

The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
<http://ageconsearch.umn.edu>
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their employer(s) is intended or implied.

LIVESTOCK PRODUCTION IN THE DRAKENBERG REGION: THE SIFIED FARMING AREA: THE DRAKENBERG REGION¹

HA Minnaar

Economic Services Division, Agricor, Mmabatho

JA Groenewald

Department of Agricultural Economy, University of Pretoria

Abstract

Overwintering of livestock has been regarded as a major problem in high rainfall, cold winters and uneven topography. The latter is predominantly sour veld; natural grazing becomes unpalatable and an overwintering problem by moving animals to grazing outside. Farmers have to determine optimal livestock and cropping systems. The available land should supply the dairy herd with its roughage requirements. Arable land should be used for cash crops (maize and dry beans), leaving no land for overwintering. The best choice is to keep dairy cattle, his second best choice - with much lower numbers - is to keep sheep. Beef cattle can be kept, but the main problem in this region is not overwintering, but

Samenvatting

Die oorwintering van vee word beskou as 'n belangrike probleem in die hoge reënval gebiede met koue winters en ongelyke topografie. Laasgenoemde is hoofsaaklik suurveld; natuurlike plantegroei is oorwegend suurveld; natuurlike vee-oorwinteringsprobleem gehanteer deur met hul vee te bewerken. Lineêre programmering is gebruik om optimale vee- en landbouwgewende boerderyvertakking is. Weiveld en bewerkbare land behoeft voldoende om die res van die bewerkbare land te voorsien vir vleisbeeste van wolskape nie. As die boerdery gewend is - 'n kombinasie van kontantgewasse en wolkere en oesreste om aan hul voedingsvereistes te voldoen. Die vleisbeeste is nie in staat om ekonomiese voordele te bring nie. Vleisbeeste in hierdie gebied is dus nie oorwintering nie, maar eerder

1. Introduction

Overwintering of livestock has for long been regarded as an important problem in high rainfall, sour veld areas. Most of the vegetation (predominantly grass) can provide lush green feed for livestock in summer, but loses palatability, digestibility and nutritional value in winter. Farmers have to find ways to provide alternative sources of winter feed.

In the Drakensberg regions many farmers have traditionally handled this problem by acquiring land in parts less affected by seasonal changes in the use value of natural grazing. They retained their farms in the high rainfall, sour veld regions as their main base of operations, and moved their livestock to winter grazing farms for approximately three to four months per year.

As agriculture became more commercialised and land prices higher, this practice became more expensive, and its importance waned. By 1985, approximately 27 per cent of farmers in the Drakensberg grazing regions still trekked with livestock mainly with sheep (Minnaar, 1990).

2. Area and farm system description

In the research, an attempt was made to determine an optimum organization for what may be regarded as a representative farm in the Northern Drakensberg grazing region, with Ermelo as the main centre.

In this region, mean annual rainfall varies between 600 and 1000mm, of which approximately 85 per cent occurs between October and March. The mean precipitation varies sharply over short distances (Weather Bureau, 1986; Afdeling Landbouproduksie-ekonomiese, 1967). The precipitation has a high degree of reliability (approximately 80 per cent) (Transvaalstreek, 1985:5) and the region is also characterized by mist, cloudiness and high relative humidity (Transvaalstreek, 1985:7).

The region is regarded as temperate to cold, with a comparatively short growth period (Kotze, 1985). Frost occurs regularly in May, June, July and August (Transvaal Region, 1976), and snow often occurs during winter.

A variable topography and differences in soils limit arable areas (Transvaalstreek, 1983). The natural vegetation is sour grass, and acidification has occurred over the last 115 years. Grazing practices have contributed to deterioration of natural grazing (Acocks, 1975:5-7).

The present predominant farming system is a diversified one; livestock consists mainly of dairy cattle, woolled sheep and beef cattle. Arable land is used for feed crops and cash crops, particularly maize and dry beans. Approximately 27 per cent of farmers trek with livestock; there appears to be an inverse relationship between this practice and availability of crop residues (Minnaar, 1990).

3. Empirical model and data used

Linear programming was used to determine profit maximizing enterprise combinations, including intermediate production activities, for representative farms in the region. The model maximised sum of gross margins. It was a deterministic model and did not consider factors such as liquidity or solvency. Neither was risk included in the form of variability; the model was a pure static one.

Cropping activities included cash crops (maize and dry beans), maize silage, pastures (*Eragrostis*, *kikuyu*, *rye*, *radishes* and *oats* grazing) and hay (*teff* and *eragrostis*). Three types of livestock were considered: dairy and beef cattle and woolled sheep. Production of fodder (also from natural grazing) was determined on a monthly basis and expressed in terms of dry matter (DM) in kg per ha, metabolic energy (ME) in Mega Joules (MJ) per ha and digestible crude protein (DCP) in kg per ha. Estimates were made of quantities of unutilized nutritional value which could be transferred for use in subsequent months². The nutritional needs of livestock were expressed in the same terms.

The constraints in the model firstly consisted of constraints regarding available arable land and natural grazing. These constraints were based on median values obtained in a mail questionnaire survey carried out by Minnaar (1990).

Transfer activities formed an important part of the constraint matrix. Livestock numbers were constrained by feed requirements which could be met by natural grazing, feed crops, pastures, crop residues and feed purchases.

Some constraints were arbitrary. The dairy enterprise was limited to 115 cows lactating at any time (thus 393 animal units) and feedlots were not considered. Other arbitrary constraints will be noted when results are presented.

of the arable area (205,2 ha out of 276) was devoted to the production of hay and to pastures, with the remaining 70,8 ha to the production of maize and dry beans as cash crops.

Table 1: Summary of results obtained by linear program

Model	A	B	C	D
Constraints:				
Dairy cattle (AU)	S*	\leq 393	= 0	=
Beef cattle (AU)	S	\geq 0	= 0	\geq
Sheep (AU)	S**	\geq 0	= 0	\geq
Arable land use (ha)	V..	\leq ..	W	\geq V
Purchase of licks (t)	\geq 0	\leq 10	-	\leq
Land use:				
Sour veld (ha)	662,0	662,0	662,0	662,0
Mixed veld (ha)	326,5	326,5	326,5	326,5
Maize grain (ha)	151,3	56,6	220,8	21,8
Maize silage (ha)	-	-	-	-
Dry beans (ha)	31,7	14,2	55,2	55,2
Eragrostis past. (ha)	-	56,2	-	-
Eragrostis hay (ha)	36,0	19,3	-	36,0
Kikuyu pasture (ha)	-	-	-	-
Rye (ha)	-	-	-	-
Oats (green fodder) (ha)	-	91,7	-	-
Radishes (ha)	-	-	-	-
Teff (ha)	18,0	16,3	-	20,0
Crop sales:				
Maize (tons)	454,0	169,9	662,0	644,0
Dry beans (tons)	49,4	22,1	86,1	84,0
Eragrostis hay (ha equivalent)	13,6	-	-	-
Feed purchases:				
Teff hay (ha equiv.)	2,3	-	-	-
Dairy concentrate (t)	6,1	56,8	-	-
Winter licks (tons)	53,2	10,0	-	10,0
Total feed crop area (ha)				
	93,0	205,2	-	64,0
Livestock:				
Beef cattle (AU)	-	-	-	-
Dairy cattle (AU)	42,0	393,0	-	-
Sheep (AU)	21,9	-	-	18,0
Sum of Gross Margins				
	93265	279499	77989	78989

* S - Maximum number: those on farm during or feed availability

** V - Same proportion as during survey

*** W - Constrained by total area available

Crop residues were also utilized by the dairy herd, as natural grazing, leaving no room for either beef cattle or sheep. This system yielded a sum of gross margins of R279 499, which is a multiple of those obtained in other solutions.

Another important conclusion is the inability of beef cattle to compete with either dairying or woolled sheep. These results are particularly striking in the light thereof that in the present study the calculated gross margins for beef cattle and sheep are higher than those for these enterprises *vis-a-vis* dairying if relative gross margins are compared with those obtained from members of the KwaZulu Cooperative. A comparison is shown in Table 2.

In Solution B, the dairy herd would use up all the available feed (produced, purchased, crop residues and natural grazing). When one turns one's attention to solution A, the conclusions

pays better to reduce sheep numbers to a level that can be almost completely sustained by natural grazing and crop residues.

5. Conclusion

The results obtained vindicate the opinion that the livestock problem in the high rainfall sour veld areas of the Drakensberg grazing regions is not primarily one of supplying sufficient winter feed for existing livestock. It is rather one of adjusting resource use and production systems to the natural and economic environment with the purpose of optimizing results.

The two most rational choices for farmers in this area, given the present economic environment, will be to concentrate either on dairying or on a combination of cash crops and woolled sheep.

Under present conditions dairying will by far be the most remunerative option. If this system is chosen, the arable land should mainly be used as pasture and for fodder production. After the requirements of the dairy herd have been met, the remainder of the arable land should be used for cash cropping (maize and dry beans). The dairy herd will, in this process, also use all available roughage from crop residues and natural grazing. The farm should supply all roughage; only licks and dairy concentrates should be purchased as feeds. The best use of the land resource appears to be supply a profitable dairy herd with its roughage needs and to use what remains for cash crops.

The second viable alternative appears to be the use of the arable land mainly for cash crops, and to keep sheep to utilize natural grazing and crop residues. A very limited amount of arable land should then be used to produce some hay and green fodder for sheep. Considerable plantings of pastures or feed crops for the purpose of sheep production do not appear to be viable. Neither does beef farming seem to be able to compete with either dairying, sheep or cash cropping for the use of land resources in these regions.

A third alternative which appears to yield almost as good results as the sheep - cash cropping alternative is to concentrate on cash cropping and rent out the unused grazing.

These results tend to indicate that land conversion which will change crop land over to fodder production and pastures will in these areas be viable only if the fodder and pastures are used for dairying. If, however, the whole region would get onto the bandwagon, the dairy market may become oversaturated.

The results also tend to support the notion that grazing in these parts have been heavily overstocked and mismanaged.

Notes

1. Based on an MSc (Agric) thesis by HA Minnaar at the University of Pretoria. The authors are indebted to Prof J van Zyl and Mr WF Lubbe for numerous suggestions. The research was funded by the Directorate of Agricultural Economics.
2. Sources for production of feedstuffs: Daines (1987), Kohlmeyer (1988), McDonald *et al* (1981), Van der Merwe (1977), Barnes (1988), Bekker (1987), Meissner (1986), Eden (1988), Esterhuizen (1988), Natal Region (1983a:82), Osterhoff *et al* (1979), Rethman (1988), Schoonraad (1985), Van Heerden (1986), Van Heerden (1988), Paulsmeier (1987).
3. Sources for nutritional needs by livestock: Meissner (1986), Natal Region (1983a:8), Natal Region (1985a:64-152), Natal Region (1985b), Natal Region (1983b:8).

OSTERHOFF, DR, COUVARIS, S, GENIS, EC en NIEKERK, HP. (1979). Sobtegniese data. Butterworth Durban.

PAULSMEIER, DV. (1987). The influence of above ground supplements of protein and energy of utilisation of winter spring kikuyu (*Pennisetum clandestinum*) and smuts (*Digitaria erianthassp eriantha*) pastures by sheep. (Agric) thesis, University of Pretoria.

SCHOONRAAD, HMI. (1985). Die voedingswaarde van mielieplante vir skape. MSc (Agric) thesis, University of Pretoria.

SMITH, HR. (1988). Profitable stock feeding. 2nd Edition. Published by the Author.

TRANSVAALSTREEK. (1976a). Atlas van hulpbronnen en opsigte van die Transvaalstreek. Transvaalstreek, Department of Agriculture, Pretoria. (Ongepubliseerd).

TRANSVAALSTREEK. (1976b). Ekologiese beplanning van gewasse in die Tranvaalstreek. Transvaalstreek, Department of Agriculture, Pretoria. (Ongepubliseerd).