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ABSTRACT

This paper considers the twin problems of testing for ARCH and

GARCH disturbances in the linear regression model. A feature of these

testing problems, ignored by the standard Lagrange multiplier test, is

that they are one-sided in nature. A test which exploits this

one-sided aspect is constructed based on the sum of the scores. Its

small-sample size and power properties under both normal and

leptokurtic disturbances are investigated via a Monte Carlo experiment.

The results indicate that the new test typically has superior power to

two versions of the Lagrange multiplier test and possibly also more

accurate asymptotic critical values.

KEY WORDS: Autoregressive conditional heteroscedasticity; Generalized

autoregressive conditional heteroscedasticity; Lagrange multi-

plier test; Leptokurtic regression disturbances; Monte Carlo

experiment; Power.



1. INTRODUCTION

There has been considerable interest in conditionally hetero-

scedastic disturbance processes since Engle (1982) introduced the auto-

regressive conditional heteroscedasticity (ARCH) disturbance model. The

ARCH model and its various derivatives, especially the generalized ARCH

(GARCH) model introduced by Bollerslev (1986), have been particularly

popular and useful in modelling the disturbance behaviour of regression

models of monetary and financial variables. These models provide an

attractive alternative to the difficult process of modelling time-

varying disturbance variances using exogenous variables. They also

recognize that disturbance variances can evolve over time based on past

information. This gives rise to conditional heteroscedasticity as

opposed to unconditional heteroscedasticity. Extensive surveys of this

literature are given by Engle and Bollerslev (1986) and Bollerslev,

Chou, Jayaraman and Kroner (1990).

To date there has been comparatively little emphasis in this

literature on testing for the presence of ARCH and GARCH disturbances.

Engle (1982) recommended the use of the Lagrange multiplier (LM) test

for ARCH disturbances. Bollerslev (1986) observed that a difficulty

with constructing the LM test for GARCH disturbances is that the block

of the information matrixwhose inverse is required, is singular. Lee

(1990) shows how this difficulty can be by-passed and finds that the LM

tests for GARCH and ARCH disturbances are identical. Although, as we

shall see, both testing problems are one-sided in nature, the LM test

fails to exploit this and therefore may lack power. One way to make use

of the one-sided nature of the problem would be to derive the Kuhn-

Tucker test which is a one-sided version of the LM test introduced by

Gourieroux, Holly and Monfort (1982). Unfortunately, the asymptotic

1



distribution of the Kuhn-Tucker test under the null hypothesis is a

probability mixture of chi-squared distributions and the degenerate

distribution at zero which makes it a very unattractive test to apply.

Recently, SenGupta and Vermeire (1986) introduced the class of

locally most mean powerful (LMMP) unbiased tests for multiparameter

testing problems. These tests maximize the mean slope of the power

hypersurface in the neighbourhood of the null hypothesis. King and Wu

(1990) derived LMMP tests for one-sided multiparameter testing prob-

lems. The test statistic is based on the sum of scores and, as King and

Wu point out, suggests an alternative form of the LM or score test for

one-sided testing problems.

The aim of this paper is to derive an LMMP-based score (LBS) test

for the presence of ARCH and GARCH disturbances in the linear regres-

sion model. We also investigate the small-sample properties of the new

test and compare them with those of two versions of the LM test by

conducting a Monte Carlo experiment. Both normal and leptokurtic

pseudo-random errors are used in the experiment, the results of which

suggest that typically the LBS test has better power than either

version of the LM test.

The paper is organized as follows. The regression model with ARCH

or GARCH disturbances and the LM and LBS tests are introduced in the

next section. The experimental design of the 'Monte Carlo study and its

results are discussed in Section 3. The more popular version of the

LM test and the LBS test are found to provide conflicting inferences

when applied to a model for weekly silver prices in Section 4. Some

concluding remarks are made in the final section.
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2. THEORY

The regression model with ARCH disturbances for the dependent

variable yt can be written as

where

y
t 

= x'b + e
t '

t = 1,..• ,n , (1)

,T
2
)

ct1/11 IN(0t ' 
(2)

2 2 2
+T

t 
= M

O 
+ M

i 
C
t-1 

+ 
• aq et-q ' 

(3)

in which tilt is the information set available at time t, xt is a kxl

vector of observations on lagged endogenous and exogenous variables

included in 
/4-1' 

and b and a are unknown parameter vectors. The con-

2
ditional variance of the disturbance term, et, is T

t 
which is a func-

tion of past squared disturbance terms up to a lag of q. To ensure that

the conditional variance is strictly positive for all realizations of

e
t' 

(3) requires that the parameter space be restricted to a > 0 and
0

a. 0 for i = 1,...,q. A further requirement for finite unconditional

variance is that

E ai < 1 .
i=1

The GARCH regression model is given by (1) and (2), with the con-

ditional variance equation (3) generalized to

2 2 

1 

2E 13 cr •Tt 
a0 .E

1 
aict 

+ 
j1 

j-i t
-j==

(4)

2
To ensure that T

t 
is strictly positive for all realizations of et

,

requires > 0, 0 and g. o for i

finite unconditional variance we require

1,•••,q, j = 1,...,p. For
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E a. + E g. < 1.
ji=1 
=. j

Our interest is in the twin problems of testing for the presence

of ARCH or GARCH disturbances in the linear regression model. In test-

ing for an ARCH effect, (3), the problem can be parameterized as

testing

H
01 

: a
1 

= a
2 

= a= 0

against the alternative

Hal 
: a. 0, i = 1,...,q , with at least one strict inequality,

in the context of (1), (2) and (3). In the case of testing for a GARCH

effect, (4), the problem is one of testing

=H02 : a
l 
= a

2 
= ... ... g = 0

= aq = gl = P

against the alternative

i = 1,...,q , j = 1,...,p, with at
a2 gj

least one strict inequality,

in the context of (1), (2) and (4).

If e
t 

t = 1,....,n, represent the ordinary least squares (OLS)

residuals from (1) and m
2 

is the maximum likelihood estimator of m
2 
=

a
0' 

the disturbance variance under H01 
(or equivalently H

02' 
) then the

LM test statistic against ARCH disturbances has, the form

where

_

LMARCH 
= f0 W(W'W) 1W1f()/2 (5)
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W' =   w
n]q+1

(1 e2 ew
t ' t-1'

f
0'

Er.2 - 1, .. e
2

q+1 /

This statistic is of the same form as Breusch and Pagan's (1979) LM

test for heteroscedasticity in the disturbances of (1). Lee (1990) has

demonstrated that it is also the LM test of H
02 

against H
a2' 

• i.e., it

can be viewed as the LM test against both ARCH and GARCH disturbances.

Under normality, which is assumed here, it can be shown that plim

f0f0/(n-q) 
= 2. Thus an asymptotically equivalent statistic is

_
(n-q)f° W(W'W) 1W'f° i(f° f° = (n-q)R

2
(6)

where R
2 

is the squared multiple correlation between f° and W which is

2
the R

2 
from the regression of e

t 
on an intercept and q consecutive

lagged values of e
2
t
. Both test statistics have an asymptotic chi-

squared distribution with q degrees of freedom under H0.

The LM test is applied as an asymptotic test. Its small-sample

properties against ARCH disturbances have been investigated by Engle,

Hendry and Trumble (1985), Luukkonen, Saikkonen and Terasvirta (1988),

Bollerslev and Wooldridge (1988), Diebold and Pauly (1989) and Gregory

(1989). The typical finding of these studies is that the actual size of

the LM test is generally less than its nominal size. This is consistent

with results reported by Breusch and Pagan (1979) and Godfrey (1978)

for the LM test for disturbance heteroscedasticity which is a function

of exogenous variables. In other words, the nominal size of the test

tends to overestimate the true probability of a Type I error in finite

samples. The small-sample power of the test is not unreasonable, but

as already noted, the LM test fails to take into account the one-sided
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nature of the testing problem. An LM-type test which uses this inform-

ation may result in a significant improvement in small-sample power.

When q = 1 in the ARCH model, Engle, Hendry and Trumble (1985) have

noted that such a test can be based on the square-root of (5) or (6)

with an appropriate choice of sign. Based on Lee (1990), this test is

also a one-sided LM test for GARCH(1,1) disturbances. We shall now

consider a LMMP-based generalization for q 2, namely the LBS test.

Suppose we wish to test no : 0 = 0 based on x, which is an nx1

random vector with probability density function f(x10), where 0 is a

px1 vector of unknown parameters. When p = 1, it is well-known (see

for example Ferguson (1967) or Cox and Hinkley (1974)) that the locally

best test of H against H
a 
: 0 > 0 has critical regions of the form

0

ainf(x10)
ae

0=0
> c

1
(7)

where c
1 
is a suitably chosen constant. Observe that the LHS of (7) is

the score evaluated at R This result gives a power justification to
0'

the LM or score test (see for example, Cox and Hinkley (1974) and King

and Hillier (1985)). There have been a number of attempts to generalize

it to p 2. Recently, SenGupta and Vermeire (1986) introduced the

class of LMMP tests which maximize the mean curvature of the power

function in the neighbourhood of Ho. King and Wu (1990) 'demonstrated

that the LMMP test of R against
0

• R.' el o, e o,
a

has the form

atnf(cle)1
ae. I > c

2
i=1 0=0

0 0 ,
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where c
2 

is an appropriate constant. This test is based on the sum of

scores evaluated at R . Its similarity to the LM test suggests we can
0

use the familiar asymptotic theory of the LM test to derive asymptotic

critical values.

Most testing problems in econometrics involve nuisance parameters

and the problems under study in this paper are no exception. Suppose 0

is partitioned as 0 = (0'
' 
0i)' where 0

1 
is p

1
xl and 0

2 
is p

2
x1 such

l 2

that pl + p2 = p. Consider testing Ro : 01 = 0 against Ha : Oli 0,

i = 1,...,p
1
, 0

1 
* 0 when 0

2 
is an unknown vector of nuisance para-

meters. If the value of 0
2 

was known, then a LMMP test of g is given
0

by

1
atnf(x18)1

= E  aeli 
> c3i=1 e=co•

King and Wu observed that the LM approach suggests that the unknown 02

should be replaced by its maximum likelihood estimate under H0' 
denoted

by g
2. 

Let j
11 

denote the upper 
p1xp1 

block of the inverse of the

.N11
information matrix and let s and j denote s and j, respectively,

evaluated at g = (01,o)'. King and Wu observed that a one-sided score

test could be based on rejecting Ho against H
a 
for large values of

/ (y11) -11) 1/2 (8)

assuming an asymptotic N(0,1) distribution under Ho where t is the p1x1

vector of'ones.- In contrast to the -Kuhn-Tucker test, this one-sided

test, which we call the LBS test, can be applied with ease because of

its N(0,1) asymptotic distribution.

The form of (8) for testing an ARCH(q) process, namely testing Hol

against Hal, in the context of (1), (2) and (3),

derived. The log likelihood function for this model is

can readily be



where

and

constant - 
2 1 2 / 2

I E log mt - 2 E et m
2

t=q+1 t=q+1 
t

e
t 

= y _ x'b
t t

2
crt 

= (1,q)a ,

2 2
= (e2 e

t-2' ct-q) ' t = c1+1,—
.,n

Thescoreassociatedwitha.,for i = 1,...,q, is

aL 1n r 2 2 1 2 2
= E cthrt - 1 j et-i crt •

t=q+1

(9)

(10)

The information matrix is block diagonal. We only need be concerned

with that block associated with a which we denote by j
ace. 

Let

0 = (b',a')'. If 8 denotes the maximum likelihood estimator of 0 under

H
0 

then

= 
(s,, 4.2, 01'

-
where S is the OLS estimator of b in (1), T 

2 
is the usual maximum like-

lihood estimator of T
2 

assuming independent N(0,m
2
) disturbances and 0

is the qxl vector of zeros.

One can show that under the restricted estimates, which in this

case are the OLS estimates,

1 (n7q) E Z'
t t

-4 A A
2T E

t 
2
t 

E z
t 
z'

tt

in which 2' (e
t
2 , 

2 
, e

2 
). The block inverse associated

-1 
e 
t-2 t-q

with a
l' 

a
2' 

. a , the parameters under test, is
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'411 1 
4 
[z _ z 

tt
z 
t i

/(n_cidl -1
- ttt t 
2T 

Thus King and Wu's LBS test is based on rejecting Hol for large values

of

Et[/

q 2 43.2_4) 
et_i

s
ARCH = 11/2

f2t' 
[Ettt 

- E
tt 

E
t 

An-qdt
t

where t is the qxl vector of ones.

We now turn our attention to testing against a GARCH(p,q) process,

namely testing H
02 

against H
a2 

in the context of (1), (2) and (4).

The log likelihood function for this model is similar to (9), but the

conditional variance is now given by (4) which can be written as

2
T
t 
= (1
' 
z'
' 
h')v

t t

where z' is defined as above,

h' = T
2 

T
2 
) t = r+1, . . , n

t-p '

v' = (a',g') and

= max(p,q).

Thescoreassociatedwithm.is equivalent to (10) and the score

associatedvith., for j = 1,...,p, isPi

aL 1 [
t
2 2 2 2
eag 2 

- 1 
(rt.

t=r+1

Here 0 = (13', v')', and

-2 ,

(12)
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-2
where Gi and cr are defined as above and 0 is the (p+q) x 1 vector of

zeros.

When (12) is evaluated at 0 = ê under H02, its value is zero.

Therefore ;, the sum of the scores evaluated at 0 = 8, is precisely

that for the LBS test against an ARCH(q) process. The final step is to

derive the asymptotic variance of under H
02. 

Because H
01 

and H
02 

are

equivalent, it follows that the required asymptotic variance is that of

A
s for the test against an ARCH(q) process. This implies that the LBS

test against a GARCH(p,q) process is equivalent to the LBS test against

an ARCH(q) process, i.e. based on (11). This result is similar to that

for the LM test as shown by Lee (1990). It is not surprising since both

the LM and LBS tests are based on locally optimal testing principles.

Finally, it is straightforward to show that the LBS test against

GARCH(1,1) disturbances is identical to the one-sided LM test for

ARCH(1) disturbances based on the square root of (5) with an

appropriate choice of sign.

3. MONTE CARLO EXPERIMENTS

3.1 Experimental Design

A Monte Carlo study was conducted to investigate and compare the

small-sample size and power properties of the LBS test and both

versions of the LM test in the context of (1), (2) and (3), as well as

in the context of (1), (2) and (4). We shall use LM1 and LM2 to denote

the LM test based on (5) and (6), respectively. The first part of the

study involved the use of the Monte Carlo method to estimate appropr-

iate five per cent critical values for all three tests. This allows the

estimated powers of the three tests to be compared at approximately the

same significance level. The second part involved a comparison of est-

imated sizes and powers based on asymptotic critical values.
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The first four design matrices used in the comparisons involved

x
t 

= (1, mt) ,

where m
t 
is generated as

m
t 

= 8m
t-1 

+ v
t' 

v
t 

IN(0,4), t = 1,..• ,n ,

with 8 taking the values 0, 0.8, 1.0 and 1.02 for design matrices X1,

X2, X3 and X4, respectively. In each case, mt is generated artific-

ially and then held fixed from iteration to iteration. These regressor

choices are influenced by Engle, Hendry and Trumble's (1985) Monte

Carlo study. The four 8 values cover four types of economic data,

namely white noise, autoregressive, random walk and explosive proc-

esses. The remaining three design matrices used were:

X5: (k = 2). A constant and the monthly value weighted market index

for the Sydney Stock Market computed by the Centre for Research in

Finance at the Australian Graduate School of Management and

commencing 1978(1).

X6: (k = 2). A constant and the quarterly Australian CPI commencing

1959(1).

X7: (k = 3). X6 augmented by adding the CPI lagged one quarter.

The disturbance term, et, in the linear regression model, (1),

whose conditional -variance -is time-varying -according to either an ARCH

process or a GARCH process can be written as

et = nert
(13)

where nt is i.i.d. with E(T1) = 0 and Var(lit) = 1. We used (13) to

generate the disturbances for the Monte Carlo study.
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• As both tests are based on OLS residuals from (1), they are invar-

iant to the value of b. They are also invariant to a Without loss of
0'

generality, ao and bi, i = 1,...,k, were set equal to one. For testing

white noise disturbances against ARCH disturbances, the sizes and

powers of both tests were estimated using the Monte Carlo method with

y
t 

generated by (1), (2) and (3) and for the following combinations of

parameters:

and

q = 2,

a
1 
= 0, 0.2, 0.4, 0.6,

a
2 
= 0, 0.2, 0.4,

n = 20, 50, 100, for X1 - X5

n = 20, 50, 80, for X6 - X7.

The ARCH(2) disturbances were generated using (13) by

2 11/2
c
t 
=

t
[ 1 + a

1
4,
-1 

+ a
2
c
t-2

where 7)
t 

N(0,1). The a
1 

and a
2 

values were chosen so as not to vio-

late the boundary condition that al + a2 < 1 except for the combination

a
1 
= 0.6 and a

2 
= 0.4 which falls on this boundary.

For testing white noise disturbances against GARCH disturbances,

the yt are generated by (1), (2), and (4) and for the following com-

binations of parameters:

p = 1, q = 1,

a
1 
= 0, 0.05, 0.1, 0.4,

= 0, 0.3, 0.6, 0.9,

and n is the same as when testing against ARCH disturbances. The

GARCH(1,1) disturbances can be generated using (13) by

12



1/2
2 2 1

[ 1 "let_i + gict_i 
] 

,
et nt

where n
t 

N(0,1). These particular al and g
1 

values were chosen

because in most empirical applications of this model the estimates of

a
1 
are commonly small whereas the estimates of g1 

are typically larger.

However, some combinations of these chosen a1 
and g

1 
values violate the

boundary condition of al + 131 < 1. The results of these combinations

are not presented except when they fall on the boundary.

One thousand replications were used throughout. Where required,

pseudo-random N(0,1) variates were generated using the uniform random

number generator intrinsic RAN on a VAX11-780 computer and then trans-

forming to N(0,1) using Ripley's (1987) polar transformation. All tests

were conducted at the nominal significance level of 0.05. There is

evidence in the literature that suggests that in some applications, et'

may follow distributions with fatter tails than the normal

distribution (see, for example, Baillie and Bollerslev (1989) and

Baillie and DeGennaro (1990)). We therefore investigated the robustness

of the tests to non-normality by repeating the whole experiment with

pseudo-random values of e
t 
generated from a symmetric distribution with

a kurtosis of six. In other words, leptokurtic disturbances. These

disturbances were generated using Ramberg and Schmeiser's (1972,1974)

algorithm, namely

r(p) = A + pA3 - (1-p)
A
4 1 /

2'1
0 p 1,

where r(p) is the generated pseudo-random variate, p is a uniform

pseudo-random variate, Ai is a location parameter, A2 is a scale para-

meter and A
3 

and A
4 

are shape parameters. The tables of A values prov-

ided by Ramberg, Tadikamalla, Dudewicz and Mykytka (1979) allow one to

13



use appropriate A values that give pseudo-random variates with the

required first four moments.

3.2 The Results

Table 1 reports the estimated sizes of both LM tests and the LBS

test when asymptotic critical values at the nominal level of five per

cent are used. The reported sizes are applicable when testing against

ARCH (2), GARCH(1,2) or GARCH(2,2) disturbances.

We see that all estimated sizes are less than the nominal size

when the disturbances are normal. These results for the LM test are

consistent with results reported by Engle, Hendry and Trumble (1985)

and Bollerslev and Wooldridge (1988). As might be expected, the est-

imated sizes of the LBS test are similar to those for the LM tests.

However, it does appear that when n = 100, the LBS test has sizes

closer to the nominal size than do the LM tests.

For leptokurtic disturbances, the actual sizes of all three tests

are smaller than the nominal size when n = 20. In contrast, for n = 80

and n = 100, the LM1 test has sizes significantly above the nominal

level while those of the LM2 test are below 0.05. The estimated sizes

for the LBS test are above 0.05, but 95 per cent confidence intervals

include the nominal value. It would appear that sizes of the LM2 and

LBS tests are somewhat robust to leptokurtic errors.

We shall now discuss the estimated powers of the three tests based

on empirically derived critical values against ARCH(2) disturbances.

Results for the X1 and X5 design matrices are presented in Tables 2 and

3, respectively. Those for the remaining design matrices show reason-
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ably similar patterns and so are not given. They are available from the

authors.

The powers of all three tests increase as a1 
and a

2 
move away from

H
01 

and also as n increases, ceteris paribus. The LM1 test based on (5)

is almost always more powerful than the LM2 test which uses the more

approximate (n-q)R
2 

formula. Exceptions are rare for normal disturb-

ances and occur on three occasions when n = 50 for a1
= 0.2 and a

2 
=

0.0, 0.2. As might be expected, differences appear to decline as n

increases. There are more exceptions for leptokurtic errors. These

occur only when n = 100 and typically when al = 0.2.

The most powerful test is almost always the LBS test. The only

exceptions occur when n = 80 or 100 and a2 = 0.0 for normal errors and

Xl, X2 and X3 with n = 20 for al = 0.2, a2 = 0.0 and leptokurtic

errors. For the great majority of these exceptions, the LBS test is

slightly less powerful than the LM1 test but more powerful than the LM2

test. The power advantage of the LBS test is typically greatest away

from the a
2 
= 0.0 boundary to the H

al 
parameter space. The results

clearly demonstrate that a distinct improvement in power results from

replacing the popular LM2 test with the LBS test.

A comparison of the powers for normal disturbances with those for

leptokurtic disturbances reveals that all tests typically have lower

powers under leptokurtic disturbances. This finding is consistent with

the results of Bollerslev and Wooldridge (1988). It is noticeable that

for larger samples, the typical decline in power going from normal to

leptokurtic disturbances is much greater for the LM tests than the LBS

test. This suggests that the LBS test is more robust to departures from

normality in large samples.
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With respect to the estimated powers of the three tests based on

asymptotic critical values against ARCH(2) disturbances, the results

for X5 are presented in Table 4. Those for the remaining design

matrices show reasonably similar patterns and are available from the

authors.

In most cases, the LBS test is more powerful than the LM tests,

especially away from Hol, away from the boundary a2 = 0.0 and when n is

large. This is true for both normal and leptokurtic disturbances. On

the other hand, when n is small, the powers of the LM tests dominate

those of the LBS test along a2 = 0.0 and close to H01. Also, the power

of the LM1 test, in the case of large n and leptokurtic disturbances,

appears to be competitive relative to the LBS test. This is easily

explained by the higher than nominal sizes of the LM1 test. It serves

as a reminder that care is needed in interpreting these results.

We now turn to the results for testing against GARCH(1,1) disturb-

ances. Table 5 reports the estimated sizes of the three tests when

asymptotic critical values at the five per cent level are used. The

reported sizes are applicable when testing against GARCH(1,1) or

ARCH(1) disturbances.

Again we find that all estimated sizes are less than the nominal

size when the disturbances are normal. In this case, the estimated

sizes of the LBS test are almost always closer to 0.05 than those of

the LM tests. This is also true for leptokurtic errors when n = 20 and

n = 50. For n = 80 and n = 100, the change from normal to leptokurtic

errors appears to have no effect on the estimated sizes of the LM2

tests while increasing those of the LM1 and LBS tests.

We shall now discuss the estimated powers of the three tests

against GARCH(1,1) disturbances based on empirically derived critical
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values. Results for X4 and X6 are presented in Tables 6 and 7,

respectively. Those for the remaining design matrices are available

from the authors.

The powers of all three tests almost always increase as al in-

creases and as n increases, ceteris paribus. But the powers of these

tests are hardly affected by increasing gi. In fact, there typically

is a drop in power as gi increases to 0.9, ceteris paribus. Otherwise,

for fixed n, X and a
l' 

powers seem reasonably constant as 
131 

changes

although for n = 100 it does seem that powers increase with g
1. 

These

results are true regardless of whether the disturbances are normal or

leptokurtic. They suggest that the power of each of the tests comes

from detecting a non-zero value of al. This is not surprising given

that each of the tests can be derived as a test for ARCH(1) disturb-

ances.

The LM1 test is typically more powerful than the LM2 test.

Exceptions are less frequent as a2 increases, as n increases and when

normal errors are replaced by leptokurtic errors. The most powerful

test is almost always the LBS test, particularly for larger samples and

also for leptokurtic errors. A large number of exceptions occur when

n = 20 and for normal distributions. In these circumstances, they only

occur when al = 0.05 or 0.10 and typically when gib = 0.9 although there

is a greater frequency of exceptions for the X4 and X6 design matrices.

Overall, the results -show that usingthe LBS- test almost always results

in an improvement in power, particularly over the LM2 test, when

n 50.

Finally, we briefly consider the estimated powers against

GARCH(1,1) disturbances based on asymptotic critical values at the five

per cent level. Table 8 reports these results for X3. It is notice-
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able that the LBS test, with a few minor exceptions when n = 20, is

always more powerful than the LM tests. This is partly because it has

higher size than the LM tests and partly because of its typically

better power. Another feature is that the estimated powers of the LM

tests and frequently those of the LBS test are always below the nominal

size when a
1 
= 0.05, 0.1 and n = 20.

4. AN ILLUSTRATIVE EXAMPLE

This section reports the application of the LBS test to an

empirical example discussed by Watson and Engle (1985). They focussed

on the problem of testing for a varying regression coefficient in a

model for weekly gold and silver prices. The underlying model is

R
t 

= b
l 
+ b

2
r
t 
+ e

t
(14)

where R
t 

is the one period holding yield on the metal and rt 
is the

risk-free rate of return assumed known by the agents at the beginning

of the period. Using 208 weekly observations on gold and silver prices

over the period 1975-1979 and the return on 90-day U.S. Treasury bills

with one week remaining until maturity as rt, their test rejected

constancy of b2 for gold prices but not for silver prices. An

identical result was obtained by King (1987) using an alternative test.

We focus on Watson and Engle's estimated model for silver prices

which is

R
t 

= 0.6 + 0.75r
t 
+e

 
.

(51.5) (9.3)

The standard errors, given in parentheses, indicate a poor fit which

may be due to conditional heteroscedasticity of some form. When the LM

test for ARCH(2) (or equivalently GARCH(1,2) or GARCH(2,2))

18



disturbances is applied using the popular form (6); i.e., 206 times R
2

2
from the regression of et 

on an intercept, e
2 

1 
and e_2;  one gets a

t- t 

test statistic value of 3.721. When compared against the ninety-five

percentile of the x
2
(2) distribution, namely 5.991, this test suggests

one should not reject the null hypothesis of well-behaved disturbances.

On the other hand, when the LBS test statistic against ARCH(2) (or

equivalently GARCH(1,2) or GARCH(2,2)) disturbances is calculated using

(11) with q = 2, we get a value of 2.628. When compared with the

N(0,1) distribution, this suggests clear rejection of the null

hypothesis.

The conflict in the results of the two tests might be explained by

the superior small-sample power of the LBS test. It would seem wise to

ignore the outcome of the LM test and assume conditional

heteroscedasticity of some form in the disturbances of (14).

5. CONCLUDING REMARKS _

This paper considered the twin problems of testing for ARCH and

GARCH disturbances in the linear regression model. A feature of these

testing problems is that they are one-sided in nature. This aspect is

ignored by the standard LM test for ARCH disturbances proposed by Engle

(1982). We took up the suggestion of King and Wu (1990) and con-

structed tests based on the sum of scores. In the absence of nuisance

parameters, such tests are LMMP.

The small-sample properties of the new tests were compared with

those of two standard versions of the LM test in a Monte Carlo experi-

ment. The results suggest that typically the new test has better power

than either version of LM test while its asymptotic critical values
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appear to be at least as accurate. All three tests seem to be reason-

ably robust to leptokurtic disturbances.

When testing against GARCH disturbances, all three tests seem

insensitive to the magnitude of the g parameters. A topic for future

research is to construct and investigate the properties of tests that

are sensitive to different g values. Such tests might be based on a

mixture of scores and higher-order derivatives of the log-likelihood

function.
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TABLE 1

Estimated sizes of the LM and LBS tests against ARCH(2) (or equivalent-

ly GARCH(1,2) or GARCH(2,2)) disturbances based on asymptotic critical

values at the 5% nominal level.

X-matrix LM1 LM2 LBS

n = 20

X1 0.011 0.028 0.016
X2 0.014 0.024 0.012
X3 0.016 0.029 0.012
X4 0.012 0.022 0.008
X5 0.012 0.021 0.010

n = 20

X6 0.010 0.023 0.010
X7 0.014 0.023 0.009

NORMAL ERRORS

LM1 LM2 LBS

n = 50

0.020 0.022 0.021
0.020 0.015 0.020
0.018 0.019 0.019
0.022 0.019 0.019
0.021 0.021 0.016

n = 50

0.020 0.020 0.019
0.016 0.019 0.014

LEPTOKURTIC ERRORS

X-matrix LM1 LM2 LBS

n = 20

X1 0.019 0.021 0.007
X2 0.025 0.024 0.013
X3 0.028 0.021 0.009
X4 0.021 0.020 0.014
X5 0.014 0.019 0.006

n = 20

LM1 LM2 LBS

n = 50

0.063 0.034 0.038
0.056 0.031 0.040
0.057 0.036 0.045
0.060 0.035 0.044
0.066 0.037 0.043.

n = 50

LM1 LM2 LBS

n = 100

0.030 0.025 0.029
0.028 0.026 0.033
0.024 0.025 0.028
0.024 0.028 0.031
0.024 0.022 0.032

n=80

0.036 0.035 0.036
0.033 0.037 0.034

LM1 ,LM2 LBS

n = 100

0.088 0.038 0.061
0.080 0.035 0.052
0.087 0.039 0.057
0.091 0.035 0.059
0.081 0.039 0.063

n = 80

X6 0.023 0.020 0.013 0.059 0.037 0.046 0.084 0.033 0.047

X7 0.018 0.020 0.011 0.057 0.037 0.046 0.085 0.033 0.050
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TABLE 2

Estimated powers for X1 of the LM and LBS tests against ARCH(2)

disturbances using empirically derived critical values at the 5% level.

m1 m2 
NORMAL ERRORS LEPTOKURTIC ERRORS

LM1 LM2 LBS LM1 LM2 LBS

0.2 0.0 20 0.085 0.073 0.094 0.092 0.087 0.091
50 0.171 0.183 0.208 0.147 0.120 0.178

100 0.357 0.324 0.333 0.243 0.249 0.298

0.2 0.2 20 0.101 0.092 0.160 0.123 0.098 0.144

50 0.293 0.284 0.409 0.260 0.211 0.344

100 0.543 0.518 0.661 0.426 0.410 0.570

0.2 0.4 20 0.147 0.118 0.227 0.144 0.119 0.198

50 0.457 0.439 0.595 0.362 0.292 0.460

100 0.787 0.737 0.849 0.598 0.601 0.734

0.4 0.0 20 0.131 0.104 0.165 0.136 0.108 0.152

50 0.369 0.358 0.415 0.278 0.218 0.327

100 0.690 0.634 0.644 0.493 0.466 0.549

0.4 0.2 20 0.156 0.120 0.237 0.152 0.125 0.198
50 0.473 0.440 0.607 0.373 0.310 0.469

100 0.805 0.765 0.869 0.627 0.608 0.736

0.4 0.4 20 0.194 0.146 0.289 0.172 0.146 0.246

50 0.607 0.547 0.737 0.461 0.374 0.587
100 0.894 0.872 0.940 0.734 0.715 0.865

0.6 0.0 20 0.171 0.135 0.234 0.165 0.147 0.194
50 0.555 0.496 0.576 0.398 0.322 0.442
100 0.861 0.801 0.842 0.659 0.615 0.698

0.6 0.2 20 0.211 0.149 0.307 0.182 0.156 0.245
50 0.626 0.555 0.733 0.482 0.401 0.576
100 0.919 0.881 0.936 0.755 0.727 0.856

0.6 0.4 20 0.246 0.175 0.357 0.210 0.174 0.282
50 0.720 0.632 0.822 0.566 0.468 0.678

100 0.958 0.923 0.978 0.837 0.796 0.922
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TABLE 3

Estimated powers for X5 of the LM and LBS tests against ARCH(2)
disturbances using empirically derived critical values at the 5% level.

m m2 
NORMAL ERRORS

l 
LEPTOKURTIC ERRORS

LM1 LM2 LBS LM1 LM2 LBS

0.2 0.0 20 0.092 0.080 0.093 0.085 0.066 0.102

50 0.175 0.170 0.206 0.148 0.130 0.172

100 0.362 0.333 0.344 0.247 0.262 0.284

0.2 0.2 20 0.102 0.096 0.159 0.106 0.078 0.146

50 0.287 0.265 0.409 0.248 0.213 0.331

100 0.561 0.517 0.648 0.419 0.433 0.558

0.2 0.4 20 0.138 0.120 0.222 0.131 0.097 0.212

50 0.457 0.418 0.589 0.357 0.304 0.470

100 0.779 0.735 0.852 0.610 0.613 0.732

0.4 0.0 20 0.141 0.122 0.161 0.128 0.093 0.155

50 0.378 0.353 0.405 0.267 0.225 0.322

100 0.686 0.638 0.639 0.490 0.482 0.539

0.4 0.2 20 0.157 0.128 0.234 0.141 0.100 0.214
50 0.478 0.436 0.603 0.358 0.301 0.475

100 0.808 0.763 0.865 0.618 0.621 0.735

0.4 0.4 20 0.184 0.161 0.296 0.170 0.117 0.273
50 0.606 0.550 0.744 0.456 0.387 0.590
100 0.904 0.858 0.941 0.747 0.726 0.858

0.6 0.0 20 0.189 0.158 0.247 0.160 0.125 0.196

50 0.546 0.493 0.579 0.388 0.329 0.440

100 0.865 0.804 0.842 0.645 0.630 0.697

0.6 0.2 20 0.207 0.163 0.320 0.167 0.123 6.273
50 0.621 0.556 0.732 0.469 0.396 0.579

100 0.920 0.873 0.938 0.755 0.739 0.840

0.6 0.4 20 0.233 0.182 0.368 0.200 0.149 0.313

50 0.715 0.640 0.811 0.559 0.463 0.683

100 0.961 0.925 0.979 0.832 0.804 0.912
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TABLE 4

Estimated powers for X5 of the LM and LBS tests against ARCH(2)
disturbances based on aymptotic critical values at the 5% level.

m1 m2 
NORMAL ERRORS LEPTOKURTIC ERRORS

LM1 LM2 LBS LM1 LM2 LBS

0.2 0.0 20 0.030 0.044 0.020 0.033 0.022 0.021
50 0.112 0.116 0.116 0.178 0.113 0.153
100 0.286 0.272 0.291 0.349 0.229 0.307

0.2 0.2 20 0.039 0.053 0.043 0.049 0.024 0.040
50 0.219 0.207 0.284 0.287 0.186 0.308
100 0.476 0.467 0.592 0.527 0.378 0.591

0.2 0.4 20 0.062 0.077 0.078 0.066 0.040 0.070
50 0.365 0.342. 0.442 0.398 0.278 0.441
100 0.722 0.693 0.808 0.712 0.561 0.757

0.4 0.0 20 0.060 0.076 0.042 0.071 0.036 0.037
50 0.292 0.279 0.285 0.312 0.206 0.294
100 0.622 0.589 0.597 0.608 0.433 0.565

0.4 0.2 20 0.063 0.083 0.081 0.072 0.042 0.066
50 0.394 0.352 0.467 0.401 0.281 0.449
100 0.746 0.724 0.831 0.711 0.577 0.754

0.4 0.4 20 0.095 0.101 0.113 0.087 0.056 0.094
50 0.523 0.467 0.623 0.509 0.359 0.557
100 0.871 0.830 0.930 0.819 0.677 0.868

0.6 0.0 20 0.095 0.091 0.084 0.097 0.051 0.070
50 0.476 0.411 0.471 0.428 0.294 0.412
100 0.823 0.770 0.808 0.745 0.589 0.713

0.6 0.2 20 0.106 0.101 0.124 0.096 0.064 0.104
50 0.556 0.476 0.613 0.524 0.359 0.545
100 0.901 0.851 0.926 0.831 0.697 0.855

0.6 0.4 20 0.128 0.122 0.147 0.111 0.075 0.124
50 0.646 0.561 0.723 0.611 0.430 0.649
100 . 0.940 0.900 0.972 0.-891 0.771 0.927
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TABLE 5

Estimated sizes of the LM and LBS tests against ARCH(1) or GARCH(1,1)

disturbances based on asymptotic critical values at the 5% nominal

level.

X-matrix LM1 LM2 LBS

n = 20

X1 0.011 0.023 0.026
X2 0.013 0.019 0.026
X3 0.013 0.022 0.025
X4 0.010 0.018 0.025
X5 0.011 0.023 0.021

n = 20

X6 0.011 0.021 0.025
X7 0.010 0.021 0.028

X-matrix LM1 LM2 LBS

n = 20

NORMAL ERRORS

LM1 LM2 LBS

n = 50

0.029 0.037 0.044
0.026 0.034 0.041
0.025 0.034 0.041
0.026 0.034 0.044
0.021 0.031 0.045

n = 50

0.026 0.032 0.045
0.026 0.035 0.041

LEPTOKURTIC ERRORS

X1 0.009 0.011 0.023
X2 0.017 0.021 0.032
X3 0.024 0.023 0.034
X4 0.014 0.017 0.023
X5 0.018 0.018 0.027

n = 20

LM1 LM2 LBS

n = 50

0.040 0.029 0.043
0.043 0.028 0.054
0.042 0.026 0.048
0.043 0.026 0.047
0.041 0.026 0.050

n = 50

LM1 LM2 LBS

n= 100

0.027 0.029 0.034
0.030 0.032 0.033
0.028 0.028 0.034
0.025 0.026 0.030
0.028 0.028 0.031

n=80

0.029 0.032 0.045
0.028 0.033 0.043

LM1 LM2 LBS

n = 100

0.053 0.029 0.067
0.059 0.032 0.073
0.050 0.023 0.069
0.051 0.028 0.072
0,054 0.029 0.064

n = 80

X6 0.015 0.017 0.031 0.042 0.025 0.048 0.059 0.032 0.065

X7 0.023 0.022 0.043 0.044 0.026 0.053 0.057 0.034 0.063
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TABLE 6

Estimated powers for X4 of the LM and LBS tests against GARCH(1,1)

disturbances using empirically derived critical values at the 5% level.

NORMAL ERRORS LEPTOKURTIC ERRORS

LM1 LM2 LBS LM1 LM2 LBS

0.05 0.0 20 0.067 0.055 0.068 0.071 0.061 0.075

50 0.084 0.085 0.102 0.085 0.069 0.092

100 0.105 0.086 0.138 0.123 0.104 0.129

0.05 0.3 20 0.068 0.059 0.065 0.072 0.062 0.077

50 0.087 0.091 0.103 0.084 0.073 0.094

100 0.108 0.090 0.143 0.124 0.106 0.130

0.05 0.6 20 0.068 0.060 0.063 0.069 0.064 0.077

50 0.088 0.091 0.102 0.086 0.076 0.097

100 0.110 0.094 0.144 0.127 0.108 0.132

0.05 0.9 20 0.056 0.055 0.054 0.058 0.060 0.065

50 0.075 0.071 0.088 0.081 0075 0.087

100 0.106 0.097 0.142 0.119 0.103 0.125

0.1 0.0 20 0.082 0.068 0.078 0.085 0.072 0.097

50 0.124 0.118 0.141 0.123 0.109 0.145

100 0.208 0.172 0.259 0.199 0.179 0.209

0.1 0.3 20 0.082 0.066 0.080 0.091 0.073 0.097

50 0.124 0.118 0.140 0.128 0.110 0.148

100 0.218 0.185 0.263 0.208 0.183 0.214

0.1 0.6 20 0.073 0.068 0.079 0.093 0.081 0.095

50 0.128 0.119 0.140 0.130 0.110 0.149

100 0.215 0.191 0.261 0.202 0.180 0.214

0.1 0.9 20 0.056 0.063 0.055 0.066 0.070 0.066

50 0.097 0.097 0.106 0.115 0.106 0.127

100 0.243 0.207 0.278 0.195 0.176 0.203

0.4 0.0 20 0.175 0.158 0.193 0.184 0.158 0.209

50 0.437 0.387 0.462 0.371 0.331 0.421

100 0.745 0.701 0.790 0.631 0.580 0.646

0.4 0.3 20 0.167 0.147 0.182 0.177 0.158 0.195

50 0.442 0.413 0.477 0.384 0.342 0.445

100 0.759 0.714 0.803 0.656 0.598 0.673

0.4 0.6 20 0.159 0.143 0.176 0.160 0.140 0.170

50 0.446 0.381 0.473 0.395 0.346 0.448

100 0.800 0.722 0.841 0.669 0.607 0.686
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TABLE 7

Estimated powers for X6 of the LM and LBS tests against GARCH(1,1)

disturbances using empirically derived critical values at the 5% level.

m1 g
1 

NORMAL ERRORS LEPTOKURTIC ERRORS

LM1 LM2 LBS LM1 LM2 LBS

0.05 0.0 20 0.065 0.054 0.060 0.066 0.063 0.068

50 0.086 0.087 0.099 0.083 0.078 0.090

80 0.089 0.080 0.102 0.099 0.084 0.111

0.05 0.3 20 0.064 0.056 0.062 0.067 0.064 0.068

50 0.088 0.088 0.102 0.083 0.085 0.093

80 0.092 0.083 0.105 0.104 0.085 0.112

0.05 0.6 20 0.065 0.057 0.061 0.065 0.066 0.067

50 0.087 0.089 0.098 0.085 0.080 0.097

80 0.095 0.090 0.105 0.105 0.088 0.112

0.05 0.9 20 0.054 0.051 0.050 0.057 0.060 0.061

50 0.079 0.071 0.083 0.083 0.083 0.088

80 0.091 0.090 0.095 0.093 0.090 0.102

0.1 0.0 20 0.075 0.064 0.083 0.081 0.072 0.086

50 0.125 0.114 0.141 0.123 0.114 '0.144

80 0.154 0.146 0.186 0.160 0.136 0.177

0.1 0.3 20 0.071 0.066 0.081 .0.078 0.074 0.088

50 0.125 0.116 0.136 0.127 0.117 0.147

80 0.162 0.153 0.186 0.162 0.143 0.181

0.1 0.6 20 0.073 0.067 0.073 0.077 0.078 0.085

50 0.127 0.115 0.139 0.133 0.117 0:151

80 0.164 0.156 0.197 0.155 0.141 0.173

0.1 0.9 20 0.050 0.062 0.051 0.062 0.061 0.063

50 0.097 0.096 0.108 0.116 0.114 0.126

80 0.150 0.144 0.185 0.146 0.127 0.166

0.4 0.0 20 0.181 0.156 0.201 0.182 0.154 0.205

50 0.439 0.390 0.468 0.375 0.343 0.422

80 0.623 0.590 0.659 0.490 0.434 0.514

0.4 0.3 20 -0.172 0.157 0.191 0:176 0.153 0.201

50 0.446 0.415 0.486 0.384 0.358 0.445

80 0.638 0.595 0.686 0.497 0.447 0.525

0.4 0.6 20 0.170 0.154 0.185 0.149 0.141 0.174

50 0.450 0.383 0.473 0.391 0.359 0.452

80 0.683 0.607 0.710 0.550 0.461 0.575
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TABLE 8

Estimated powers for X3 of the LM and LBS tests against

GARCH(1,1) disturbances based on asymptotic critical values at the 5%

nominal value.

NORMAL ERRORS LEPTOKURTIC ERRORS

LM1 LM2 LBS LM1 LM2 LBS

0.05 0.0 20 0.018 .0.024 0.034 0.034 0.028 0.047
50 0.056 0.063 0.089 0.070 0.040 0.091
100 0.062 0.062 0.104 0.125 0.072 0.160

0.05 0.3 20 0.017 0.026 0.034 0.032 0.028 0.047
50 0.059 0.071 0.091 0.070 0.039 0.092
100 0.063 0.065 0.106 0.127 0.073 0.162

0.05 0.6 20 0.015 0.025 0.032 0.032 0.030 0.047

50 0.062 0.072 0.091 0.068 0.040 0.089
100 0.064 0.070 0.111 0.130 0.073 0.157

0.05 0.9 20 0.013 0.023 0.022 0.023 0.028 0.036

50 0.054 0.060 0.077 0.067 0.040 0.083
100 0.070 0.068 0.090 0.117 0.066 0.154

0.1 0.0 20 0.024 0.034 0.049 0.042 0.032 0.054
50 0.093 0.100 0.128 0.110 0.068 0.137
100 0.152 0.145 0.213 0.199 0.127 0.251

0.1 0.3 20 0.024 0.035 0.048 0.042 0.033 0.055
50 0.093 0.100 0.131 0.109 0.072 0.141
100 0.159 0.148 0.215 0.202 0.132 0.256

0.1 0.6 20 0.023 0.033 0.043 0.040 0.035 0.055
50 0.093 0.100 0.132 0.107 0.072 0.142
100 0.161 0.155 0.224 0.205 0.130 0.254

0.1 0.9 20 0.013 0.025 0.027 0.022 0.030 0.047
50 0.067 0.080 0.099 0.101 0.071 0.124
100 0.185 0.174 0.237 0.196 0.128 0.245

0.4 0.0 20 0.097 0.094 0.142 0.101 0.074 0.151
50 0.371 0.364 0.448 0.340 0.260 0.409
100 0.674 0.658 0.739 0.633 0.498 0.683

0.4 0.3 • 20 0.091 0.095 0.131 0.112 0.082 0.149
50 0.383 0.373 0.454 0.350 0.254 0.428
100 0.699 0.675 0.762 0.662 0.505 0.711

0.4 0.6 20 0.072 0.095 0.108 0.093 0.074 0.128
50 0.383 0.333 0.458 0.364 0.280 0.429
100 0.746 0.670 0.805 0.671 0.525 0.722
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