

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

UNIVERSITY OF NOTTINGHAM

 SCHOOL OF AGRICULTURE

UTILISING HOME GROWN FOODS.

THE ECONOMIC PRINCIPLES INVOLVED.

DEPARTMENT OF AGRICULTURAL ECONOMICS SUTTON BONINGTON

LOUGHBOROUGH
Price 1s. 6d.

Based on a paper delivered at a Conference of $\mathbb{N} . A . A . S ., \mathbb{N} . F . U ., N . U . A . W .$, and the C.L.A. at the Y.M.C.A. Ha.11, Shakesperuro Stroct, Nottinghain. February 19th, 1953.

UTILISING HOME GROWN FOODS.
 THE ECONOMIC PRINCIPLES INVOLVED.

by
R. BENNNETT JONES
(Should a farmer grow all the feed for his livestock? This paper shows that the answer varies from farm to farm and from time to time. It also indicates how a farmer can set about answering this important question for himself.)

Department of Agricultursil Economics University of Nottingham School of Agriculture Sutton Bonington, Loughborough.

MARCH 1953.

UTILISING HOME GROWN FOODS.

THE ECONOMIC PRINCIPLES INVOLVED.

Our objective as a nation must be maximum production on the most economical terms possible. This can only be arhieved by making our land produce all that it can economically and by using, in addition, all the imported feed that we can buy and convert economically into human food.

The individual farmer must also maximise his net production if ho is to make a grod livelihood. If he fails to do this ho will not be using his land, his labour and his own skill as a manager to full capacity. Tho cconomic principle involved is the same for both the individual farm and the nation. We have a fixed amount of land, a supply of labour which is also almost fixed in amount and a supply of capital (Stock, implenents, fertilisers, raw materials etc.) which is capable of some variation. The problem is to use theso threo factors of production, as they are called, to yield the bost possible return to the farmor or the nation as the case may bo.

If we are making the best use of our native resources, then any raw materials from other lands that we can buy at the right price will yield a net gain to us. Solf sufficiency in itself has no particular virtuc. In practice wo nover try to push it to its logical conclusions. There is no strong body of opinion in favour of doing without imported fuel or fertilisers, for example. We should not forego the advantages of using imported feed today because of the possibility that one day it will no longer be available.

We can eat all that we can grow in this country and produco from imported feod, becauso we still buy about half our food supply from overseas. But it is not a quostion of production at any cost. Any given sot of resources, i.e. land, labour and capital can only be used for one thing at a time. This country is having a hard struggle to make onds meot just now and if there is any spare labour or capital available, it must go where it will yield the best dividend. Under froe compotition this would happen, some industrios would outbid others for mon and matorials.

The scale of agricultural production in this country is dotermined in the first place by the volumo of crops which we can produce. Part of these crops can be used directly for human food but the bulk of them must be converted into human food by fooding thom to livestock. In fact only about 15 per cont of our land is used for crops for direct human consumption.

In 1951-52, $3 \frac{3}{4}$ million tons of cereal concentratos or about one half the prevar supply were imported into this country. This is roughly the produce of tho combined acroago of wheat and oats grom in England and Wales in the same year. In 1943-44, coreal production was about $2 \frac{3}{4}$ million tons above the present level but our livestock carry then particularly of pigs and poultry, was much lower than it is now. The possibility of replacing imported cereal concentrates
with home produced cereal concentrates therefore exists. But it is unlikely that the threc quartor of a raillion tons of protcin concentrates now imported could be produced in this country.

It is worth noting the changes that have takon place since prowar in the sources fron which our animal feoding stuffs have been obtained. In 1951 only 16 per cent of the total starch equivalent fod was imported compared with 31 per cont in 1938.

Aftor the decontrol of the rationing and pricos of feoding stuffs farmers will be free to buy the type of feeding stuffs that bost suit their requirements and the pricos of the various typos of food will bo influonced by the domand for thom. Just how much of each type of foed farmers will buy will, of course, depond on the ratio between the cost of the food and the price of the product and on the efficiency with which feed is converted into livestock and livestock products.

It has been estimated that the romoval of the subsidy on April lst. will add about 22.10 s . Od. por ton to fooding stuffs pricos. The Government is expected to authorise imports at a rate sufficient to maintain the present supply and it has undertakon to authorise additional imports should they be needed to maintain an expanding livestock population. It is rorth noting that the Argentine, Canada and the United Stites hàd record grain harvests last year und that grain prices on the Cinicugo futuros rurket wive fullen by about ten por cent since Inst INovember. Littic is known about the position in Russịa (but ubout one third of our imports of course grains huve come from there in the lust year or tirol.

What aro tho problems facing the individual farmer? Our subject mattor - Utilisine Home Grow Foods - implios that we are dealing with famas that already carry stock. These farmers have to decide what is the most economical method of foorine these stock and some of them will also be rondering whether to carry a fow more or a fow loss. It is the dairy farmer more than any other type of livestock farmer who is concerned about the pros and cons of home grown versus purchased foods and to focus attontion on this aspect of the problom the position on farms of three different types will be discussod.

THE SMALL FARM ON POOR LAND

The first example is near Chesterficld - it is Farm A. on Table 1. On 17 acre of land a stock of nine cows and followers, 40 feoding pigs and 220 hens is carried. All the farm is under grass - seven acros for mowing and 10 for grazing. ill the feed for tho pigs and hons and the production ration for the cows is bought. Esch cow in the herd produced nearly 1,100 gallons of milk per annum. The S.E. dorivod from grass is roughly 1,800 lbs. per acre - a very good yiold from the type of land on this farm.

This farmer could not make a livelihood without using purchased food. There are about 280 full time dairy farms between five and 25 acres in size in Derbyshire. They all face the same problem - thet of establishing a business big onough to yicld them a living on a very limited acreage of rather poor land. If the farmer did not buy these 13 tons of cake for his cows he would save about $£ 470$ but with the same number of cows he could only provide for maintenance and one gallon from his own land and his net loss mould be about $£ 650$.

A MEDIUM SIZED POOR LAND FARM.

The small farmer has no choice - he must have purchased feed. What about the farmer with more land? Take the example of a farmer near Bakewell who farms 192 acres of land rising from the 600 feet contour up to the 1,000 feet line. This is Farm B. on Table 1. The manner in which this farmer has irnproved his land and built up his dairy herd has been described in the Journal of the British Dairy Farmers' Association for 1950. It is a most inspiring story.

The interesting point is that this farmer is not compelled to buy any foed. With the land he has, in its improved state of fertility, ho could have a business of reasonable size. But he has onlargod it still further by buying in feed - he has, in effect, added about 60 acros to the size of his farm. In othor words, with his present yields he would need another 60 acres to grow the starch and protein he now buys. This is an example of how home grown and purchased feed can be used in conjunction on a farm of moderate size. The farm now carries 51 cows, 76 young stock, 24 breeding ewes, 14 pigs and 200 hens - a total of 117 cow equivalents. This represents a stocking, after making allowance for bought feed, of one cow equivalent per 2.13 acres.

Noarly all the crops grom on this farm are used to feed the farm stock. The problem is to provide as much foed for maintenance and production as possible. On this farm, the important crops are oats, rape, seods hay and silage. About $£ 300$ worth of potatoes are sold but there is no real scopo for the production of salc crops. Indeed it is essontial to food the crops on the farm and return the muck to the soil to maintain the fertility of land of this type.

A farmer in this position ought to ask himself - which of the crops that I can grow will produce the most feed; per acre and in terms of the effort required. Tables 2 and 3, illustrate how a farmer can set about answering these questions.

With the possiblc exception of sugar bect all the crops mentioned in these tables can be grown on the majority of dairy farms. You will all know the yields you can get on your owm farms but with the yields in Tablo 2, the highest yields of starch equivalent per acre are derived from roots - fodder beet, cabbage, mangolds, kalo and swedes. Silage and grazing come next in order of yield but hay is well dom the list. Cabbage, kale and fodder beet are the
best sources of protein. The final choice of crop will be influenced by the type of rotation followed, by the equipment and labour available and by the relative cost of each source of feed. The figures in Table 3 are of uso in this connection. Only specific costs are given in this table. In other words it is assumed that the farmer has the necessary equipment and much of the necessary labour available on the farm. The machinery will depreciate whether it is used or not and the bulk of the labour is occupied for most of its time on other work. It is only necessary, for this purpose, to consider the extra costs of fuel and oil, casual labour, sood and other raw matorials. Tho man days per acre in tho second column represent the estimated total requirements per acre.

Column 3 of Table 3 shows the yield of S.E. por $£ 100$ specific costs at the lovol of crop yields assumed in Table 2. According to this measure the cheapest sources are grass, cabbage, kale, mangolds and silage. Column 4 gives another measure of cost - namely lbs. of S.E. per man day this shows grass to be by far the cheapest source with silage and hay next.

It should be remembered that the figures in Tables 2 and 3 differ very greatly from farm to farm. Such costs may be calculated for a particular farm by reckoning how much fuel, casual labour, sced and othor raw materials go to produce each crop.

Farmer B. has evolved a well balanced system of feed production on his farn. The oats make a useful contribution to the production requirements, the cabbage and silage supply a lot of starch per acre, and the hay, which yields well, fits into the available supply of labour. He intends to grow a little kale for autumn grazing this year.

A MEDIUM SIZED GOOD LAND FARM.
The next example, Farm C. on Table 1. is near Newark. Here conditions are entirely different. On this farm there is no real difficulty about growing crops for sale and although half the arable land consists of hoavy clay it could be run as an arable farm carrying only a few stock. In fact the farm carrics a stock of 18 cows, a bull, 18 followers and 100 hens. Despite this, only 22 acres out of the total farm acreage of 100 were devotod ontirely to stock feed in 1952. In 1953, 37 acres will be under grass. More stock could easily be carried and it is intended to build up the herd.

The points of intorest on this farm are -
(I) the key position of sugar beet in the cropping and feeding plan - it provides a good cash return, it entitles the farmer to buy dried bect pulp and the tops aro eaton both fresh and as silage.
(2) the early bite obtained from grazing wintor whoat and spring barlcy.
(3) the use of strip grazing
(4) the heavy purchasos of concentrates and
(5) the high milk yiclds.

A farmer in this position must bear in mind tho yield of S.E. per acre and the relative costs of the various crops that he can grow for stock feod but he must also consider questions such as -
(1) should I grow wheat, sell it and buy cake, or should I grow mixed corn and foed it to my cows?
(2) should I grow mangolds or kale or should I grow sugar bect, soll it and buy cake?

The answer to these question will vary from one farm to another because of yield and other differences and from one time to another because of the changes that occur in the price the famer gets for what he sells and what he has to pay for what he buys.

WHEAT VERSUS MIXED CORN

How can a farmer decide whether to graw wheat for salo (buying cake with the proceeds) or mixod corn for food. Wo aro doaling here with two production foods - mixod corn and cako - which, subject to cortain limitations, aro interchancoablo. It is assumed that this farmor can grow 30 cwts . por acre of cithor whont or mixod com. Table 4 shows how tho calculation can be donc. It assumes that tho farmor can sell thoat for 30s. Od. and buy balanced cake for 36 s . Od. por cwt. and that the mixod corm whon proporly balancod with high protoin cako is oqual in fooding valuc lb. for lb. to bought balonced cako. The calculation shows that under these conditions, it would pay better to grow and feed mixed corn properly balanced with high protein cake.

Many farmers cannot grow as good a crop of mixed corm as of wheat. If the wheat yicld is about five owts. more than the mixed corn yiold then there is no difference oithor way. If the wheat yield is more than five cwts. greater, as on farm C, then it is better to sell wheat and buy cake. In fact with fis whoat yiolding 36 cwts. and his drodge corn only 20 cwts., Farmer C 'savos' about £20 per acro. by selling wheat and buying cake.

If the prices of wheat and cake move in the same direction at the same rate the comparative advantage of one courso over tho other will not change.

If the price of cake falls compared with that of wheat then it will pay better to sell wheat and buy cake. If wheat prices fall and cake prices stay high it mould be botter to grow grain, buy a bolancer and feed it to stock.

Some farmers are of the opinion that home balanced mixtures are not as palatable and that they do not produce as much milk as purchased cake, but there are other farmers who can use home mixed feeds to produce high yields. There is probably room for some difference of opinion on this point and this should be borne in mind in interpreting the results of a calculation such as that outlined above.

SUGAR BEET VERSUS MANGOLDS OR KALE.

What about the second question? Should I grow sugar bect for sale and buy cako or should I grow mangolds or kale? Here the position is different. Mangolds aro excollont for providing maintonance but not as a production ration and the main problom for evory dairy farmer is to provido a production ration, as cheaply as possible, to enable his cows to yicld to capacity. Farmer C thinks that growing sugar beet is the answor and the figures in Table 5 show that he is right. He grows 13 tons of beet per acre and it has been assumed that he could equally well grow 30 tons of mangolds or 25 tons of kale.

He can buy two tons of balanced cake with the proceeds of each acre of beet and he is entitled to buy almost a ton of dried pulp for each acre of boct ho sells. The tops are all collected and fod groon or made into silage. The yiold per acre of foed from these throe sources is rather more than 6,000 lbs. S.E. and 1,000 lbs. P.E. Had he grom 30 tons of mangolds, he would have produced only about two thirds of the S.E. and one quarter of the P.E. The 25 tons of kale would have yielded only about 80 per cent of the starch and 75 per cent of the protein obtained by the first method.

With the yields and roturns assumed, more food is obtained by growing sugar bect, selling it and buying in cake and pulp and making full use of the tops. The bulk of this feod can bo used for production but the kale and mangolds can only be used for maintenance. All things considered the cxtra cost of about $£ 20$ por acre is cloarly vory roasonable.

No goneral answor can be givon regarding the crops to be grown and the use to be made of them. Each farmer should.attempt to think out the answer on his own farm bearing in mind the crop yields he can obtain and the cost of cakes.

FFEEDING THE DIIRY HERD - THREE EXAIPLES
TABLE 1

	Farm A		Farm B		Farm C	
Description	Derbyshire small with poor land		Dorbyshire modium with poor land		Nottinghamshire modium with good land.	
Land Utilisation	acres	$\left\lvert\, \begin{gathered}\text { yield per } \\ \text { acre }\end{gathered}\right.$	acres	$\left\lvert\, \begin{gathered} \text { yiold per } \\ \text { acre } \end{gathered}\right.$	acres	$\begin{gathered} \text { yield per } \\ \text { acre } \end{gathered}$
Total	17	-	192		101	
Oats	-	-	22	270wts	9	15 crats
Wheat	-	-	2	27 "	24	36 "
Barley	-	-	2	$20 "$	11	24 "
Sugar beet	-	-	-	-	20	13tons
Cabbage	-	-	4	20tons	-	
Potatoes	-	-	4	11 "	-	-
liangolds	-	-	1	15 "	-	-
Loy hay	-	-	37	2 "	$)$	
" silago	-	-	18	5 "	112	-
" grass	-	-	100)		
Meadow hay	7	$2 \frac{1}{2}$ tons	-	-	-	-
" grass	10	-	2	-	25	-
Stockine						
Pigs		40		14		-
Sheop		-	24 ewo	s + foll.		-
Poultry		220		200		100
Young stock		9		76		18
Dairy cows and bulls		9		51		19
Yield per cow - gallons		1,100		840		980
			£ per corr			
Return from milk (1951-52)	177		135		165	
Focd costs (at market value)	$\begin{array}{r} 75 \\ 102 \end{array}$		75		97	
Margin over feed costs				60		68
Group average	54		50		54	

FEEDING THE DAIRY HERD - THREP EXAMPLES

TABLE I cont.

	Farm A	Farm B	Farm C
ESTIMATED FEED RFOUIRED BY AND FED TO THE DATRY HERD (Lbs. S.E.)			
Required for:-			
Maintenance	23,400	152,600	46,800
Production	24,750	107,100	44, 100
Total	48, 150	259,700	90,900
Supplied by:- (I) Purchased feed			
Dairy coke	18,700	63,100	41,600
Dried beet pulp	-	9,500	7,460
Beans	-	4,420	-
Potatoes	-	8,660	-
Browers grains	-	14,420	-
Total	18,700	100,100	49,060
(2) Home grown feed			
Hay	11,000	21,510	3,600
Oats or mixed corn	-	27,300	9,820
Dried grass	-	,	2,700
Sugar beet tops/frosh or silage	\therefore -	-	5,700
Grass silage	-	19,300	-
Cabbage	-	10,130	-
Straw	-	8,500	from littor
Grazing (balance)	18,450	72,860	20,020
Total	29,450	159,600	41,840
Total consumption	48,150	259,700	90,900

TABLE 2

Crop	Yiold por acro (l)	Yiold - Ibs. per acre		
		Dry mattor	Starch aquive.lent	Protoin oquivalont
	Col. 1	Col. 2	Col. 3	Col. 4
Turnips) for stock-	14.5)	2,750	1,450	130
Strodos) foeding	14.5)tons	3,750	2,350	230
Mangolds	22.5 "	6,150	3,200	200
Fodder beet (Roots	15.0	6,850	4,600	280
(Hunsballe) (Tops	8.0 "	2,200	1,150	150
Beet tops	$11.0(2)$ "	3,000	1,600	200
$\mathrm{K} \Omega \mathrm{lo}$	14.5 "	4,650	3,000	400
Cabbage	19.0	5,600	3,450	510
Arable silage	6.5	4,000	1,850	230
Grass silage	4.75 "	2,900	1,350	180
Hay	22.0 cwts	2,100	750	100
Oats - Grain	20.0 "	1,950	1,350	170
- Straw	20.0 "	1,950	450	10
Grazing	-		1,500	-

(1) It is not suggested that there is any proportionality between these crop yields. The yields given here are mercly roprosentative.
(2) 75 per cont rocovered.

FOR/GE CROPS - SPECIFIC COSTS, LABOUR RFQUIREMENTS AND YIELDS
TABLE

Crop	Specific(1) costs £ por acro	$\begin{gathered} \text { Man days } \\ \text { per } \\ \text { acre } \\ \hline \end{gathered}$	$\begin{gathered} \text { S.E. - Ibs. per } \\ \text { £l00 } \\ \text { specific costs } \end{gathered}$	$\begin{gathered} \hline \text { S.E. }- \text { Ibs. } \\ \text { per } \\ \text { man day } \\ \hline \end{gathered}$
	Col. 1	Col. 2	Col. 3	Col. 4.
Turnips) for stock-			14,500	120
Swedes) feeding	10	12	23,500	200
Mangolds	10	14	32,000	230
Fodder beet (Hunsballe)	10	15		-
Beet tops	-	2	-	800
Kalc	10	10	30,000	300
Cabbage	10	10	34,500	350
Arable silage	10	3	18,500	620
Grass silage	5	2.5	27,000	560
Hay	5		15,000	370
Oats - Grain)	8	4	16,500	330
- Straw)	8	4	5,500	120
Grazing	4	1	37,500	1,500

(1) Based on estimated requirements of fuel, casual labour, seed and other raw materials. No charge has been included for regular labour, machinery depreciation or other overheads.
(Tables 2 and 3 are from an unpublishod sorics propared by K. Dexter and W.S. Senior, Univorsity of Nottingham).

TABLE 4. CORPARISON OF FEEDING VALUE OF WHEAT AND MIXED CORN

It is assumed that:-
(1) the land can grow 30 cwts. per acre of wheat or mixed corn.
(2) the wheat can be sold for 30 s . Od. per cwt.
(3) balanced dairy cake can be bought for 36s. Od. por crut.
(4) 10 cwts. of High Protein Cake is required to balance 30 cruts. of mixed corn.
(5) H.P.C. can be bought for 40 s . Od. per cut.
(6) the mixed corn balanced with H.P.C. is equivalent to balanoed dairy cake, lib. for lb. for milk production.

Then:-

Onc acre wheat yiolds 30 cwts. sold for 30 s . Od. por crut. $=£ 45$.
£45 will buy 25 crts. of balanced driry cake.
One acre mixed corn yiclds 30 cwts. grain which when balancod with 10 cwts. H.P. coke yiclds 40 cwts. of balanced food at a cost of:-
(1) the value of the wheat which could have been grown and sold $=£ 45$
(2) the cost of 10 cwts. H.P. Cake @ $£ 40$ per ton $=£ \underline{20}$
$\therefore 40$ cuts. of home balanced food costs £65 40 cwts. of bought balanced cake costs £72

Difference in favour of home balanced cake

Conclusion:- It would pay this farmer to grow and feed mixed corn balanced with H.P. Cake.

TABLE 5. COIPARISON OF FEFDING VALUE OF SUGAR BEET, MANGOLDS AND KALE

It is assumed that:-
(1) 13 tons of 16 per cont beet worth £5.11s. Od. per ton can be grown per acro.
(2) 13 tons of tops $x .75$ per cont rocoverod.
(3) 30 tons of mangolds or 25 tons of kale can be grown on samo land.
(4) specific growing costs per acre are equal for all three crops.
(5) $1 \frac{1}{2}$ crits. driod beet pulp (@. £17.10s. Od. per ton) may be bought for ench ton of weshed beet delivered.
(6) a contract with factory exists.

13 tons 16 per cent beet © \&5.1ls. Od. $=$ £72. Os. Od.
If balanced cake costs $£ 36$ per ton $£ 72$ buys 40 cuts.
Entitlemont to dried pulp say 20 cuts. $=$ 2l7.10s. 0 d.
Tops recovered say nine tone at cost of fuel for collection
£2. Os. Od.

Total foed produced	S.E.	P.E.
(1) 13 tons beot grown and sold:-	Ibs.	Ibs.
2 tons balancod cake	2,880	680
I ton dricd pulp	1,360	115
9tons bect tops	1,800	240
Total	6,040	1,035
(2) 30 tons mangolds	4,500	270
(3) 25 tons kale	5,000	750

Conclusion:- That at tho levels of yields and returns beeified, more feed por acro, in a botter balanced and more convenient form is obtained by growing and selling sugar boot than by growing kalc or mangolds, with virtually no increcse in out-of-pocket exponses.

PIGS AND POULTRY.

Tho dorationing of feeding stuffs supplies is likely to effect the production of pigs and poultry more than any other class of farm stock. Both pigs and poultry are incapable of digesting much bulky or fibrous foods and although suitable feed can be grown on most farms - the bulk of the feeding stuffs fed to pigs and poultry is bought on many of these farms.

Prior to the war, specialist pig and poultry producers, relying entirely on purchases for their feed supply, were not uncommon. There is no doubt that if foeding stuff supplies remain freoly available and egg and pig prices are favourable, that this type of producer will reappear. Such a system of production offers an opportunity to the man with littlo or no land but with some skill in the management of stock.

In recont years, pig and poultry producers have taken a koen interest in the use of home grown feeding stuffs. They were forced to do this mainly in order to build up their pig or poultry onterprises to a reasonable size, not bocause of cost differences between purchased and home grown food. When supplics are agein frcely available, this consideration will not apply. The producor will only be interested in the type of feod which yields him the most profit.

Cattlc and sheep are ofton kept to consume roughages which might otherwise bo wasted but nearly all the home grown feed suitable for pigs or poultry can be readily sold. The farmer must, therefore, consider whether it will pay him best to sell, his crops direct or to feed then to pigs or poultry. There is evidonce(1) that many pig producers prefer to use purchased meals even when these are more expensive than home grown meals. This may have been due to some difficulty in obtaining animal protein supplements and to the greater ease of handing compound meals. A farmer with a limited supply of labour and without facilitics for grinding and mixing his home grown meal is probably wise in using his labour to look aftor a few moro pigs.

Tho cost of home grown food, such as potatoes and fodder beet, may be cheaper than that of an equivalent woight of meal but this must be balanced against the disadvantage of a slower rate of fattening. A higher rate of profit per pier may leave a lowor total profit if there is a significant fall in the number of pigs that can be fattened each yoar. If feoding stuffs are freely available it will probably pay a farmer to accept a lower profit per pig if he can turn out many more pigs each year by buying in feeding stuffs.

Farmers Bulletin No.13. Cost and Returns in Pig Production 1947-51. University of Cambridge Farm Economics Branch, School of Agriculture, Cambridge.

Even when charged at market value home grown poultry foods are cheaper than purchased foods. It was found in a recent Cambridge study (1) that birds in yards, depp litter or on range consumed less purchased feed and more home grown grain than birds in batteries. Food costs wero lower as a consoquonce; so wore egg yiclds but the profits from the yard, litter and range birds compared very favourably with those from battory birds. Those battory ontorprises that fod grain in addition to pellets obtained roasonable yiolds and socurod profits por bird several shillings above averago.

There are clearly some profitable opportunities for substituting home grom for purchased foods for both pigs and poultry but these will be more limited under conditions of free supplies of feeding stuffs than under tho systom of rationing that has oporatod in rocont yoars. Aftor dorationing, if a farmor wants to build up his pig or poultry ontorpriso, ho can buy moro food. Ho will only use home grow foods if ho can socuro tho same overall profits by so doings,

CONCLUSIONS.

Although thoy are difforent in muny ways, the throe farms taken as examplos have one important fonture in comon - they aro using their land to produce as much feod as possiblo and supplonenting the home producod supply of feed with purchascd supplios. That is what wo must do on the national farm, by using our labour efficiently, by using the best tochniquos, good varictios and suitable manurial drossings. The nation wants all the production it can got from agriculture, but it cannot afford to pour moro labour and moro capital into tho industry. The Governmont has said that the current livestock oxpansion procrammo assumos that tho addition to the livostock population will be supplied ontirely from additional homo produced fooding stuffs. It is quite clear that this is dosirablo both from the point of viow of making tho bost uso of our land, labour and matorials as woll as to easo tho supply and cost position for imported feeds.

The problem facing the nation and each individual producer is - how to make the most of the resources of land, labour and capital over which they have control. We have seen three different ways of tackling this problem and there are lots more. The man with labour and çapital, but no land, will, when foeding stuffs are dorationed, bo able to produce pigs or eggs. It is up to him to decide which is the best way to use his (ovn) labour and capital. There is no general answer. One man may be on expert at looking after cows but not much of a hand at producing crops. His noighbour may grow first class crops but be without the knack of looking after stock. The sensible thing is for them both to specialise as far as possiblo - one growing feed - the other using it. Their joint output mould thon be greater than the sum of their individual efforts.
(1)

Report No. 47. Some Economic Considorations of Commorcial Egg Production 1951-52. Univorsity of Cambridge Farm Esonomics Branch, School of Agriculture, Cambridgo.

If, when fooding stuffs are derationed, farmors buy more and do not incroase the salos off their farms, if in other words they curtail their production of home grown feod without growing more sale crops thon they will bo using their land and thoir labour less effectively. Any saving of labour, fuel and other raw materials achieved would almost certainly not upset the increased expenditure on imported feeds.

What is the answer to the question often asked just now namely "What will happen to home grom feed production if the prices of importod foed fall?". For a short time farmers will carry on as before because on many farms tho machinery is availablo and the labour is there and must be paid for anyway. But there can be little doubt that if feed prices continued to $f_{a l l}$, farmors would begin to curtail the production of arable feed crops, thoy would tend to roduce the labour force on the farm and thoy would hositate to roplaco cultivating equipment as it became obsolete.

But there is no reason to believe that there will be a significant fall in feeding stuff prices. There has been a big increase in world population since prewar yoars and many of the countries which previously exportod food and animal feed to this country aro rotaining what they produce for consumption within their owm borders.

SUMMARY

(1) As a nation wo aro not finding it casy to make onds meet. We must usc our available land, labour and capital to the best possible advantage. We must do this by making our land produce as much as possible without drawing more capital and labour from the national pool and by using, in addition, all the imported feed that we can buy and turn into human food at a profit.
(2) We are probably making better use of our owm land now than prewar. With the same carry of livestock, we are managing with half the feed wo used before the war.
(3) The control of prices and supplies of foeding stuffs will end soon. The removal of the subsidy may cause a temporary price increase but grain prices on the rorld markets have fallen rocontly. There is no reason to oxpect significant changes in prices and supplies.
(4) Every famer should use all the resources of land, labour and capital under his control to make his business as big as possible. Buying focd may onable him to usc his land, his labour and his skill to better advantage.
(5) The rolianco which an individual farmor should place on home grom feed varies with tho size and fortility of his farm and with his relative skill as a crop husbandry man and as a stockman.
(6) The farmor with a small acroago of poor land must buy fcod. It is the only way in which he can make his farm business big onough to yield him a livolihood.
(7) The farmer with a largor acroago of poor land may not heve to buy foed but by doing so he can onlarge his business and increaso his profit.
(8) Ho will probably bo unable to grow crops for sale. In dociding which food crops to grov ho must consider which crops produce most foed per acre and the comparative cost in time and money of feed from each source. When he is doing this, he need only think of the specific costs involved - i.e. fuel, casual labour, seed, fertiliser ctc. It is not necossary to allocate overhoads such as deprociation, ropairs etc. to individual crops.
(9) The farmor with good land must also decide whether to grow crops for fooding direct to his stock or whother to sell crops and buy in feed.
(10) The choico betwoon wheat for salo and mixed corn for feod will be influenced by the rolative yields of each crop, the sale prico of wheat and the cost of cake. Here it is a matter of substituting one form of production ration for another.
(11) The choice betrioon sugar beet for sale and mangolds or kale for feeding will be influenced by the fact that the cake and dried pulp bought with the proceeds of selling bect will provide a production ration but the kale or mangolds can bo used only for maintenance.
(12) There is no conflict betweon tho ideas outlined above and the Government's plea for greator production of home grown feeds. Both aro based on the need for avoiding any vasto or under-employment of the resources available to the farming industry.

