

The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
<http://ageconsearch.umn.edu>
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their employer(s) is intended or implied.

DEVELOPMENT OF A REGIONAL SIMULATING THE SOUTH AFRICAN CIAL CONSIDERATION TO RISK

J Howcroft

MSc Agric. Student, Department of Agricultural Economics, University

GF Ortmann

Associate Professor, Department of Agricultural Economics, University

Abstract

Sanievatting

In terme van bruto waarde is koring die tweede belangrikste akkerverbruik in die vorm van brood wat een van die belangrikste stappe vasteprysskema bemerk. Die afgelope paar jaar was daar egter 'n nader ondersoek na die gevolge van alternatiewe bemarkingsbeleidsrigtingmeringsmodel op streeksbasis ontwikkel om die koringbedryf te sin. Verskeie gewasse, substitusie in die vraag tussen koring en mielies, delde opbrengstes individuele risiko uitkansleer is daar gebruik gevind. Produksie in die belangrikste koringproduserende streke in Suid-Afrika wat soortgelyk is aan die werklike huur en deur die persentasie tussen werklike en voorspelde grondgebruik en produksie. Daar word beleidsnavorsing.

1. Introduction

The economic importance of wheat production to South Africa can be summarised as follows : 1) Wheat contributes significantly to the total gross value of agricultural production; 2) wheat in the form of bread is one of the major staple foods in South Africa; 3) the domestic production of wheat results in the reduction of wheat imports which leads to savings on foreign exchange; 4) the wheat industry and its related secondary industries provide considerable employment.

Given the economic importance of wheat the future production and marketing of wheat need to be researched. At present wheat is marketed under a one-channel fixed-price system. To evaluate the consequences on domestic production of different marketing alternatives a linear programming (LP) model of wheat production at the regional level was developed. The model includes negative-sloping demand functions for crops, substitution in demand between wheat and maize, and variance-covariance matrices to account for income risk.

In the first part of the paper the development of the LP model is discussed, with the objective of simulating production in the South African wheat industry. Special consideration is given to

in supply was included in the model. The area under the supply function of a crop also comprises the opportunity cost of producing that product (Nieuwoudt, 1981).

In the OFS/Tvl region there are three main crops that compete with wheat for land, namely maize, sorghum and sunflowers. In the Swartland the competing crops are oats and pastures (for sheep and dairy herds). In the Rûens oats, barley and pastures for sheep are the main competing enterprises.

2.3 Cost Data

For cash crops, use was made of the General Farm Management Results, a publication by the Directorate of Agricultural Production Economics. These cost estimates relate to an entire production region. Owing to the lack of more detailed data, it was assumed that costs were constant over each production region. This assumption was partially relaxed in RHIFAs where rainfall was considerably lower than the relevant production region. In these areas observed production costs were reduced as fertilizer was applied at significantly lower rates.

For the sheep and dairy enterprises, use was made of Combust reports compiled by the Directorate of Agricultural Production Economics.

2.4 Yields

Yields and stocking rates for the various RHIFAs were obtained from Scheepers *et al* (1984) and the Landbouw Ontwikkelingsprogram (1985). For the magisterial districts in the central Orange Free State yield data were taken from Agricultural census reports which is a publication by the Department of Statistics (1972).

2.5 Rotation of Crops

Account was taken of physical restraints on the production of crops in each production region. For example, sunflowers can only be grown once every three years (owing largely to disease and pest problems). Consequently the (annual) model allows only one-third of the land available for sunflowers in an RHIFA to be planted to sunflowers. Likewise wheat can only be grown in five of eight consecutive years in the OFS/Tvl region. In the Cape, the success of wheat production depends largely on the amount of soil moisture present in the soil at planting. For this reason if wheat is grown in a monoculture it is grown using a wheat fallow rotation. These and other rotation considerations were included in the model.

2.6 Supply of Inputs

The supply of inputs to production activities was assumed to be either perfectly elastic or perfectly inelastic. The supply of land, being a constraint, was considered perfectly inelastic. All other inputs were supplied at a fixed price.

2.7 Risk

The approach developed by Hazell and Scandizzo (1974) was used to include risk in the model. In this study risk was accounted for by the deviations of gross income per hectare from the trend line. With the mean absolute deviation method developed by Hazell and Scandizzo (1974) risk can be included as a cost factor in the objective function. Hazell and Norton (1986:89) provide an example of an LP matrix which explains the inclusion of risk. In this model estimates of the standard deviation were used, a procedure followed by Frank (1980), Ortmann (1985), Nieuwoudt *et al* (1976), and Simmons and Pomareda (1975). Each production region was given its own risk aversion coefficient (Θ). This permits "fine tuning" to give the best simulation of farming production in the different regions. There has been criticism for calling Θ a risk aversion coefficient. As Hazell (1982) points out, when altering Θ to fit

Table 2 Yield standard deviations and pooled yields of wheat, barley and oats

Farm	Standard Deviation		
	Wheat	Barley	Oats
1	0,192	0,353	0,264
2	0,368	0,486	0,724
3	0,467	0,361	0,389
4	0,226	0,642	1,380
5	0,457	0,596	0,508
6	0,360	0,456	0,493
Average annual Yields	0,245	0,346	0,455
Pooled Yields	0,401	0,546	0,816

Considerable differences exist among farms with respect to yield standard deviation. The range of standard deviation for wheat is from 0,192 for farm 1 to 0,467 for farm 3. The range for barley is from 0,353 for farm 1 to 0,642 for farm 4. For oats the range is from 0,264 for farm 1 to 1,38 for farm 4. From the data farm 1 seems to have a consistently low yield variability and farms 4 and 5 a high yield variability.

As mentioned earlier, yield variability based on average yields is expected to be lower than individual farm variability. This is highlighted here especially in the case of barley where the average variability is lower than for any of the individual farms. However, pooled yield variability tends to be representative of the "average" variability of individual farms.

Significant differences in relationships are observed among farms. Correlation coefficients for wheat and barley range from -0,34 for farm 3 to 0,88 for farm 4. Wheat and oats yield correlation coefficients ranging from -0,31 for farm 2 to 0,49 for farm 4. For barley and oats the range is from -0,23 for farm 2 to 0,82 for farm 6. It appears that the correlation coefficients for average yields are biased upwards when comparing them to individual correlation coefficients. For example, the average correlation coefficient for wheat/oats is 0,45 yet only one farm (farm 4) has a correlation coefficient slightly greater than this. It can be seen that the pooled yield data has a correlation coefficient roughly "average" of those experienced on the six farms for the three crops.

In light of these results it was decided to use a pooled data set. Gross incomes for each crop for individual farms were taken from the Mail-in Record System for the Rens and Swartland production regions (Directorate of Agricultural Production Economics 1981 to 1986). Information from six farms for six years for each production region was used.

A dummy variable model was fitted for each crop's gross income with linear and quadratic slope coefficients for time trend varying across farms.

$$G_{iT} = b_{0i} + b_{1i}T + b_{2i}T^2 + e_{iT} \quad (1)$$

Where:

G_{iT} = Gross income on the i th farm at time T .

b_{0i} = The intercept for the i th farm.

b_{1i} = The linear slope coefficient for the i th farm.

b_{2i} = The quadratic slope coefficient for the i th farm.

e_{iT} = Residual error for the i th farm at time T .

The method used to estimate equation 1 was ordinary least squares. Different intercepts for the individual farms were taken to represent different management practices, soil types

These estimates were transformed into demand functions. The area beneath the demand function ($P = a - bQ$) is given by the integral of the function as follows :

$$W = Q(a - 0.5bQ) \quad (1)$$

Where : P = product price.

a = constant.

b = slope of the function.

Q = aggregate quantity demanded

W = area beneath the demand function (total welfare)

This function is not linear so it cannot be entered directly into a linear program. However, it can be linearized by using the Duloy and Norton (1973) technique : the demand function is divided into segments and the area beneath the demand function up to each consecutive segment is calculated. The welfare values for different quantities are then calculated. These welfare values were used in the objective row of the LP matrix to enable total consumer surplus to be maximised. Each segment is then entered into the LP matrix as a separate activity, but a constraint ensures that only one of these activities enters the solution at any one time.

Regional demand functions were estimated for those crops where only a percentage of the total crop is grown in the wheat-growing regions. This was done by utilising the method proposed by Kutcher (1972) and used by Ortmann (1985) and Frank (1986).

The welfare values calculated hold if there is no substitution demand. However, there appears to be a significant cross elasticity between the demand for maize and wheat. Van Zyl (1985) estimated this cross-price elasticity to be 0.2. The quantities and welfares of the consumption of maize and wheat were calculated at different prices for the two crops. Total welfare was calculated by adding the individual welfares derived from maize and wheat consumption at different prices. The total welfare vector was entered into the objective function of the matrix.

Export demands were assumed to be perfectly elastic due to South Africa's small share of world markets. Shifts in demand due to changes in income were ignored.

2.10 The model

The objective function of the model can now be expressed as follows :

$$\text{Max } Z = [X'M(A-0.5BMX)] - \sum_{i=1}^N \{[C'X]_i + [\Theta_i(X'\Omega X)^{0.5}]_i\} \quad (2)$$

The first term of equation 3 measures total welfare, which is the integral of the linear product demand function $P = a - bMX$, where M is a $n \times n$ diagonal matrix of average yields per hectare and X is a $n \times 1$ vector of aggregate hectares generated endogenously within the model. Production costs are deducted in the second term $[C'X]$ where C is a vector of production costs per hectare. Costs associated with risk are deducted in the last term, where Ω is a variance-covariance matrix of gross incomes per hectare, Θ_i is an aggregate "risk aversion" coefficient for all farms in region i and N the number of major regions (three in this study).

3. Simulation

Before the model can be used to evaluate alternative wheat policies, results must be compared with present cropping patterns. This also provides a check on cost data. To do this, current policies relevant to the different crops were imposed on

Table 5: Production under different risk aversion (1000t)

Region	Actual Production	Simulated Production at		
		$\theta = 0,10$	$\theta = 0,30$	$\theta = 0,50$
OFS/Tvl				
Wheat	813,9	558,3	806,0	835,1
Maize	1955,8	2572,6	2021,9	1672,0
Sorghum	26,8	0,0	73,3	94,6
Sunflower	72,7	58,4	97,1	167,0
Oats	20,3	22,5	22,5	22,5
Corr, Coefficient	0,979	0,999	0,996	
PAD	31,7 %	5,1 %	16,2 %	
Swartland				
Wheat	354,4	359,8	359,8	271,3
Oats	10,8	104,3	81,2	116,1
PAD	27,1 %	20,7 %	51,6 %	
Rûens				
Wheat	273,4	348,4	278,2	259,4
Barley	107,8	91,6	109,5	110,9
Oats	15,8	15,1	15,1	0,0
PAD	23,2 %	1,8 %	8,3 %	
Overall Corr, Coef,	0,979	0,999	0,994	
Overall PAD	30,3 %	6,3 %	18,9 %	

PAD - Percentage absolute deviation.

For the Rûens region a θ value of 0,60 results in the best correlation coefficient and PAD of 0,976 and 9,4 per cent respectively. An increase in θ results in a decrease in the area of wheat and oats and an increase in the area of barley and pastures. The overall correlation coefficient and PAD are good, being 0,997 and 12,2 per cent respectively.

The results of the second test are shown in Table 5. The production of different crops in the OFS/Tvl region is simulated closely at the optimum θ value (0,30) giving a correlation coefficient and PAD of 0,999 and 5,1 per cent respectively. Simulation of production in the Swartland region is poor which is mainly due to the poor simulation of oats production. One reason for this is that the actual production figure recorded does not account for oats produced but fed to livestock. If this data were available there would be an improvement in the PAD for the Swartland region. The production of wheat, barley and oats in the Rûens region is simulated closely at the optimum θ value (0,60). The overall PAD value of 6,3 per cent indicates that close simulation was obtained.

Interesting to note is that the production of wheat in the Swartland and Rûens regions decreases with an increase in θ , but increases in the OFS/Tvl region, highlighting the differences in wheat production in the winter rainfall region compared to the summer rainfall region.

Estimates of actual rent data were acquired from regional extension officers and economists in the different production regions (Coetzee 1987; Laubsher 1987; Purchase 1987). Results of the land-rent test are presented in Table 6.

The fact that the shadow prices of land at the optimum θ values are similar to the actual rents, shows that the costs used in the model are representative of the real production costs.

DARROCH, MAG. (1983). Economic analysis of the bread subsidy in South Africa. Unpublished BSc (Agric) thesis, Department of Agricultural Economics, University of Natal, Pietermaritzburg.

DEPARTMENT OF STATISTICS. (1972/79) Agricultural census. Pretoria.

DEPARTMENT OF STATISTICS. (1975/84). South African statistics. Pretoria : Central Statistical Service.

DIRECTORATE OF AGRICULTURAL PRODUCTION ECONOMICS. (1978/86). General farm management results. Pretoria: Department of Agriculture.

DIRECTORATE OF AGRICULTURAL PRODUCTION ECONOMICS. (1986). Combus reports. Pretoria: Department of Agriculture and Water Supply.

DULOY, JH and NORTON, RD. (1975). Prices and incomes in linear programming models. *American Journal of Agricultural Economics*. Vol 57:591-600.

EISGRUBER, LM and SCHUMAN, LS. (1963). The usefulness of aggregate data in the analysis of farm income variability and resource allocation. *Journal of Farm Economics*. Vol 45:587-591.

FRANK, D. (1986). An economic analysis of various policy options for the South African maize industry. Unpublished MSc (Agric) thesis, Department of Agricultural Economics, University of Natal, Pietermaritzburg.

HAZELL, PBR. (1982). Application of risk preference estimates in firm-household and agricultural sector models. *American Journal of Agricultural Economics*. Vol 64:384-90.

HAZELL, PBR and NORTON, RD. (1986) Mathematical programming for economic analysis in agriculture. New York: MacMillan.

HAZELL, PBR and SCANDIZZO, PL. (1974) Competitive demand structures under risk in agricultural linear programming models. *American Journal of Agricultural Economics*. Vol 56:235-44.

HOWCROFT, JR. (1990). The economic effects of alternative marketing scenarios for the South African wheat industry. Unpublished Paper, University of Natal, Pietermaritzburg.