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Abstract

In the context of the linear regression model, Shively (1988) has constructed a point op-
timal test for constant coefficients against the alternative of return to normalcy coefficients.
This paper considers alternative methods for the choice of values of the unknown parame-
ters required to conduct the test. These alternatives are based on Cox and Hinkley’s (1974,
p-102) idea of maximising some weighted average of powers. The paper explores the use of
some simple weighting schemes and demonstrates by an empirical power comparison the
usefulness of maximising some weighted average of powers in solving this testing problem.
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1. Introduction

The complexity of economic processes often leads the researcher undertaking regression
analysis to consider the use of a varying coefficient model. A popular varying coefficient
model is the return to normalcy process introduced by Rosenberg (1973). For example,
it has been found to be of particular relevance in the literature on systematic risk in
the capital asset pricing model by Sunder (1980), Ohlson and Rosenberg (1982), Bos and
Newbold (1984), Collins, Ledolter and Rayburn (1987) and Faff, Lee and Fry (1991) among
others. A further strength of this alternative is its ability to incorporate both Hildreth-

Houck (1968) random coefficients and random walk coefficients as special cases.

It is therefore important to be able to test for the presence of return to normalcy
coefficients. Econometric investigation of this problem has resulted in tests proposed by
Watson and Engle (1985), King (1987) and Shively (1988). On the basis of an empirical
power comparison, Shively’s point optimal test appears to have the best power properties

for this problem.

An interesting feature of the problem is the presence of a nuisance parameter only under
the alternative hypothesis. The application of the point optimal test requires the choice

of values for both the parameter of interest and the nuisance parameter at which power

is to be optimised. Shively (1988), while choosing the value of the parameter of interest

according to some criteria, handles the choice of the nuisance parameter in an arbitrary
manner by setting it equal to a typical value. This would appear to introduce unnecessary
arbitrariness into the test. This paper explores alternative solutions to overcome this
arbitrariness based on Cox and Hinkley’s (1974,p.102) idea of maximising some weighted

average of powers.

The plan of-this paper as follows. The testmg problem is set out in Section 2. Shlvely s
solution is then reviewed in Section 3. Possible alternatives for overcommg the arbitrariness
in Shively’s solution are discussed in Section 4. An empmcal power comparison between

these alternatives and Shively’s test is conducted in Section 5.
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2. The Testing Problem

Consider the model which has a single varying coefficient a4,

Yt = Teon + 2,8 + &,

where z; is a (kx1) vector,
e ~ IN(0,0%), t=1,2,..,n,
If o, follows Rosenberg’s return to normalcy process, one can write,
a: = pat—1 + (1 — d)a + ay,
where,
at ~ IN(0,)0?), t=1,2,..,n,

€ is independent of a; and, 0 < ¢ < 1. By repeated substitution, the model can be written
a‘s’

Yt = Te@ + 2,8 + vy,
where,

Ve = zt(ag - &) + €.

When the varying coefficient follows a return to normalcy process, the disturbances v;

will be both autocorrelated and heteroscedastic. One will find,
Var(ve) = o2(1 + 22X /(1 — ¢?))
Cov(ve,v,) = (Ao2zez,91t 2 /(1 — ¢2).

When ) = 0 these are greatly simplified and reduce to,
Var(ve) = 0> Cov(ve,vs) =0.

This simplifies the process of estimation as it allows the valid use of OLS. Therefore the

testing problem of interest is :

Hy:A=0 against H,:A>0.

The problem is one-sided because A is a ratio of variances which by definition must

be non-negative. The iﬁteresting feature of this testing problem is the presence of the

nuisance parameter ¢ only under the alternative hypothesis.
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3. Shively’s Point Optimal Invariant Test

Shively (1988) constructed a point optimal invariant (POI) test for this problem and

reported a power comparison between the different solutions to this testing problem. A
POI test rejects Hy for small values of

T(M, ¢1) = w'[P(I + Q1)) P w/w'w,

T(M\,¢1) = @I+ MQ(41)) " d/i'a

where P is a matrix whose rows form an orthonormal basis for the orthogonal complement
of (X Z), w=Pv=Py, ii is the GLS residual vector assuming covariance matrix (I+A12(¢1))
and 4 is the OLS residual vector. (@) is the covariance matrix for the return to normalcy

process which has a typical element of

Q(8)at = 202471 /(1 - ¢).

Invariance is with respect to transformations of the form

v—a-x2)(5),

where c and a are scalars and b is a (kx1) vector, and only holds provided that the choice

of \; value is allowed to adjust to the scale of z;.

The POI test is made operational by choosing values for the unknown parameters A
and ¢;. This choice should be non-arbitrary and made according to some optimality
criteria. The approach aims to choose values for A; and ¢; which provide good power over

a wide range of the parameter space.

On the basis of an empirical power comparison Shively (1988) recommends that one
set ¢; = 0.7. He proposes that A; be chosen so that the power of. the test is 0.5 against
that A1. This choice of /\1 is denoted as X“ This gives the point optlrnal test as T(A 0.7). "
Sh.wely s choice of ‘\; is based on optimality criteria but his choice of ¢; is made in an

arbitrary fashion.




Shively (1988) conducts a Monte Carlo power comparison of his test and those suggested
by Watson and Engle (1985) and King (1987). Watson and Engle (1985) propose a test
based on an approximation to the procedure in Davies (1977). King (1987) constructs a
locally best invariant (LBI) test for this problem which is also LBI against the random

walk coeflicient alternative.

For the three different experiments, the T'(A}, 0.7) is always superior to King’s LBI test.
The test is also nearly always superior to the approximate Davies test proposed in Watson
and Engle (1985). From this, one concludes that the T'(A}, 0.7) test is to be preferred when

testing the constant coefficient model against the return to normalcy alternative.

4. Alternative Testing Solutions

Despite the good power performance of the T(A},0.7) test, one may be uncomfortable
with the arbitrary choice of ¢;=0.7. A possible solution for choosing a ¢; value is given
in King (1989). For any given A value the power of the test will be a function of ¢. King
(1989) argues that this function will have a minimum at some ¢ value. The value for ¢
should therefore be chosen so that this minimum power is maximised at the chosen A}
value.

Unfortunately this suggestion does not work for our testing problem. The minimum is
typically found at a very low ¢; value. By choosing this ¢; value the power function is

flattened out so that the power barely rises above the size.

An alternative suggestion is given in Cox and Hinkley (1974, p.102). They propose
choosing a test which maximises some weighted average of powers. The difficulty is then
in determining the appropriate weighted average. For simplicity considerations the first
option considered is a simple average over a set of ¢ values. Despite it; simplicity, this
" tackles the problem of arbitrariness inherent in the choice of a typical value. A matter of

interest is how large a grid of ¢ values is required in maximising the average power.

The optimal ¢; value is denoted as ¢}. It is that ¢; value which maximises the average

power over the following three different grids: .

é =0.1,0.5,0.9

5




¢ = 0.05,0.35,0.65,0.95
¢ =0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9

when A=\}. In keeping with Shively (1988), A is chosen to make this maximised average
0.5. This X value is denoted as A\}. The respective test statistic are denoted as s3(\}, ¢71),
s4(M, 41) and s9(Af, 41).

The steps involved in ca.rryixig out the new test are as follows:
(a) Guess likely values for A} and ¢}, namely A; and ¢;.
(b).Calculate the average power over the suggested set of ¢ values at A=);.
(c) By altering ¢;, find the value which maximises the average power.

(d) If the maximised average is less (greater) than the desired value then increase

(decrease) A;. Steps (b) and (c) are then repeated.

(€) The procedure is complete when the maximised average power is at the desired

value.

These steps are carried out for each of the three different tests. The smaller the number

of points in the grid the lower the computational intensity of the test. Inclusion of the

three different tests therefore allows assessment of the gains from the greater computational
load. |

5. Empirical power comparison
An empirical power comparison between the T, s3, s4, 39 tests was conducted. The
empirical power comparison was conducted using the following design matrices :

X1: n = 31. A constant as the only regressor and therefore the regressor with the
varying coefficient.

X2: n = 41. A constant and the income and price of spirits data from Durbin and
Watson (1951). Income is the regressor with the varying coefficient. Data is annual

commencing 1870.
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X3: n = 31. A constant and a linear time trend. The linear time trend is the regressor

with the varying coefficient.

X4: n = 41. A constant, current Australian income and Australian consumption lagged
one period. Lagged consumption is the regressor with the varying coefficient. Data is

quarterly commencing 1959(4).

X5: n = 20. A constant and the Australian consumer price index. The CPI is the
regressor with the varying coefficient. Data is quarterly commencing 1948(3).

X6: n = 25. A constant and Chow’s (1957) money and automobile stock per capita
data. Money is the regressor with the varying coefficient. Data is annual commencing
1921.

X7: n = 60. A constant, current Australian income, Australian consumption lagged
one period and a full complement of seasonal dummy variables. Lagged consumption is

the regressor with the varying coefficient. Data is quarterly commencing 1959(4).

The matrices X1 and X2 are taken from Shively (1988). The other matrices X3 through

to X7 are chosen to provide alternatives to his power comparison done by Shively (1988).
It is expected that Shively’s test will perform well for X1 and X2 and that any problems
with the arbitrary choice of ¢;=0.7 will show up for the other X matrices.

All of the test statistics considered can be written as ratios of quadratic forms in normal
variables. Therefore exact critical values and powers can be computed for each test statistic

in an analogous manner to that for the Durbin-Watson statistic.

For each design matrix the choice of points and five percent critical values for each test
are contained in table 1. It is worth noting that the number of points in the grid of ¢
values has minimal impact on the choice of point. In all cases, Shively’s test produces a
choice of )\ value lower than the average power tests. In sc;me cases, namely X3, X4 and
X7, Shively’s choice of ¢ = 0.7 appears too high given the choice of ¢ values made by the

other tests.

The power results for each of the design matrices are contained in tables 2-5. For the

X1 case, in Table 3 the average powers for the s3, s4 and sy tests are only 0.4 as it cannot
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be raised to 0.5. Except for X5 the powers of the tests are always an increasing function
of both X\ and ¢. In the X5 case, the power of the s3, s4 and sy tests falls as ¢ increases
from 0.9 to 0.99. For all cases the powers of the s3, s4 and sg tests are similar. This is
not unexpected given that all three tests produce such similar choices of values for the

unknown parameters required to conduct the test.

For X5 the tests’ power are not altered by changes in A values. In this case all of
the power action with respect to A appears to have occurred before. A reaches a value of
0.1. However, the choice of value for the nuisance parameter ¢ is important. For low ¢
values (less than 0.7) Shively’s test fares poorly. Overall the average power tests with the

exception of sy fare well, and appear less sensitive.

For the other X matrices, the results are similar in each case. Shively’s test works best
for combinations of very low A values and high ¢ values. The opposite result is obtained
for moderate to large )\ values and small to moderate ¢ values where the average power

tests are superior.

The greatest differences in power performance appear for the typical economic data in
the X3, X4 and X7 cases. From these cases the extreme effects on Shively’s test appear

greatest. This suggests one should use of one of the s3, s4 or sg tests which do not suffer

as greatly. On the basis of computational cost one would therefore advocate the use of the

33 test.
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Table 1 - Points and critical values for the four POI tests; X1 to X7

T S3 S4 Sg
X1
A 0.436157 0.541614 0.545414 0.644355
0.700000  0.675000 0.669000 0.620000
0.589150 0.551303 0.550654 0.523076

0.124305 0.311233 0.312369 0.309856
0.700000 0.625000 0.622000 0.587000
0.612033 0.432316 0.431580 0.433647

0.124151 0.192491 0.193398 0.198450
0.700000 0.519000 0.522000 0.512000
0.644589 0.579679 0.578670 0.577750

0.039064 0.082289 0.083043 0.084069
0.700000 0.496000 0.500000 0.500000
0.645043 0.514936 0.512708 0.510049

0.000005 0.000020 0.000021 0.000017
0.700000 0.607000 0.627000 0.550000
0.364332 0.131322 0.128378 0.150440

0.031085 0.137640 0.138854 0.126866
0.700000 0.643000  0.647000 0.574000
0.462013 0.191624 0.190639 0.199872

0.014211 0.022366 .= 0.022517 0.023404
- 0.700000 0.552000 0.547000 0.535000
0.728636 0.672100 0.671419 0.665672
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Table 2 - Power of the six POI tests for X1 and X2

0.01 0.2 0.5 0.7 0.9
X1

i




Table 3 - Power of the six POI tests for X3 and X4

0.01 0.2 0.5 0.7 0.9

X3

0.478
0.498
0.498
0.498

0.833
0.881
0.881
0.882
X4




Table 4 - Power of the six POI tests for X5 and X6

0.01 0.2 0.5 0.7 0.9
X5




Table 5 - .Power of the six POI tests for X7.

0.01

0.087
0.101
0.102
0.103

0.368
0.512
0.517
0.529

0.433
0.599
0.604
0.619

0.459
0.633
0.638
0.653

0.2

0.121
0.136
0.137
0.138

0.625
0.736
0.738
0.746

0.711
0.822

- 0.825

0.832

0.743
0.851
0.854
0.861

0.5

0.229
0.237
0.237
0.237

0.920
0.945
0.945
0.946

0.959
0.976
0.976
0.977

0.969

0.984
0.984
0.985

0.7

0.382
0.369
0.368
0.366

0.985
0.988
0.988
0.988

0.995
0.996
0.996
0.996

0.997
0.998
0.998
0.998

0.9

0.628
0.580
0.578
0.573

0.998
0.998
0.998
0.998

1.000
1.000
1.000
1.000

1.000
1.000
1.000
1.000







