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Abstract

Most of the existing work in non-linear time series analysis has

concentrated on generating flexible functional models by specifying

non-linear specifications for the mean of a particular process without much,

if any, attention given to the distributional properties of the model.

However, as Martin (1991) has shown, greater flexibility in perhaps a more

natural way, can be achieved by consideration of distributions from the

generalized exponential class. This paper represents an extension of the

earlier work of Martin by introducing a flexible class of non-linear time

series models which can capture a wide range of empirical behaviour such as

skewed, fat-tailed .and even multimodal distributions. This class of models

is referred to as GENTS: Generalized Exponential Non-linear Time Series. A

maximum likelihood algorithm is given for estimating the parameters of the

model, and the framework is applied to estimating the distribution of the

movements of the exchange rate.

KEY WORDS: Non-linear time series, generalized exponential distributions,
skewness, fat-tails, multimodality, maximum likelihood



1 INTRODUCTION

The identification of limit cycles, chaos, self-excitation, asymmetric

distributions, leptokurtosis, sudden jumping behaviour, time deformation, and

time series exhibiting irreversibility characteristics, has led to the

development of nonlinear time series models. One class of nonlinear time

series models consists of letting the pertinent variable at time t be either

a function of polynomials in the autoregressive terms (Granger and Newbold,

1977), or a function of polynomials in the moving average terms (Keenan,

1985), or as a product of autoregressive and moving average terms (Granger

and Anderson, 1978; and Rao and Gabr, 1984). Another class consists of

allowing the dependent variable to switch between linear autoregressive

models (Tong, 1983).

One important implication of nonlinear time series analysis is that in

modelling data it is necessary to consider not only the first two moments of

the distribution, but higher order moments such as the third (skewness) and

the fourth (kurtosis) moments. However, in most nonlinear time series models

higher order moments are not modelled explicitly. For example, in the class

of models suggested by Engle (1982) called ARCH, kurtosis can be modelled by

allowing the (conditional) variance to have an autoregressive

representation. This class of models can also capture the bunching

characteristic of price data that was first observed by Mandelbrot (1963),

and has been extended by - Nelson (1991) to explain skewness. An exception is

the work of Rao and Gabr (1984) and Ashley and Patterson (1989) which is

based on bispectral analysis and which consists of a double Fourier

transformation of the third moment.

The reason for the implicit treatment of higher order moments can be

attributed to a preoccupation with constructing nonlinear models of the mean



and the variance, with little, if any consideration given to the

specification of the stochastics of the model. The approach adopted in this

paper, and in contrast with most of the existing nonlinear time series

models, is to construct a nonlinear time series model which explicitly takes

into account higher order moments. The approach consists of using a

generalization of the Student t distribution to model the error

distribution. This distribution which has been studied recently by Martin

(1990) and Lye and Martin (1990), provides a flexible framework by which to

build nonlinear time series models since most of the observed nonnormal

characteristics often identified in data can be captured directly. A special

feature of the generalized Student t distribution is that it can model not

only symmetric fat-tailed distributions, but also distributions that are

skewed, and possibly even multimodal. This last characteristic is

particularly important when attempting to model the switching regime class

of Tong (1983) and Martin (1991).

The rest of the paper proceeds as follows. The theoretical apparatus of

the GENTS model is given in Section 2. An iterative maximum likelihood

estimation procedure is given in Section 3, while the GENTS model is

contrasted with some existing time series models in Section 4. In Section 5

the GENTS class of nonlinear time series models is applied to modelling the

rate of growth of the nominal exchange rate. .An important feature of the

estimated model is that the exchange rate distribution is bimodal over the

period 1977 to 1989. This not only suggests that movements in the exchange

rate are the result of the exchange rate jumping between equilibria in a.

zone of multiple equilibria, but it also highlights the difficulties of

modelling the rate of growth of the exchange rate with a linear model. Some

concluding comments and suggestions for future work are given in Section 6.
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3 GENERALIZED EXPONENTIAL NON-LINEAR TIME SERIES (GENTS)

3.1 The Model

Consider the following non-linear autoregressive time series model

Y
t 
=

0
CY
t-1' 

Y
t-2 

...) + U
t'

(1)

where e0(.) represents a non-linear function, and Ut is an 
error term with

zero mean and variance equal to r
2
. The distribution of Ut and hence Yt, is

often assumed to be normal. However, as discussed in the previous section,

there are a number of reasons as to why the distribution of Yt is not

normal. One appropriate class of distributions to be used as a model of Yt

stems from the work of Cobb (1978), Cobb, Koppstein and Chen (1983), Martin

(1991), and Lye and Martin (1990). This class of distributions is based on a

generalization of the Pearson system. In particular, one subordinate in this

class which is able to model the leptokurtosis observed in a number of data

sets, represents a generalization of the Student t distribution. The

generalized Student t distribution is derived from the following

differential equation

where

df -g(u)f(u)

du h(u)

M-1
g(u) ..0 ,i=0

h(u) =
2 
+ u

2
, —co < u < co ,

(2)

(3)

(4)

where f is the density function of U and 7
2 

is referred to as the "degrees

of freedom" parameter. In the standard Pearson system, g(u) is a polynomial

in U of degree less than or equal to one, whereas h(u) is a polynomial in U
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of degree less than or equal to two. The general solution of (2) for M=6 is

-
f(u) = 

exp[ 

e
1 
tan

1 
(u/7) + 0

2
log(7

2 
+ u

2
) 
+ 

0
.
u
i-2 

n
i=3 

_
1

where the normalizing constant is given by

—co<u<co,

6
logfexpp

1 
tan-1(u/7) 02log(72 u2) 

1_2]
du,

i=3

and 0
1 
= -m

o 
+ Ta - 7m ,

0
2 
= -a1/2 + 7

2
m3/2 - 7

4
a5/2,

0
3 
= -m

2 
+

- m4'

84 = -a3/2 4.r

e5 =

e
6 
= -m

5
/4.

(5)

(6)

The conditional distribution of Y
t 

can be simply obtained from using

(1) to transform (5) into a density in terms of Y. This yields a

generalized conditional Student t distribution which encompasses a number of

well-known distributions. For example, the normal distribution is given by

setting 01=02=0 and 8i=0, i>4. The Student t distribution is given by 01=0,

e.=0, i>2, and e
2
=-(1+7

2
)/2. The Pearson Type 1V distribution is given by

0.=0, i>4. The generalized normal distribution is given by 01=02=0.

The distribution given by (5) is flexible enough to model distributions

that are fat-tailed, skewed, or even multimodal. In general, the functions.

0., i=1,6, in (5) can be time varying by assuming that these parameters have

autoregressive representations which need not be linear

e. = e
it 
(Y
t1' Yt2 

...) i=1,2,...,6. (7)
it --'
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An implication of (7) is that there is both a direct and an indirect

relationship between Yt and lagged Yt. The direct relationship is given by

(1), whereas the indirect relationship is via the distributional parameters

I=1,2,..., which affect Ut and hence Yt. An allowance for both direct

and indirect linkages makes the relationship between Yt and lagged Yt

non-linear. Of course the model is even more non-linear if 
°i' 

i=0,1,2,..
t 

are also non-linear.

3.2 Choice of Predictor

In the standard case, the distribution of U
t 
is unimodal and hence g(.)

in (3) has a single (real) root. The choice of the best predictor of the

random variable, or some function of it, depends upon the adopted loss

function. Whatever the choice of the loss function is, the set of predictors

is small in general. If the distribution is both unimodal and symmetric,

this set is reduced even further. A typical choice is the mean of the

distribution.

Difficulties arise when the distribution is bimodal, or even

multimodal. In the multimodal case, the usual conventions such as the mean

for example, would seem to be inappropriate. Some potential new conventions

are (see,. for example, Cobb, Koppstein and Chen, 1983):

Global: Choose the global maximum at each point in time.

Delay: Do not leave a mode until that mode disappears.

Nearest: Choose the mode or antimode closest to the data.

The "global" convention, is based on the assumption that the process

always moves (jumps) to a region of higher probability. With the "delay"

convention, it is assumed that a process never leaves a stable region (ie



6

delays moving) until that region becomes unstable. The "nearest" convention

consists of choosing the mode, stable of unstable, which is closest to the

data. This convention allows for the possibility that the process can settle

at unstable equilibria (known as self-organized criticality) as well as

settle at stable equilibria. This convention can also be adjusted to allow

for delays by choosing the mode at time t which is closest to the data at

time t -T.

3.3 Interpreting Parameters

Consider the following generalized normal distribution which is a

special case of the generalized Student t distribution

f(u) = exit 0
3
u + 0

4
u
2 
- u

4
/4 - -m<u<03. (8)

The bimodal region can be determined from the sign of Cardan's discriminant

6 = (0
1
/2)

2 
-

Unimodality: 6 > 0,

Bimodality: 6 < 0.

Also note that a necessary condition for bimodality is that 02 > 0.

(9)

It can be shown that the parameters 03 
and 0

4 
in (8) have the following

interpretations (see Cobb, Koppstein and Chen, 1983)

Unimodality: 0
1 
is a measure of skewness,

0
2 

is a measure of kurtosis.

Bimodality: 81 is a measure of the relative heights of the two



modes,

0
2 

is a measure of the separateness of the two modes.

In the case of the generalized Student t distribution given by (5),

some of the properties of this distribution are highlighted in Figure 1.

4 MAXIMUM LIKELIHOOD ESTIMATION

The principle of maximum likelihood provides a means of choosing a best

asymptotically normal, BAN, estimator which is identified as the global

maximum of the log - likelihood function. Since the model is non-linear, it

is necessary to compute the parameter estimates by an iterative optimization

procedure. Letting 0 be a vector of K parameters, then the generalized

Student t density can be written as

f(u) = exp 0.
1

R.(u;0) -
1 

(10)

where R(u;0) is a general function of u which is dependent on the set of

parameters 0, and the normalizing constant is defined as

= logjexp[ 0.R.(11;0)]du.

For a sample of size t=1,2,...,T, the log of the likelihood is

2oq. = logf(ut) = e.R(u
t' 
-e) - (12)

Numerical iterative optimization procedures are required to maximize

the log - likelihood function. In this paper both the Newton-Raphson (NR)

and Berndt, Hall, Hall, Hausman (BHHH) algorithms are used. The BHHH



8

algorithm is a Quasi - Newton method which approximates the Hessian at each

iteration by the cross - product of the first derivatives of the log -

likelihood. For computational convenience all derivatives are computed

numerically.

A property of the log - likelihood in this case is that it may be

multimodal, (see, for example, Gabrielson, 1982). To guard against this

problem, it is necessary to choose several sets of starting values to ensure

that the global maximum is achieved.

At each iteration numerical integrations are required to compute the

normalizing constant in (10) since there does not exist closed form

solutions for these integrations. The authors have found that

Gaussian-Legendre quadrature based on the GAUSS program INTQUAD1, yields

more than satisfactory results.

5 RELATIONSHIP WITH EXISTING MODELS

5.1 SETAR

Tong (1983) has introduced a class of models known as self-exciting

threshold autoregressive (SETAR). This class of models represents a set of

piece-wise linear time series models where at each point in time, the model

used to predict the dependent variable is based on

Yt-T 
Ls 6

g.Y .

(13)

where T is the delay parameter and 6 is the threshold parameter. The GENTS
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model captures the essential characteristics of the SETAR model in the case

where the distribution in (5) is bimodal. In this case, there are two

predictors and the choice of the predictor is based on the adopted criterion

as given in Section 3.2 of the paper.

5.2 ARCH

The original ARCH model of Engle (1982) is based on assuming that both

the mean and in particular the variance have linear autoregressive

representations. For example, the ARCH(M) model is given by

t = 
a.Y 

-1 
. + U

tt 

U
t =tZt' 

Z
t 

iid
' 

= 0, cr2 = 1
z z '

cr
2

(°0
0.0

2 
..

t-1
i=1

(14)

In the ARCH(M) model, the conditional variance has a simple nonlinear

2
structure: c

t 
is a nonlinear function of U

2 
. However, some other

t-i

non-linear conditional variance specifications have been suggested recently

by Nelson (1991). The model in this case is called EGARCH and the

conditional variance is given by for the EGARCH(1,1) model

= 1)0 4)1(lUt-1ict-11 
(2/T)0.5) + 021n cr2_ 

t 1 4. r3-t-1" ct-1

In the GENTS model, estimates of the conditional variance can be

obtained by computing

2
t 

I=  (Y
t 
-

t
)
2
f(1,

t
IYt-1 (15)
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where f(ytlYt_1,...) is given by the conditional generalized Student t

distribution in (5). However, it is natural to consider higher order

conditional moments which can be derived from

Mj = (Y - g )4(y
t
IY
t-1'

...), j=1,2,3,4,..
t t t

(16)

This expression provides a generalization of the ARCH class of models in two

ways. First, the relationship between 
T2 

and U
t-1 

tends to be more nonlinear

than it is in the existing ARCH specifications. The standard ARCH model is

realized when f(. I-) is chosen as the conditional normal distribution.

Second, the allowance for higher order conditional moments generalizes the

existing approach that is adopted in ARCH modelling where only the second

conditional moments is concentrated on. This extension is likely to be useful

in applied work where a number of researchers have found that the standard

ARCH model has not been able to capture all of the observed kurtosis in the

data.

5.3 MATS

The multipredictor autoregressive time series model (MATS) suggested by

Martin (1991) is a special case of the GENTS model. The MATS model provides a

framework for embedding piece wise linear autoregressive models in a

multimodal model-with - the constraint that the predictors from the competing

models correspond to the modes of the distribution. That is, the MATS model

is obtained by constraining the GENTS model to be multimodal over the entire

sample. These constraints amount to a set of nonlinear restrictions which can

be tested by using a Wald test (see Martin, 1990). This test provides a way

of examining the validity of the nesting framework adopted in the MATS model.
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5.4 Testing For Nonnormality

Consider the generalized Student t distribution in (5) with the

restriction that 0
1
=0
2
=O.

f(u) = ex[p 0
3
u + 0

4
u
2 
+ 0

5
u
3 
+ 0

6
u
4 
- n]-03<u<co.,

It can be shown that a Lagrange multiplier test of the hypothesis

H
0
: 0

5 
= 0

6 
= 0

yields the test statistic

T[µ
2
/6µ

3 +(42 
- 3)

2
/24],

3 2 4 2

(17)

(18)

2
which is asympotically distributed under Ho as x2. Alternatively, consider

the following generalized Student t distribution

- 
4

f(1)=exp

[

O
i
tan1(u/7)+Olog(2 

7+u
2
)+ 

i3 
1 

EO.ui-2 
- , n -03<u<03.

= 
(19)

It can be easily shown that a Lagrange multiplier test of the hypothesis

0
1 
= e

2 
= 0
'

yields the test statistic (18), by simply noting that the second terms in the

Taylor series expansions of tan
-1
(u/T) and log(7

2 
+ u

2
), correspond to u

3 
and

u
4 

respectively.

The test statistic given by (18) is simply the Bera-Jarque (1982) test

for normality which was derived by defining (3) and (4) as
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g(u) = a +
1
u
'0

h(u) = go 13111  13
2u2,

and testing that the 131=132=0 by use of a Lagrange multiplier procedure. To a

certain extent it is not too surprising that the two testing frameworks yield

identical test statistics since both procedures are based on a Lagrange

multiplier test where the distribution under the null is the same; namely,

the unimodal (Pearson) normal distribution. From a practical point view

however, an implication of a statistically significant test statistic which

results in the null hypothesis being rejected, means that it is not clear

what is the alternative distribution. If the null hypothesis of a unimodal

normal distribution is rejected, this may simply reflect the presence of a

generalized Student t distribution.

5.5 ARMA

The linear ARMA model is a special case of the GENTS mOdel, arising

when 0
3 
= 0
' 
0
4 
= -1, with the remaining parameters equal to zero. In this

case, the error distribution has a unimodal normal distribution.

6 APPLICATION .TO EXCHANGE RATES

The framework of the generalized exponential nonlinear time series

model is now applied to modelling the growth rate of the nominal exchange

rate. The distribution of the growth rate of the exchange rate has already

been extensively studied. The main conclusion from this work is that the

empirical distribution is leptokurtic which has been modelled in a variety

of ways. Typical distributions that have been used are: Paretian stable

distribution (Mandelbrot, 1963; and Westerfield, 1977); mixture of normals
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(Boothe and Glassman, 1987); Student t (Rogalski and Vinso, 1978); normal

with time varying parameters (Friedman and Vandersteel, 1982); mixed jump

processes (Akgiray and Booth, 1988; and Tucker and Pond, 1988); and ARCH

with nonnormal errors (Hsieh, 1989).

A feature of most of the empirical work on the distribution of the rate

of growth of the exchange rate is that the distribution is assumed to be time

invariant. This assumption can be investigated by using a nonlinear time

series model such as the GENTS framework, which generates temporal exchange

rate distributions. In particular, it is hypothesised that for those points

in time where the movements in the exchange rate are very large, the

distribution is not a unimodal-leptokurtic distribution, but is bimodal with

the large movements reflecting the exchange rate jumping between equilibria

in a zone of multiple equilibria.

6.1 Data

The rate of growth of the exchange rate is defined as

e
t 
= 100 log(E

t
/E

t-1
)
'

where E
t 

is the WS/SAustralian nominal exchange rate. The data is monthly

and the sample period begins in 1977:1 and ends in 1989:10, a sample size of

154 observations. The data comes from the dx database.

6.2 The Linear Specification

The results for estimating a linear AR(1) time series model are given by

-0.207 + 0.032 e
t-1

(-0.848) (0.404)
(20)
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R2(LINEAR) = 0.001, AR(1) = 2.082, ARCH(1) = 0.151, HETERO = 0.440,

Sk = -6.626, Kt = 11.693, KEENAN = 0.058, RESET = 0.159.

where t-statistics are given in brackets, and the tests for first order

autocorrelation with a lagged dependent variable [ARM], first order ARCH

[ARCH(1)] and Breusch-Pagan heteroskedasticity [HETERO] are distributed as

x
2
, whereas the test for skewness [Ski and for kurtosis [Kt] are distributed

1

asymptotically as N(0,1). Two general tests of nonlinearity are also

reported; namely, the Keenan test [KEENAN] (see Keenan, 1985) and the Ramsey

test [RESET] (see Ramsey, 1969), which are distributed as F1,T-6'

respectively.

and N(0,1)

Clearly, the AR(1) model performs very badly with R
2
(LINEAR) = 0.001.

The reason(s) as to why the model is performing badly is (are) not detected

by the usual diagnostics based on tests of autocorrelation, ARCH and

heteroskedasticity. There is also no evidence of any nonlinearities as based

on the Keenan and Ramsey tests. There is, however, significant negative

skewness and kurtosis, suggesting that the assumption that the residuals are

normal should be rejected. From the discussion in Section 5.4, 'the rejection

of the normality assumption could reflect that the pertinent distribution is

not normal, but say Generalized Student t. In particular, evidence against

normality may also reflect that the distribution is multimodal.

6.3 The GENTS Specification

Given that there is strong evidence of both skewness and kurtosis in the

residuals, it is appropriate to fit a GENTS model based on the Generalized

Student t distribution. A range of models were estimated with the best model

given by

4
GEM-T = expp

it
ta

1
n (e

t
/7) 

e2t
1°g(72 

e.t) eite it-2 -- 2
(21)

i=3
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where 7 = 2.577,

0
lt 

= 24.386 - 0.754e
t-1'

2t 
= -(1 +

0
3t 

= -8.350 + 0.162e
t-1'

4t 
= -1/2.

The distributional properties of the estimated model are highlighted in

Figure 2. The main observation to note is that the exchange rate

distribution is bimodal over the entire sample period. Figure 2.1 gives a

time series plot of the data together with the two modes, which occur at

around 0 and -6, and the antimode which occurs at around -2, of the

distribution. The bimodality property of the distribution is further

highlighted in Figure 2.3, where the sequence of exchange rate distributions

over time is given. Notice that the global mode occurs at around 0,

whereas the local mode is at around -6.

To highlight the potential advantages of the GENTS approach to nonlinear

time series analysis, Figure 2.2 compares the predictions based on the

nearest neighbour with the forecasts from a standard AR(1) model. The AR(1)

model has a goodness of fit of R
2
(LINEAR)=0.001, suggesting that the growth

rate in the exchange rate cannot be predicted. However, the results of the

GENTS model show that . there are potential gains in forecasting with the

goodness of fit of R
2
(GENTS)=0.423. An alternative interpretation of these

results is that they show why it is so difficult to predict movements in the

exchange rate from a linear model; namely, the exchange rate is jumping

between equilibria as it is operating in a zone of multiple equilibria and

this characteristic cannot be captured by a linear model since it is based on

the assumption that there is only a single equilibrium.
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Although the distribution of the exchange rate is bimodal for the

entire sample period, Figure 2.3 shows that the height of the smaller mode

has become relatively larger since the floating of the Australian dollar in

1983:4. This property is further highlighted in Figure 2.4 which gives the

area around the global mode which occurs at zero. For most of the time

period, the area around the local mode is only about 0.05. However, there

are four points in time where the area is between 0.2 and 0.4; namely, in

1983:4, 1985:3, 1986:7 and 1989:3. These four points in time correspond to

the four largest falls in the SUS/SAustralian exchange rate.

The first four conditional moments of the generalized Student t

distribution are given in Figure 3. Both the conditional mean, Figure 3.1,

and the conditional variance, Figure 3.2, identify the same points in time

which correspond to the the four largest falls in the SUS/SAustralian

exchange rate. Moreover, the conditional variance represents a nonlinear

ARCH process and thus identifies the periods of (excess) volatility. Figure

3.3 shows that for all points in time, the distribution is negatively

skewed, which of course reflects the occurrence of another mode to the left

of the global mode. Finally, Figure 3.4 shows that there is conditional

excess kurtosis with a value at around 8, but which falls during the periods

when there are large falls in the SUS/SAustralian exchange rate.

The importance of identifying bimodality in the exchange rate

distribution is highlighted in Figure 2.1 which shows that exchange rate

volatility is the result of the exchange rate switching between modes. This

result provides one explanation of the fat-tails observed in exchange rate

distributions: fatness is the result of the exchange rate switching between

equilibria (stable or unstable). This result also highlights the limitations

of ignoring the time varying nature of the exchange rate distribution since
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behind an atemporal leptokurtic empirical distribution is a process

exhibiting multiple equilibria. Finally, the empirical results also suggest

that the adoption of a flexible exchange rate has resulted in relatively

greater volatility, and thus provides evidence against the hypothesis that

exchange rates are less volatile under a flexible exchange rate system than

under a fixed exchange rate system (Dornbusch, 1976).

7 CONCLUSIONS

This paper has introduced a general class of nonlinear time series

models based upon a generalized Student t distribution. This class of models

is referred to as GENTS: Generalized Exponential Non-linear Time Series, and

offers greater flexibility than a number of existing nonlinear time series

approaches as it can capture a wide range of empirical behaviour such as

skewed, fat-tailed and even multimodal distributions. The model can be

estimated by an iterative maximum likelihood procedure and was shown to be

related to other nonlinear time series models, as well as ARCH models and

tests of normality.

The GENTS model was applied to analysing the monthly movements in the

US/Australian exchange rate for the period 1977:1 to 1989:10. The main

empirical finding is that the exchange rate distribution is bimodal over the

entire sample period, with the degree of bimodality increasing since the

floating of the Australian currency. This suggests that the exchange rate has

been operating in a zone of multiple equilibria and that the adoption of a

flexible exchange rate has led to greater instability. Furthermore, the

occurrence of large movements in the exchange rate is not the result of

drawings from a unimodal-leptokurtic time invariant distribution, but

reflects the exchange rate is jumping between equilibria in a zone of
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multiple equilibria. Conditional moments were also computed and used to

identify the occurrence of volatility in the foreign exchange market. One

important implication of the empirical results is that it provides a reason

as to why it is so difficult to predict movements in the exchange rate;

namely, the observed volatility in the exchange rate reflects the exchange

rate switching between equilibria.

•
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Figure 1: The Generalized Student t Distribution
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Figure 2: Temporal distributions of the rate of growth of the exchange rate
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Figure 3: Conditional moments of the GENTS model

Figure 3.1: Conditional Mean Figure 3.2: Conditional Variance
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Figure 3.3: Conditional Skewness
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