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The accuracy of Burr approximations of critical values and p—values is evaluated for

tests of autocorrelation and heteroscedasticity in the linear regression model.
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1. Introduction

Many tests of autocorrelated and heteroscedastic disturbances in the general linear

model have an unknown probability distribution so true critical values cannot be tabulated.

Sometimes they can be determined but their use may not be feasible in practice, and a

few have published bounds for these values, involving an inconclusive region which can

be large for small samples. Accurate approximations therefore would be most useful for

applied regression analysis, particularly given the serious consequences of misspecification

of non-spherical disturbance behaviour.

Some approximations of these critical values, based on matching moments with the

normal and beta distributions, have been evaluated by Evans and King (1985a). They

found that normal and two-moment beta, and particularly the four-moment beta, approx-

imations were reasonably accurate, with skewness being a determining factor. Subsequent

investigation with more variable but 'characteristic' data sets has indicated that some tests

of heteroscedasticity lie outside the skewness-kurtosis range of the beta distributions, so

the four-moment beta approximation cannot be used. The original study is extended here

to include more variable data sets and a popular test of heteroscedasticity, but primarily

to consider approximations from two members of the Burr (1942) family of distributions,

which have a considerably wider range of moment coverage and can model diverse shaped

distributions.

Moments are matched with two related Burr distributions (Types III and XII) and

the appropriate shape parameters identified as in the previous study. These Burr distri-

butions are attractive in that, given these shape parameters, associated probabilities or

'p-'values for any specified value can easily be generated from the distribution function,

and critical values for specified significance levels from its inverse, as each has a simple
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closed mathematical form. This is in contrast to the Pearson and Johnson families which

traditionally have been used to approximate distributions. The beta (or Pears' on Type

I) and normal distributions, members of these families, also lack this feature. Matching-

moment methods with all these families require the computation of moments, but only

Burr approximations avoid numerical integration in determining the distribution function

and its inverse. They therefore have a considerable computational advantage, as well as

a wider moment coverage than the normal and beta approximations. It is of interest to

determine if Burr approximations are competitive with the highly accurate four-moment

beta approximations when both can be applied, and to explore their accuracy when they

alone can be used. The focus is on the critical region in the tails of the distribution, so a

high level of accuracy is demanded.

This study investigates the accuracy of Burr approximations, using a similar but ex-

panded experimental design to Evans and King (1985a). Theoretical aspects are discussed

in the next section and an empirical evaluation in section 3. Burr approximations are

examined for tests of autocorrelated and heteroscedastic disturbances in the linear regres-

sion model for which the true distribution of the test statistic is unknown, but true critical

values and sizes can be determined. The tests examined here are those most commonly

used in practice, or which have been demonstrated to have good power properties.

2. Theoretical Discussion

2.1 Tests of Autocorrelation and Heteroscedasticity

Consider the linear regression model, with fixed regressors, and normally distributed

disturbances,

y X0 u ,

where y is n x 1, X is n x k, # is k x 1 and u is n x 1. Consider, as in Evans and

King (1985a), tests against first-order autoregressive (AR(1)) disturbances: the first-order
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Durbin and Watson (1950) test (d1), its locally best invariant (LBI) analogue (di) of King

(1981), the Berenblut and Webb (1973) test (gi), and King's (1985) point optimal test

(.91(.5)). Against simple fourth-order autoregressive (AR(4)) disturbances consider their

fourth order analogues: the Wallis (1972) (d4)test, King's (4) LBI version, Webb's (1973)

g4, and King's (1984) .94(.5) test. Also consider tests against heteroscedasticity of the

additive form, var(ut) = = cr2f(1 Az), where f is an unknown monotonically in-

creasing non-negative function and zt is a non-stochastic variable. These include Szroeter's

(1978) bounds test (SZ), the LBI test discussed by King and Hillier (1985), the Evans

and King (1.985b,1988) point optimal s(5.0) and approximate sa(2.5) tests and the one-

sided approximate LBI sa test which is a transformation by the sample size of Szroeter's

asymptotic test (see Judge et al. (1988, p452)). These tests reject the null hypothesis

: u N(0, (72/) for small values of the test statistic for heteroscedasticity and for

positive autocorrelation. Note that all of these tests are invariant to multicollinearity in

the regressors (see Evans (1985)).

These one-sided tests can be classified into two classes, each expressible as a ratio of

quadratic forms in residuals and in disturbances. Tests based on Ordinary Least Squares

(OLS) residuals include d1,c1c,c14,4 SZ and Sa and can be written in the form

t ulMAMuluiMu

where A is some real symmetric n x n matrix, iz = (I — X(X' X)-1X1)y = My = Mu

is the OLS residual vector, M = I — X(XIX)-1.X1 and B = MAM. Tests based also

on Generalised Least Squares (GLS) residuals include si (.5), gi, s4(.5), g4, LBI, s(5.0) and

8a(2.5), which can be written in the form

=u1BuluiMu,
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where E is a positive definite n x n matrix, 'a is the n x 1 vector of GLS residuals assuming

covariance matrix E, and here B = E-1 — E-1X(X1E-1X)-1X1E-1.

True critical value for a specified significance level a or, alternatively, the actual size

for the approximated critical value t„it, can be obtained from

Pr(t < tcrit) = Pr[ui (B — tcritnu <0] = a,

using an approach analogous to that of Koerts and Abrahamse (1969), with maximum

integration and truncation errors set to 10-6.

A popular test for heteroscedasticity is the two-sided Lagrange multiplier test of

Breusch and Pagan (1979) using asymptotic x2 critical values which are known to be sus-

pect. True critical values and sizes can be determined in a similar fashion to those above.

For the Breusch-Pagan (1979,p1290) test, BP = (11' Ai 1 Ii1111)2 , where A is a diagonal matrix

with ith element {n(zi — .Z")/2[E(zi — i)91/2}, for i = 1, n, against heteroscedasticity

of the form considered here,

Pr(BP > tLit) = Pr(it' > tcrit) Pr(fL1 Ail Ill' < —tcrit).

This test was not included in the original study, so normal, two- and four-moment beta

approximations are also calculated.

As each of these test statistics can be written as ratios of quadratic forms in nor-

mal variables, their moments can be obtained using the methods of Henshaw (1966) and

Evans and King (1985a). These are based on the result (see Durbin and Watson (1950))

that under the null hypothesis, the test statistic t is distributed independently of its own

denominator, so that the moments of t are ratios of the corresponding moments of the

numerator u'Bu and denominator u'Mu. The moments about the origin then involve
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expectations of traces of products of the matrices B, or equivalently products of powers

of their eigenvalues. The centralised moments can thus be determined and matched with

those of a distribution from the Burr family. The first four moments are used: the mean

(p(t)), variance (qt)), skewness (.01) and kurtosis (#2). Bounds of these distributions

can also be determined from the extreme eigenvalues of the matrix B.

2.2 Burr XII and III Distributions

Twelve solutions to a differential equation given in Burr (1942) can be classified by

their functional forms, each defining a family of cumulative distribution functions within

the Burr system. The distribution functions of two solutions, Type XII and its 'reciprocal'

Type III, are defined by shape parameters c and k, and for x > 0,k > 0 are given by

F(x) =1— (1+ xc)_k = a,

F(x) = (1+ x-crk = a,

respectively. The significance level, size• or p—value can be computed for specified values

of x from F(x). The inverse of this distribution function is easily obtained and the ap-

proximated critical value xcrit for a rejection region of nominal significance level a thus

determined. For example, with a Burr XII rejection region in the lower tail,

xcrit = [(1 — a)_lik — 111/c.

For c < 0, using x* = 1Ix implies that the rejection region is in the upper tail, with

calculations changing appropriately. The null hypothesis is then rejected for large values

of x or small values of 1/x, which is the appropriate Burr III distribution if c <0.

Determining which of the family of Burr XII and III distributions most closely ap-

proximates that of a given statistic, t, involves matching the first four moments. For the
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selected Burr distribution to have the skewness and kurtosis corresponding to those cal-

culated for t, , )32), two non-linear simultaneous equations are solved for the shape

parameters c and k:

11-33. =113/V-14. /4 -3/12
/4 +2,4 

'

132 = /24/A = 114 4/23ri4 612214 3111

where pr are the rth moments about the mean, and pir about the origin. For Burr XII

(c > 0) and Burr III (c < 0),

pir= kB(1-1-- , k 
r 
—)=

1'(1-1-rIc)r(k —r1c)

P(k)

Moments exist for ck > r for Burr XII and c < —r for Burr III. The distributions are

unimodal if c> 1 for Burr XII and Ickl > 1 for Burr III.

For many distributions approximate or starting solutions can be obtained by interpo-

lating Burr's (1973) table, but they do not cater for negative skewness, and coverage is

sparse near the boundaries. An algorithm was developed to obtain the solutions. SHAPE,

an interactive algorithm for use with the SAS package to fit Burr III (and hence also Burr

XII) distributions has been developed by Rodriguez (1980).

The Burr distribution which matches the third and fourth moments is identified by

the computed c and k , and its mean and variance are then determined as pi*, k) and

al(c, k). Matching the first two moments involves scaling and relocating each distribution

to have a zero mean and unit standard deviation then equating these 'standardised' variates

(t — µ(0)/a(t) and (x — B) 1 B , such that t = -- (x — p B) '1(t).

No general pattern is obvious, but some particular solutions c, k correspond to stan-

dard distributions. Relationships with • other distributions and the extensive moment-

coverage of the Burr XII and III distributions are shown in Rodriguez (1977, 1982) and
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Tadikainalla (1980). Beta distributions correspond to the bounded Type I distributions of

the Pearson family, which cover the smaller kurtosis areas of the moment-ratio diagrams.

The potential area of moment coverage is bounded 'below' by the limit of all frequency

distributions, 162 — — 1 = 0. Near this limit are the U-shaped bimodal distributions,

then with higher kurtosis for given skewness, the 3-shaped, and next the unimodal Type

I distributions which are bounded by the Pearson Type III or Gamma distributions line,

2)32 — 3th —6 = 0. The Burr coverage encompasses a much larger range of more skewed and

kurtotic distributions. It overlaps the Type I area coverage for most beta distributions,

but not the extreme U-shapes. It also includes the unbounded Pearson Types IV (in both

directions), and VI (one direction) or F, distributions.

Consideration of the moment-coverage of each of the approximating distributions,

suggests that the normal and two-moment beta approximations, which only consider the

mean and variance of the matching distributions, will not be successful at approximating

distributions with any significant skewness or kurtosis. The four-moment beta approxima-

tion will be applicable for all distributions for which f32 < 1.5(th + 2). In general, methods

of matching moments using approximating distributions, such as the Pearson, Johnson or

Burr, do not explicitly take into account end points of the statistic, so that 'approxima-

tions to extreme percentage points will deteriorate sooner or later' (Bowman and Shenton

(1982)). An exception to this is the beta approximation, based on a bounded distribution.

As interest is focussed on the end points for critical regions this is likely to be an impor-

tant factor and this success could be anticipated. However, Burr approximations have the

appeal of simple analytic form for both sizes and critical values, so it is hoped that they

might be competitive with the four-moment beta approximations. They also cover wider

range of moments.
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3. Empirical Evaluations

3.1 Outline of Experiment

To evaluate accuracy, true sizes of Burr critical values were computed and compared

with nominal sizes a = .01, .05 and .10, as was done in Evans and King (1985a). In

addition, Burr p- values or size approximations, when the test involved the true critical

values, were compared. Again the criterion for accuracy was whether the computed values

lay within 1%, 5% or 10% of the true value, i.e. within ± (.0001, .0005, .0010) of a = .01,

within 4" (.0005, .0025, .0050) of a = .05 and within "4- (.0010, .0050, .0100) of a = .10.

The real design matrices contain a constant term and one or more other regressors

which are reasonably typical economic time series data, with various degrees of trend and

seasonality. These regressors include: the annual spirits income and price data of Durbin

and Watson (1951); the weakly seasonal quarterly Australian Consumer Price Index (CPI),

and also lagged one quarter; and quarterly Australian liquidity or capital movements, pri-

vate and government, which are highly seasonal and subject to large fluctuations (not

used in the previous study). Cross-sectional household population census data for the

Australian population in 1961 and 1976 was also used. The artificial design matrices

each comprised a constant and a regressor determined from a time trend (representing

slowly evolving non-seasonal economic time series behaviour), the lognormal (representing

skewed cross-sectional data) and uniform (standard in such experiments) distributions,

respectively. Stable additive quarterly seasonal behaviour was represented by a set of 0-1

seasonal quarterly dummies, and Watson's X matrix is customary in experiments concern-

ing autocorrelation. In summary, five data sets each were used for the four AR(1) and four

AR(4) tests (each with sample sizes n = 20,40,60), as well as for the six heteroscedasticity

tests (with n = 24,40,64), totalling 210 cases. Knowledge of the deflator zt is required for
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some of the heteroscedasticity tests and this was assumed here to correspond to the first

non-constant regressor, and regressors were ordered according to its increasing values.

Burr approximations were compared with those of the normal, two-moment beta 0(2)

and four-moment beta /3(4), as described in Evans and King (1985). The normal approx-

imation is based on assuming that (t — p)Icrrs N(0, 1). For the 0(2) approximation the

test statistic is first transformed by its extreme bounding values to lie in the range (0,1),

then the mean and variance of this scaled test statistic are equated with those of a beta

distribution, B(p,q), to solve for its parameters p and q. The /3(4) approximation fits a

beta distribution to this scaled test statistic by matching the skewness and kurtosis pa-

rameters to obtain the parameters p and q, then solving for the extreme eigenvalues using

the first two moments.

Most of the autocorrelation and OLS-based heteroscedasticity tests studied were char-

acterised by near symmetry and slightly short tails, so have moments which lie in the area

covered by the beta distribution. Hence for these, approximations based on the normal

and beta distributions, particularly the four-moment beta approximation, are likely to be

reasonably accurate. The Breusch-Pagan and the GLS-based heteroscedasticity tests gen-

erally were more variable for the more extreme data sets, and some had skewness- kurtosis

values outside the beta distribution range such that four-moment beta approximations are

not applicable.

3.2 Results

Selected results on the approximations are given in the accompanying tables. For

tests of autocorrelation (AR(1) and AR(4)) and heteroscedasticity, respectively, Tables 1

to 3 show for each data set with 40 observations and for nominal sizes a = .01, .05, .10:

(a) the true test size when using the Burr approximation to the critical value; and (b) the
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calculated Burr p—value when the test involves the true critical value. Table 4 shows the

true test size when using Burr and four-moment beta (when obtainable) approximations

for the s(5.0) and Breusch-Pagan tests of heteroscedasticity for sample sizes of 24 and 64.

Full results are available on request from the author.

For the one-sided tests, some consistent patterns emerge from these results. The true

size of the Burr approximation generally slightly exceeded the nominal size at a = 0.01,

and was slightly smaller for a = 0.05 and 0.10, suggesting a cross-over of the true and

approximating probability distribution function curves near the tails between a = .01 and

.05. The reverse results for the Burr p-values of tests using true critical values confirm

this: for a = 0.01, the Burr p— values were slightly lower than the nominal size, but for

higher values a = .05 and .10, they were slightly higher. The exceptions to this pattern

were for the highly skewed GLS-based tests, where the cross-over occurred between a =

.05 and .10 for positive skewness, and a systematic shift with no cross-over for negative

skewness.

Consider first the true sizes of tests involving Burr approximations to the critical

values. For the AR(1) tests, all these sizes were within 5% of the nominal value, and for

a = .01 usually within 1%. For the AR(4) tests, approximations generally were within

5% of the nominal value except a few within 10% for the extreme tail (a = .01) and

small samples (n = 20). For n = 40 some, and for n .= 64 most, were within 1% for

a = 0.01. The OLS-based heteroscedasticity tests, SZ and sa, were all within 5% of the

nominal sizes, and for a = 0.01, sa was within 1% for n > 40 as was SZ for n = 64 and

usually for n = 40. Approximations for the more skewed GLS-based tests, s(5.), sa (2.5)

and LBI, were not as accurate: for the extreme tail true sizes were usually within 10% of

the nominal value, except for a few with small or moderate (n = 40) samples. However
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for higher nominal sizes, these tests were often within 5% and always within 10% of the

nominal size.

Next consider the reverse situation: the Burr p— value approximation using the true

critical value. For the AR(1) tests, for a = .01, more than half the values lay within

1%, and all within 5% of the nominal size, and for higher a all were within 5%. For

the AR(4) tests, a few approximations for the extreme tail and small samples were only

within 10%, but generally results were within 5%, and often within 1% for a = .01. For

the OLS based heteroscedasticity tests, sa and SZ, approximations were always within

5% of the nominal size, and within 1% for n = 64, and sa was within 1% for n = 40.

Again approximations with the GLS-based tests were less precise: generally within 10%

for a > .05 and sometimes for a = .01.

For the two-sided Breusch-Pagan test probabilities in the two tails are added, such

that approximations reach further into the tails. For the extreme tail the true size of the

Burr approximated critical value was within 10% of the nominal size for two data sets and

within 5% for the trend data, but with larger samples it was generally within 10% and

often within 5%. For larger values of a, accuracy improved: for a = .05, approximations

were within 10%, usually within 5%, and often within 1% of the nominal size; and for

a = .10, usually within 1% and always within 5%. For Burr p-value approximations for

a > .05, values were within 5% and often within 1% of the nominal value, whereas for the

extreme tail values were generally within 10% and often within 5%. The few cases where

Burr approximations for the Breusch-Pagan test were poor occurred for highly skewed

data with a = 0.01, involving examining the tails at significance levels .005 and .995. Even

these, though, were considerably more accurate than those obtained using the conventional

x2 asymptotic critical value, which illustrates the potential for this methodology in applied

work (see Evans and Fry (1991)).
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Overall, the few cases which gave less accurate approximations did so in both ways: (a)

and (b) results were consistent. Of the 210 cases studied, ten lay on the Weibull boundary,

which is the limiting distribution of Burr XII with c > 0, k oo. These included some

autocorrelation tests and one of heteroscedasticity, all nearly symmetric (1-1-5.1 1 fLd .02) and

with short tails (132 c.-_d 2.7). The s(5.0) heteroscedasticity test with the lognormal data

had values of (\/i ,/32) = (1.3,5.61), (1.6,6.17), (1.53,7.19), respectively, for n=24,40,64,

on the same Weibull boundary. Problems arise as computation of r(k) is not feasible for

very large k and, as each of these ten had k > 350, the Weibull distribution was used:

F(x) =1— exp(—xc), x = log[al(1— a)]lic.

These Weibull approximations were successful: within 5% and often within 1%, of the

nominal value, for all but one case with the extreme tail and a small sample, which was

within 10%.

Compare now the relative performance of the Burr approximations with those previ-

ously examined in Evans and King (1985a). Consider first the normal approximations. For

the autocorrelation tests approximations for a = .01 were often not even within 10% of the

nominal value. For a > .05 they were generally within 5%, always 10% and sometimes 1%

for n > 40. For the OLS-based heteroscedasticity tests approximations were within 5% and

sometimes within 1% of the nominal size for a > .05 and n > 40. However, in the extreme

tail they were less successful: the sa test was within 10% for all sample sizes, but the SZ

test only for larger n. The GLS-based heteroscedasticity test approximations were poor,

being within 10% of the nominal value only for a few cases with n > 40, a = .10. Normal

approximations to the Breusch-Pagan test generally were not even within 10% of the nom-

inal value when there was any significant skewness and kurtosis. Results were reasonable

only with the trend data, and some were within 10% of the true value for a = .10.
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Beta approximations based on the first two moments were reasonable when there was

no significant skewness and kurtosis, such as the autocorrelation tests, where results were

generally within 5% of the nominal size. However, for the AR(1) and especially the AR(4)

tests, with small samples and the extreme tail, some results were only within 10% and

some not even that. Generally for the autocorrelation tests, Burr approximations were

more precise for a = .01, but not for a > .05, except for s4(.5). For the OLS-based

heteroscedasticity tests, the fl(2) approximations were generally within 1% for SZ, and

with a > .05, for sa. For n = 24, the Burr approximation was superior for sa. For the

highly skewed and variable GLS-based heteroscedasticity tests, these approximations were

poor, and generally inferior to Burr: most results were not even within 10% of the true

value. As with the normal approximations, results were poor when the test statistic had

significant skewness or kurtosis.

Finally the four-moment beta approximations were very accurate, when obtainable.

For the autocorrelation and OLS-based heteroscedasticity.tests, results were usually within

1%, with only a few exceptions for small samples and the extreme tail. The GLS-based

approximations, when obtainable, were within 1% generally for n > 40, and for n = 24 they

were within 5% and usually within 1%. However, for most of the more variable regressors,

approximations could not be determined for s(5.0), the LBI and the Breusch-Pagan tests

as 102 > 1.5(01 + 2), so that they did not lie in the beta range of moment coverage.

In summary, for tests with significant skewness and kurtosis, Burr approximations

are generally superior to those from the normal and usually the 13(2) distributions. This

is not particularly surprising, given that this skewness and kurtosis is specifically taken

into account by the test statistic. However, although the Burr approximations are quite

accurate, they are not as good as the 13(4) approximations, where the test statistic is first
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scaled and relocated by the estimated endpoints, and then two non-linear equations used to

solve for the skewness and kurtosis coefficients, which is algebraically equivalent to scaling

by the mean and standard deviation. All the test statistics in this study are bounded, such

that bounded distributions are matched for the beta approximations, whereas bounded

distributions are matched with unbounded with the Burr approach. As interest is in

the tails of distributions, such extra knowledge of endpoints is obviously an advantage.

However, in cases of marked skewness and kurtosis, which seems to occur often with some

tests of heteroscedasticity, the four-moment beta approximation cannot be obtained, but

Burr approximations can be determined and are reasonably accurate.

4. Concluding Remarks

This empirical evaluation of approximating critical values and p-values of tests of

autocorrelation and heteroscedasticity by matching moments with the Burr distribution

family suggests that tests using Burr approximations are reasonably accurate: values are

generally within 5%, and at least within 10%, of the nominal size.

Burr approximate critical values, obtained by matching the first four moments, are

superior to the normal and two-moment beta approximation for test statistics with any

significant skewness and kurtosis. They are not as accurate as the four-moment beta

approximation when used to match bounded distributions with skewness-kurtosis in the

range covered by beta distributions. However these beta approximations cannot be deter-

mined for distributions with marked skewness and kurtosis, such as some heteroscedasticity

tests, but quite reasonable Burr approximations can be obtained. Burr approximations

have a wider moment coverage and marked computational advantages over other methods.

An initial inspection of the existence regions of the Burr and beta distributions in terms

of skewness and kurtosis of the test statistic of interest will indicate whether each these

approximations is likely to be successful.
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This methodolology is applicable to the many test statistics and estimators which can

be written as a ratio of quadratic forms in normal variables. It should prove most useful

in applied work.
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TABLE 1

True size of Burr critical value approximations (a),

and Burr p-value approximations of true critical values (p),

for tests of AR(1) disturbances, n=40.

Nominal size

Test/data
l' 2

1%

(a) (b)

5%

(a) (b)

10%

(a) (b)

d
1

spirits
trend
CPI
liquidity
Watson's X

d'
1

spirits
trend
CPI
liquidity
Watson's X

s
1
(.5)

spirits
trend
CPI
liquidity
Watson's X

1
spirits
trend
CPI
liquidity
Watson's X

(-.03,2.86)
(-.01,2.86)
(-.02,2.87)
(-.01,2.86)
( 0,2.89)

(-.04,2.87)
(-.03,2.87)
(-.04,2.87)
(-.01,2.90)
(-.03,2.87)

(-.03,2.87)
(-.02,2.87)
(-.01,2.86)
(-.01,2.86)
( .04,2.86)

(-.02,2.86)

(-.01,2.86)
(-.01,2.86)
( .01,2.86)
( .03,2.86)

1.010 .989 4.803 5.202 9.774 10.225

1.012 .987 4.800 5.205 9.767 10.232

1.011 .989 4.800 5.205 9.769 10.229

1.012 .987 4.801 5.204 9.767 10.231

1.014 .985 4.797 5.208 9.758 10.239

1.007 .920 4.804 5.201 9.778 10.221

1.010 .990 4.802 5.203 9.772 10.226

1.008 .991 4.802 5.203 9.774 10.226

1.011 .988 4.798 5.207 9.763 10.236

1.009 .990 4.804 5.201 9.775 10.223

1.009 .990 4.803 5.202 9.773 10.224

1.011 .988 4.801 5.204 9.769 10.226

1.012 .987 4.799 5.206 9.765 10.233

1.014 .985 4.801 5.204 9.766 10.232

1.022 .975 4.793 5.213 9.746 10.253

1.101 .987 4.803 5.202 9.767 10.229

1.010 .987 4.800 5.205 9.767 10.232

1.014 .985 4.799 5.206 9.763 10.235

1.017 .982 4.799 5.207 9.758 10.241

1.205 .978 4.795 5.211 9.749 10.250
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TABLE 2

True size of Burr critical value approximations (a),

and Burr p-value approximations of true critical values (b),

for tests of AR(4) disturbances, n=40.

Nominal size

Test/data (107.,132) (a)

5%

(a) (b)

10%

(a) (b)

d
4
CPI ( .03,2.86)
seasonals ( 0,2.86)
CPI/seas (-.02,2.86)
liquidity ( .03,2.86)
Watsons's X ( .04,2.88)

d'
4
CPI
seasonals
CPI/seas
liquidity
Watsons's

(-.05,2.87)
(-.03,2.88)
(-.06,2.88)
(-.02,2.87)

X (-.01,2.90)

s
4
(.5)

CPI
seasonals
CPI/seas
liquidity
Watson's X

g4
CPI
seasonals
CPI/seas
liquidity
Watson's X

(-.01,2.87)
( .02,2.87)
(-.02,2.88)
( .02,2.89)
( .02,2.89)

( .01,2.86)
( 0,2.86)
(-.01,2.86)

( .02,2.87)
( .05,2.87)

1.010 .978 4.796 5.210 9.750 10.248

1.015 .984 4.799 5.207 9.761 10.237

1.012 .987 4.800 5.205 9.766 10.232

1.020 .978 4.797 5.209 9.752 10.248

1.021 .978 4.794 5.212 9.744 10.254

1.008 .992 4.802 5.202 9.774 10.225

1.007 .993 4.806 5.199 9.780 10.218

1.004 .996 4.808 5.196 9.786 10.212

1.010 .989 4.802 5.203 9.771 10.228

1.011 .988 4.797 5.208 9.762 10.236

1.018 .981 4.794 5.212 9.751 10.247

1.013 .986 4.800 5.205 9.765 10.233

1.012 .987 4.800 5.205 9.767 10.232

1.020 .979 4.796 5.210 9.751 10.247

1.028 .969 4.789 5.219 9.731 10.267

1.017 .982 4.795 5.211 9.754 10.244

1.015 .984 4.799 5.207 9.761 10.237

1.014 .985 4.799 5.206 9.764 10.234

1.019 .980 4.797 5.208 9.754 10.244

1.024 .974 4.792 5.214 9.741 10.258
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TABLE 3

True size of Burr critical value approximations (a),

and Burr p-value approximations of true critical values (b),

for tests of heteroscedasticity, n=40.

Nominal size 1% 57. 107.

Test/data ViTs7d32) (a) (3) (a) (b) (a) (b)

SZ
trend . ( 0,2.87) 1.015 .984 4.798 5.207 9.761 10.823

lognormal ( .01,2.87) 1.016 .983 4.798 5.208 9.758 10.241

households (-.01,2.87) 1.012 .987 4.800 5.205 9.765 10.233

liquidity ( .02,2.87) 1.018 .981 4.780 5.208 9.756 10.242

uniform ( 0,2.861 1.014 .985 4.799 5.206 9.762 10.235

s
a
trend ( 0,2.94) 1.009 .990 4.788 5.217 9.752 10.247

lognormal ( .01,2.94) 1.010 .989 4.792 5.216 9.755 10.244

households (-.01,2.94) 1.008 .992 4.789 5.218 9.756 10.242

liquidity ( .01,2.93) 1.011 .989 4.791 5.214 9.755 10.245

uniform ( 0,2.94) 1.009 .990 4.790 5.216 9.755 10.242

s
a(2.5

)

trend ( .39,3.21) 1.129 .857 4.757 5.260 9.574 10.432

lognormal ( .39,3.21) 1.130 .855 4.758 5.258 9.572 10.437

households ( .38,3.20) 1.125 .860 4.755 5.201 9.576 10.430

liquidity ( .38,3.20) 1.126 .859 4.760 5.254 9.579 10.424

uniform ( .39,3.20) 1.129 .972 4.760 5.183 9.577 10.219

LBI
households (-.80,3.93) .950 1.058 4.600 5.415 9.632 10.353

trend ( 0,2.94) 1.009 .991 4.788 5.217 9.751 10.245

lognormal ( .59,3.71) 1.250 .716 4.717 5.315 9.359 10.664

liquidity ( .18,3.31) 1.009 .990 4.696 5.317 9.628 10.371

uniform (-.14,2.99) .987 1.014 4.815 5.183 9.819 10.219

s(5.0)
trend ( .58,3.54) 1.238 .735 4.786 5.235 9.498 10.519

lognormal (1.36,6.17) 2.533 0 5.531 4.299 9.488 10.601

households (-.28,3.00) .981 1.020 4.854 5.147 9.877 10.122

liquidity (1.10,5.46) 1.884 .151 5.130 4.833 9.323 10.777

uniform ( .45,3.34) 1.147 .990 4.763 5.216 9.558 10.242

B&P
trend ( 0,2.94) 1.015 .980 4.967 5.043 9.952 10.057

households (-.80,3.93) 1.517 .952 5.336 4.355 10.005 10.008

lognormal (-.59,3.71) .951 1.046 4.938 5.073 9.991 10.004

liquidity (-.18,3.31) .967 1.024 4.911 5.017 9.948 9.968

uniform ( .14,2.99) 1.062 .918 4.991 4.999 9.929 10.083
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TABLE 4

True size of four-moment beta 13(4) and Burr critical value appro
ximations

for s(5.0) and Breusch-Pagan heteroscedasticity tests

Nominal size 1% 5% 107.

Approximation 13(4) Burr 13(4) Burr 13(4) Burr

Data (/ic,g2)
s(5.0) point optimal test

n=24
trend ( .72, 3.78) .958 1.399 4.974 4.849 9.859 9.439

lognormal (1.31, 5.61) - 2.521 - 5.466 - 9.479

households (-.17, 2.78) .997 1.046 4.983 4.904 9.987 9.885

liquidity (1.12, 5.29) - 2.146 - 5.310 - 9.360

uniform ( .65, 3.63) - 1.361 - 4.813 - 9.394

n=64
trend ( .47, 3.36) - 1.156 - 4.758 - 9.542

lognormal (1.53, 7.19) - 3.016 - 5.891 9.605

households (-.23, 2.99) 1.001 .980 5.003 4.833 10.005 9.850

liquidity (-.07, 3.30) - .979 - 4.863 - 9.883

uniform ( .35, 3.21) - 1.093 - 4.763 - 9.614

Breusch-Pagan (B&P) test

n=24
trend ( 0, 2.89) 1.002 1.017 5.002 4.974 10.000 9.958

lognormal (-.67, 3.65) 1.023 .738 5.091 4.939 10.059 10.464

households ( .73, 3.66) 1.123 1.508 5.003 5.369 9.868 10.059

liquidity (-.42, 3.46) - .932 - 4.938 - 10.022

uniform ( .13, 2.98) 1.004 1.060 4.984 4.984 9.983 9.922

n=64
trend ( 0, 2.96) 1.000 1.014 5.002 4.964 9.998 9.950

lognormal (-.48, 3.57) - .926 - 4.920 - 10.006

households ( .64, 3.56) 1.039 1.345 4.973 5.200 9.872 9.946

liquidity ( .79, 4.20) - 1.463 - 5.256 - 9.895

uniform ( .12, 2.99) 1.000 1.049 5.003 4.984 10.003 9.934

- indicates that the approximation was not obtainable.
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