance can be

obtained by computing

2 _ _ 2
of = J (Y, - m )%y |Y,_oen0),




where f(ytIYt_l,...) is given by the conditional generalized Student t
distribution in (5). However, it 1is natural to consider higher order

conditional moments which can be derived from

J_ _ J .
Mt = I (Yt pt) f(yt|Yt—1"")’ q—1,2,3,4,...

This expression provides a generalization of the ARCH class of models in two
ways. First, the relationship between 0% and Ut-l tends to be more. nonlinear
than it is in the existing ARCH specifications. The standard ARCH model is
realized when f(.|.) is chosen as the conditional normal distribution.
Second, the allowance for higher order conditional moments generalizes the
existing approach that is adopted in ARCH modelling where only the second
conditional moments is concentrated on. This extension is likely to be useful
in applied work where a number of researchers have found that the standard

ARCH model has not been able to capture all of the observed kurtosis in the

data.

5.3 MATS

The multipredictor autoregressive time series model (MATS) suggested by
Martin (1991) is a special case of the GENTS model. The MATS model provides a
framework for embedding piece wise 1linear autoregressive models in a
multimodal model ~with  the constraint that the predictors from the competing
models correspond to the modes of the distribution. That is, the MATS model
is obtained by constraining the GENTS model to be multimodal over the entire
sample. These constraints amount to a set of nonlinear restrictions which can
be tested by using a Wald test (see Martin, 1996). This test provides a way

of examining the validity of the nesting framework adopted in the MATS model.




5.4 Testing For Nonnormality
Consider the generalized Student t distribution in (5) with the

restriction that e1=62=0.

- 2 3 4 _ _
f(u) = exp[ Bju + B, u” + 6 u” + B.u n], w<u<lm.

It can be shown that a Lagrange multiplier test of the hypothesis

yields the test statistic

2

T[ug/Gpg + (u4/u2 - 3)2/24].

which is asympotically distributed under HO as xg. Alternatively, consider

the following generalized Student t distribution

2

f(u) = exp[eltan-l(u/w) + 0

log(a’2 + uz) + E).ul-2 -7 ], —w<u<ew. (19)
iZ3 !

It can be easily shown that a Lagrange multiplier test of the hypothesis

yields the test statistic (18), by simply noting that the second terms in the
Taylor series expansions of tan_l(u/z) and log(zr2 + uz), correspond to u3 and

u4 respectively.

The test statistic given by (18) is simply the Bera-Jarque (1982) test

for normality which was derived by defining (3) and (4) as




2
By + Byu * Byu

and testing that the BI=BZ=O by use of a Lagrange multiplier procedure. To a

certain extent it is not too surprisiné that the two testing frameworks yield
identical test statistics since both procedures are based on a Lagrange
multiplier test where the distribution under the null is the same; namely,
the unimodal (Pearson) normal distribution. From a practical point view
however, an implication of a statistically significant test statistic which
results in the null hypothesis being rejected, means that it is not clear
what is the alternative distribution. If the null hypothesis of a unimodal
normal distribution is rejected, this may simply reflect the presence of a

generalized Student t distribution.

5.5 ARMA
The linear ARMA model is a special case of the GENTS model, arising

when 6., # 0, 6

3 = -1, with the remaining parameters equal to zero. In this

4

case, the error distribution has a unimodal normal distribution.

APPLICATION TO EXCHANGE RATES

The f?amework of the generalized exponential nonlinear time series
model is now applied to modelling the growth rate of the nominal exchange
rate. The distribution of the growth rate of the exchange rate has already
been extensively studied. The main conclusion from this work is that the
empirical distribution is leptokurtic which has ‘been modelled in a variety

of ways. Typical distributions that have been used are: Paretian stable

distribution (Mandelbrot, 1963; and Westerfield, 1977); mixture of normals




(Boothe and Glassman, 1987); Student t (Rogalski and Vinso, 1978); normal
with timeAvarying parameters (Friedman and Vandersteel, 1982); mixed jump
processes (Akgiray and Booth, 1988; and Tucker and Pond, 1988); and ARCH

with nonnormal errors (Hsieh, 1989).

A feature of most of the empiricai work on the distribution of the rate
of growth of the exchange rate is that the distribution is assumed to be time
invariant. This assumption can be investigated by using a nonlinear time
series model such as the GENTS framework, which generates temporal exchange
rate distributions. In particular, it is hypothesised that for those points
in time where the movements in the exchange rate are very large, the
distribution is not a unimodal-leptokurtic distribufion, but is bimodal with
the large movements reflecting the exchange rate jumping between equilibria

in a zone of multiple equilibria.

6.1 Data

The rate of growth of the exchange rate is defined as

t ),

= 100 10g(Et/E

t-1

where Et is the $US/$Australian nominal exchange rate. The data is monthly
and the sample period begins in 1977:1 and ends in 1989:10, a sample size of

154 observations. The data comes from the dx database.

6.2 The Linear Specification

The results for estimating a linear AR(1) time series model are given by

-0.207 + 0.032 e

(-0.848) (0.404) t1




RZ(LINEAR) = 0.001, AR(1) = 2.082, ARCH(1) = 0.151, HETERO = 0.440,

Sk = -6.626, Kt = 11.693, KEENAN = 0.058, RESET = 0.159.
where t-statistics are given in brackets, and the tests for first order
autocorrelation with a lagged dependent variable [AR(1)], first order ARCH
[ARCH(1)] and Breusch-Pagan heteroskedasticity [HETERO] are distributed as
x?, whereas the test for skewness [Sk] and for kurtosis [Kt] are distributed
asymptotically as N(0,1). Two general tests of nonlinearity are also
reported; namely, the Keenan test [KEENAN] (see Keenan, 1985) and the Ramsey

test [RESET] (see Ramsey, 1969), which are distributed as F

1,T-6" an@ N(0,1)

respectively.

Clearly, the AR(1) model performs very badly with RZ(LINEAR) = 0.001.
The reason(s) as to why the model is performing badly is (are) not detected
by the wusual diagnostics based on tests of autocorrelation, ARCH and
heteroskedasticity. There is also no evidence of any nonlinearities as based
on the Keenan and vRamsey tests. There is, however, significant negative
skewness and kurtosis, suggesting that the assumption that the residuals are
normal should be rejected. From the discussion in Section 5.4, ‘the rejection
of the normality assumption could reflect that the pertinent distribution is
not normal, but say Generalized Student t. In particular, evidence against

normality may also reflect that the distribution is multimodal.

6.3 | The GENTS Specification

Given that there is strong evidence of both skewness and kurtosis in the
residuals, it is appropriate to fit a GENTS model based on the Generalized
Student t distribution. A range of models were estimated with the best model

given by

-1 2 2
1ttan (et/y) + 62tlog(7 + et) +

GEM-T = exp[e




.577,

24.386 - 0.75%e, .,

-(1 + 72)/2,

-8.350 + 0.162e, ,,
= =1/2.

The distributional properties of the estimated model are highlighted in
Figure 2. The main observation to note 1is that the exchange rate
distribution is bimodal over the entire sample period. Figure 2.1 gives a
time series plot of the data together with the two modes, which occur at
around 0 and -6, and the antimode which occurs at around -2, of the
distribution. The bimodality property of the distribution 1is further
highlighted in Figure 2.3, where the sequence of exchange rate distributions
over time 1is given. Notice that the global mode occurs at around O,

whereas the local mode is at around -6.

To highlight the potential advantages of the GENTS approach to nonlinear
time series analysis, Figure 2.2 compares the predictions based on the
nearest neighbour with the forecasts from a standard AR(1) model. The AR(1)
model has a goodness of fit of RZ(LINEAR)=O.001, suggesting that the growth
rate in Fhe exchange rate cannot be predicted.AHowever, the results of the

GENTS model show .that .there are potential gains in forecasting with the

goodness of fit of RZ(GENTS)=O.423. An alternative interpretation of these

results is that they show why it is so difficult to predict movements in the
exchange rate from a linear model; namely, the exchange rate is jumping
between equilibria as it is operating in a zone of multiple equilibria and
this characteristic cannot be captured by a linear model since it is based on

the assumption that there is only a single equilibrium.




Although the distribution of the exchange rate is bimodal for the
entire sample period, Figure 2.3 shows that the height of the smaller mode
has become relatively larger since the floating of the Australian dollar in
1983:4. This property is further highlighted in Figure 2.4 which gives the
area around the global mode which occurs at zero. For most of the time
period, the area around the local hodé is only about 0.05. However, there
are four points in time where the area is between 0.2 and 0.4; namely, in
1983:4, 1985:3, 1986:7 and 1989:3. These four points in time correspond to

the four largest falls in the $US/$Australian exchange rate.

The first four conditional moments of the generalized Student t
distribution are given in Figure 3. Both the conditional mean, Figure 3.1,
and the conditional variance, Figure 3.2, identify the same points in time
which correspond to the the four largest falls in the $US/$Australian
exchange rate. Moreover, the conditional variance represents a nonlinear

ARCH process and thus identifies the periods of (excess) volatility. Figure

3.3 shows that for all points in time, the distribution is negatively

skewed, which of course reflects the occurrence of another mode to the left
of the global mode. Finally, Figure 3.4 shows that there is conditional
excess kurtosis with a value at around 8, but which falls during the periods

when there are large falls in the $US/$Australian exchange rate.

The importance of identifying bimodality in the exchange rate
distribution is highlighted in Figure 2.1 which shows that exchange rate
vclatility is the result of the exchange rate switching between modes. This
result provides one explanation of the fat-tails observed in exchange rate
distributions: fatness is the result of the exchange rate switching between
equilibria (stable or unstable). This result also highlights the limitations

of ignoring the time varying nature of the exchange rate distribution since




behind an atemporal leptokurtic empirical distribution 1is a process
exhibiting multiple equilibria. Finally, the empirical results also suggest
that the adoption of a flexible exchange rate has resulted in relatively
greater volatility, and thus provides evidence against the hypothesis that
exchange rates are less volatile under a flexible exchange rate system than

under a fixed exchange rate system (Dornbusch, 1976).

CONCLUSIONS

This paper has introduced a general class of nonlinear time series
models based upon a generalized Student t distribution. This class of models
is referred to as GENTS: Generalized Exponential Non-linear Time Series, and
offers greater flexibility than a number of existing nonlinear time series
approaches as it can capture a wide range of empiricél behaviour such as
skewed, fat-tailed and even multimodal distributions. The model can be
estimated by an iterative maximum likelihobd procedure and was shown to be
related to other nonlinear time series models, as well as ARCH models and

tests of normality.

The GENTS model was applied to analysing the monthly movements in the

US/Australian exchange rate for the period 1977:1 to 1989:10. The main
empiricai finding is that the exchange rate distribution is bimodal over the
entire sample period, with the degree of bimodality increasing since the
floating of the Australian currency. This suggests that the exchange rate has
been operating in a zone of multiple equilibria and that the adoption ofva
flexible exchange rate has led to greater instability. Furthermore, the
occurrence of large movements in the exchange rate is not the result of
drawings ffom a unimodal-leptokurtic time invariant distribution, but

reflects the exchange rate is jumping between equilibria in a zone of




multiple equilibria. Conditional moments were also computed and used to
identify the occurrence of volatility in the foreign exchange market. One
important implication of the empirical results is that it provides a reason

as to why it is so difficult to predict movements in the exchange rate;

namely, the observed volatility in the exchange rate reflects the .exchange

rate switching between equilibria.




Figure 1: The Generalized Student t Distribution

1(y) = exp(0.5109(0.12+y?)+03y—-0.5y* — 1) t(y) = exp(0.510g(1.02+y2)+03y—0.5y2 — n)

111
11

1

Z7

Z 77

27 7

pa

f(y) = exp(@;tan~'(y/0.1)+0.5l0g(0.12+y?) f(y) = exp(©,tan='(y/1.0)+0.5l0g(1.0%+y?)
-0.5y2 - n) -0.5y2 - 7)

S28ssansnns, >
f,'":.lllnl:#::
\"Q.':'llllllll ;

oY

N 0y
(]




Figure 2: Temporal distributions of the rate of growth of the exchange rate
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Figure 3: Conditional moments of the GENTS model

Figure 3.1: Conditional Mean ' Figure 3.2: Conditional Varionce
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Figure 3.3: Conditional Skewness Figure 3.4: Conditional Excess Kurtosis
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