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T\biDYNAMIC OPTIMAL CONTROL OF PLANT PRODUCTION: AN
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TEMPERATURE STRATEGIES'4,
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UTITREKSEL: DINAMIESE OPTIMALE BEHEER VAN PLANTPRODUKSIE: 'n TOEPASSING
 OM OPTIMALE GLAHUIS-

TEMPERATURE TB BEPAAL

In die artikel word die beginsels betrokke by die optimale beheer van dinamiese plantgroeimodelle o
ntleed. Dit begin met 'n uiteenset-

ting van die struktuur van besluitnemingsprobleme en die voortvloeiende vereistes van modelle wat on
twerp is om hierdie besluite te on-

dersteun. Drie basiese raamwerke word beskou, insluitende Pontrjagin se beginsel, dinamiese programmeri
ng en die gebruik van

numeriese optimeringsmetodes. Die artikel verduidelik die onderliggende beginsels van hierdie be
naderings en verwys na hul sterk- en

swakpunte. Daar word afgesluit met 'n toepassing van numeriese optimeringsbeginsels op glashui
stemperatuur strategies. Die resultate

toon die werking van die algoritme en verwys na die toepassing daarvan vir navorsings- en praktie
se besluitneming.

ABSTRACT

This article delineates the principles for obtaining optimal control policies based on dynam
ic plant growth models. It starts with a brief

outline of the structure of decision problems and the resulting requirements for models 
designed to support these decisions. The con-

cepts of open-loop and closed-loop control are discussed next. Emphasis is placed on the methods for solving the control problem.

Three basic frameworks are considered including Pontrjagin's Maximum Principle, Dynami
c Programming and the use of Numerical Op-

timization methods. The article outlines the principle structure of these approaches an
d addresses their strengths and weaknesses. It

concludes with an application of Numerical Optimization methods to greenhouse tempera
ture strategies. The results demonstrate how

the algorithms work and lead to conclusions with respect to their applicability for research p
urposes and practical decision-making.

1. Introduction: Decision problems and model requirements

As usually conceived, decision problems involve controllable

and uncontrollable or exogenous variables. They also involve a

system structure that relates the exogenous and controllable

variables to outputs in terms of performance measures that

enter an objective function. Figure 1 illustrates this setting.
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Figure 1: Components of decision problems

Decision-making in general includes both determining the sys-

tem structure and setting the controllable inputs. In terms of

modeling, however, it is often useful to distinguish between two

broad categories of decision problems according to which is

emphasized: the design of a system structure or the setting of

controllable inputs. The latter can be referred to as regulatory
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or tactical decision problems. Such problems typically con-

centrate on decisions that must be frequently made under a

given structural design. Examples are temperature control, fer-

tilizer and pest management or the marketing of goods. In

contrast, decision problems that focus on establishing a new

system or changing the structure of an existing one are called

design problems. They are normally broader in scope and thus

affect larger parts of the overall system. Decisions of that sort

have to be made infrequently and are long-run in nature. In a

management context such problems are often referred to as

strategic decision problems (Harsh et al, 1988). This article is

mainly concerned with regulatory or tactical decisions.

Horticultural operations can be viewed as dynamic systems.

Tactical decision-making then involves the adjustment of the

controllable variables at any point in time where such adjust-

ments are possible. Since the effects of these adjustments nor-

mally extend beyond the time at which the subsequent adjust-

ment can be made, the decision problems are dynamic in

nature. In essence, this means that today's decisions influence

the future set of possible actions. Solving problems of this na-

ture requires the use of dynamic models in order to establish

dynamic control schemes.

2. Optimal control of dynamic systems

Decision problems of the above nature are dynamic control

problems. This means that in order to solve the problem, a

control law or optimal policy must be found which maximize

(or niinimize, respectively) an objective function of the basic

form

Z =Su g{x (t), u(t), ue(t), t) dt + h( x(T), T} (1)
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where t indicates the time variable and T marks the end of the
planning horizon; x(t) is the vector of state variables of the sys-
tem to be controlled and ue(t) and ue(t) represent the vectors
of controllable and exogenous inputs respectively; g is a func-
tion that relates the values of x(t), x (t) and u (t) to the perfor-
mance measure. Thus the first termc(Z) in the above equation
could for example represent the present value of the accumu-
lated profit over the time horizon T. The term h{x(T), T) rep-
resents the terminal value of the state vector and is included to
provide continuity with future periods beyond T, if the duration
of the system is assumed to be greater than T. If the model is a
continuous time representation of the system, the state vari-
ables are related to the controllable and exogenous inputs via a
set of first order differential equations that are usually called
equations of motion (cf. Jacob, 1982).

x(t) = afx(t-1), uc(t), ue(t), (2)

According to the particular form in which the optimal policy is
formulated, two control loop structures can be distinguished,
namely open loop control and closed loop control. The con-
cepts of open loop and closed loop control are illustrated in
Figure 2. The controller is a model representation of the sys-
tem to be controlled, which is used to derive the optimal policy.
In the case of open loop control the solution of the optimiza-
tion problem yields the time paths of all controllable variables.
That is, the optimal control is determined as a function of time
for a specified initial state vector.
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Model of
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Figure 2: Open loop and closed loop control
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It is obvious that determining the time paths of all controllable
variables over the rest of the planning horizon in advance is a
valid control formulation only under particular circumstances,
namely,

o if the problem is deterministic, i.e. the system itself
as well as the future time paths of all exogenous vari-
ables are perfectly known, or

o adjustments of the controllable variables at later
points in time are precluded by the nature of the sys-
tem, or

the exogenous inputs and the state variables of the
system are not observable.

If these conditions are not given, then it is possible to revise the
initial policy- after new information on the true state of the sys-
tem and the values of the exogenous inputs becomes available.
Such adjustments are explicitly considered in a closed loop of
feedback control formulations (J)art b of Figure 3). The op-
timal policy in this case is determined as a function of the ob-
served values of the state and the exogenous input sector. The
closed loop policy thus describes a rule for computing the
values of the controllable inputs after certain observations have
been made rather than determining them in advance.

While for most management problems the conditions are such
that the preferable control formulation is that of the closed
loop, deriving optimal policies of this form is a rather complex
task. This is particularly true if a complex system like a whole
firm must be considered as is the case in medium term or an-
nual planning of the production program. Therefore in these
cases optimal controls are often formulated in an open loop
form assuming that the stochastic variables of the system take
on their expected values. In the short term management of
single crops the expected time paths of the relevant state vari-
ables associated with these controls then serve as reference or
target inputs, so the control problem now becomes that of find-
ing a closed loop policy which minimizes the costs associated
with deviations from this target set. Figure 3 illustrates this
setting.

The controller! yields an open loop policy for arid the expected
states associated with it for the overall system (x (t)). A subset
of x (t) then serves as target set for the short term control of a
subsystem. This control is formulated , in a closed loop form.
From time to time the target set will be updated by using the
current as the new initial state in the open loop problem.

The general configuration of Figure 3 largely reflects common
management practices. In this respect the open loop control
schemes refers to planning activities that are usually carried out
this way, yielding an initial policy and target values of state
variables and performance measures. In day-to-day decision-
making the initial policy is then revised in order to make the
system approach the target states as closely as possible. The
latter refers to the closed loop subproblem. However, instead
of using formal models to derive the optimal policy, this is com-
monly done intuitively relying on rules of thumb and past
management experience. With the advent of on-farm
microcomputers there are numerous possibilities to improve
this type of decision-making, and thus increase the perfor-
mance of the overall system.

3. Approaches to solving the control problem

Optimal control problems can be solved according three basic
approaches (Adby and Dempster, 1974):

o Analytical solution using Pontrjagin's Maximum
Principle.



Agrekon, Vol 29, No 3 (September 1990)

(t)

V

Controller I

Open loop
model of the

overall system

target states

X*(t)

-7(i)

xi it--1)

(t)

V

Controller 11

Cio:;e41 loop
model of a

subsystem

(1) 

Overall System

Other sub-

systems

Subsystem to

be controlled

x(t)

Figure 3: Combination of open loop and closed loop control

o Numerical solution according to Bellman' principle

of Dynamic Programming.

o Numerical solution using Numerical Optimization

Procedures.

Pontrjagin's Maximum Principle is an extension of the classical

Calculus of Variation. The general idea of the approach is to

decompose the problem of optimizing over the total planning

horizon into single stage or static decision problems that can be

solved analytically for any point in time.

This is done by establishing the Hamiltonian function:

II{x,uc,uep,t} = g{x,uc,ue,t} + p{t} f{x,uc,ue,t} (3)

which then is to be maximized with respect to u. The Maxi-

mum Principle gives the necessary conditions fOr maximizing

the Hamiltonian and establishing the adjoint function p{t}, and

thus for solving the original control problem. Applying

Pontrjagin's Maximum Principle to quantitatively solve optimal

control problems requires the analytical solution of the result-

ing equations. This however is possible only for certain classes

of models, e.g. linear or linear-quadratic ones. • Thus,

Pontrjagin's approach in many cases either imposes serious

restrictions on the model structure or, in turn, only general

properties of the resulting optimal control can be given, while

numerical results are not obtainable (For applications cf Baz-

len, 1985; Buchwald, 1987).

Bellman's Dynamic programming framework basically follows

the same idea as the Maximum Principle: A multi-period or

multistage decision problem is decomposed into a number of

single-stage subproblems. Bellman's principle then states that

an overall control policy is an optimal control if, at any point in

time, the remaining decisions are optimal with respect to the

states that result from earlier decisions. Consequently, if the

possible states of the system can be determined in advance, a

numerical solution of the control problem can be obtained

recursively moving back-ward from the last stage toward the ini-

tial one.

Typically, the dynamic programming framework is applied to

problems where time and state variables take on discrete

values. When this is the case, the method of solution does not

impose any restrictions of the structure of the models that

govern the transition from one state to another. However, if
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the state variables are continuous by nature, which is the

predominant case for plant growth models, discretizing them at

a reasonable level of accuracy is likely to result in problems of

dimensionality. This means that the number of different states

to be considered becomes large enough to cause computational

problems with respect to - computer storage capacity and/or

computing time. Therefore dynamic programming applications

are largely limited to problems where the state space is either

discrete by nature or can by subdivided into a relatively small

number of discrete values. Examples are replacement

problems, inventory management, and marketing (cf. Lentz,

1985; 1987a; 1987b; Hakansson, 1987).

In recent years a large number of numerical optimization pro-

cedures for general nonlinear problems have been developed.

Applying those jointly with a simulation model that computes

the development of a crop for a given set of controls is the

third way of approaching the optimal control problem. Figure

4 delineates the basic concept: For a given set of control vari-

ables the simulation models yield an objective function value at

the end of the planning horizon. From this the optimization

procedure derives an improved set of controls and starts a new

simulation run. This feedback loop is repeated until the objec-

tive function value converges on the optimum.

Since the simulation model runs independently from the op-

timization algorithm there are no restrictions with respect to its

structure. This property makes it both feasible and desirable to

use numerical optimization techniques to obtain optimal tem-

perature strategies for greenhouse crops. In the remainder of

the article the principles of this approach are outlined in more

detail.

4. Application of numerical optimization procedures to

determine optimal greenhouse temparature

strategies

The general idea of this approach is based on the closed loop

concept. It incorporates three components: the simulation

model, the performance criterion or objective function and the

optimization method. To start the optimization the user has to

choose the initial value of the controllable variables. Then the

numerical optimization algorithm adjusts the policy variables

iteratively in order to respectively maximize or minimize the

performance criterion.
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- Figure 4: Direct optimization of simulation models (Jacob, 1982)

In many practical optimization problems there are constraints
on the values of some of the policy or state variables which
restrict the feasible region. The numerical optimization ap-
proach offers two possibilities to handle this. Either penalty
functions are involved in the simulation model or the search al-
gorithms are forced to adjust the values of the policy variables
until all variables are in the feasible region.

4.1 Characteristics of numerical optimization proce-
dures

In recent years the use of computers has led to a widespread
development of numerical optimization methods. In order to
determine search methods which are generally suitable for op-
timizing bio-economic models a classification scheme was
developed. First the methods are classified by the mathemati-
cal structure of the simulation model which can be optimized.

Three main classes are distinguished, namely linear, quadratic
or non-linear systems. Bio-economic models are usually non-
linear systems. Second, the optimization methods are classified
by the requirement of gradient information about the objective
function. For this the algorithms are divided into three groups.
The first group of optimization methods requires first and
second order partial derivatives, the second group uses only
first order partial derivatives and the last group requires no ex-
ternal gradient information. When complex non-linear bio-
cconomic models are optimized it may often be difficult or
even impossible to compute gradient information about the ob-
jective function. Therefore it seems to be advisable to con-
centrate on search methods without gradient information. The
third step divides search algorithms into simultaneous and se-
quential methods. The first group of methods starts evaluating
the objective function at several points distributed over the
whole search region. The point representing the best value is
then selected as the optimum. When using these methods all
values of the objective function can theoretically be computed
simultaneously. In contrast to this, sequential methods move
from one point to the next.

The last classification criterion points out two different search
techniques which are available in both groups: either the values
of the policy parameters arc varied randomly or they ,arc ad-
justed systematically in_ ordcr_lo-dacrmine---- thc- optimunrz_-
Figure 5-shows a contour map of the two dimensional function
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and illustrates the principal search techniques. The top left ex-
ample in Figure 5 belongs to simultaneous- systematical
methods. In this case the objective function is evaluated one
each point of the grating and the point representing the best
value is selected as the optimum. The top right example repre-
sents a simultaneous-random method. Contrary to the first ex-
ample this procedure evaluates the objective function at several
randomly distributed points. The bottom left example traces
the path of the Gauss-Seidel-Strategy which belongs to the
category of the sequential-systematical procedures. Usually
these methods first determine a direction of search and then
carries out a single line search that yields a local minimum.

The search goes on iteratively until a stop criterion is fulfilled.
The remaining example depicts the evolution strategy "EVOL"
of Rechenberg (Schwefel. 1977). The algorithm belongs to thc
sequential-random methods and represents a simplified imita-
tion of the principles of biological evolution. In the first step,
the mutation, the coordinate values of the actual point will be
changed randomly to create a second point. In the next step,
the selection, the point representing the better value of the ob-
jective function will be selected for further mutation.

Practical search algorithms often combine several of these basic
search techniques.

4.2 The bio-economic simulation model

Figure 6 illustrates the structure of the bio-economic simula-
tion model used to calculate the performance criterion of dif-
ferent temperature strategies. The simulation model incor-
porates five submodels: (1) outdoor weather (2) heating energy
(3) greenhouse climate (4) biological growth and (5) economic
evaluation. The model is influenced by several environmental
(exogenous) variables. The temperature set points and the
start of cultivation belong to the controllable (policy) inputs.
The uncontrollable inputs arc formed by the parameters of the
greenhouse structure, the climate, data, the product prices and
the opportunity costs.

The average daily outdoors temperature, solar radiation and
the daily courses of these variables form the input of the sub-
model "outdoor weather" which computes the_temperature_and
radiatioirof-eadr hour.--The output- of this-model it-the inpin
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of the heating energy_model anckthe greenhouse climate model.

both models ",are based on the concept of the k-'model

(Schockert_&..Von Zabeltitz, 1979).. The bi9logical growth

models consider solar racliatioti_and_temperafure as the main

factors infitlentinihe growth.. rate: -These were developed by

Krug (1985), - Liebik. (1984) and Bazlen (1985) for radish,

cucumbersiand lettuce,, respectively. The economic model sum-

marizes the output of the different, submodels and exogenous

variables to determine, the, performance criterion for different

policies.
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Figure 6: The bio-ecological simulation model .
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4.3 Some results of the optimization

An example illustrates the results obtained from combining the

bio-economic simulation model and numerical optimization.

A starting point of 10°C has been chosen for the,greenhouse

cultivation of lettuce in autumn in the vicinity of Hannover,

West Germany.. The goal Was td maximize the revenue minus

energy costs. Assuming that the period of cultivation will not

bg extended the search algorithm 'EVOL' selects a tempera-

ture strategy that results in energy savings of about 15%

(Figure 7): The calculatedOptiMal temperature settings appear- -

to be reasonable. The temperature set points decrease during

the cultivation period due to the diminishing solar radiation

which is the limiting growth factor. .

Table 1 shows another example for the greenhouse cultivation

of radish in autumn in the same area. Again the return minus

energy costs Was maximized.- The wide range of. the obtained

optimization results are remarkable-. :The reason for this might

be a response surface with a lot of .local optima, sharp ridges

and narrow valleys. This points to, the legitimacy of some of

the models. It may be that under certain given conditions all

these models may be acceptable, but not under some other

conditions. When all are applicable, the most efficient should

be used. However, the question concerning which of these

solutions is most likely to be correct is still not solved.

- As the results in Table 1 already point out, the optimum cannot

be determined With certainty. The relative advantages and dis-

advantages of the different search methods depend on the

.response surface of the simulatiQn model,and the localization
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v

of the initial point. If the search starts close to the optimum,
the systematical methods gain the best values of the objective
function. However, if nothing is known about the response sur-
face of the simulation model it will be better to use search
strategics with a random component because these scatter
several state points over a wide range within the feasible
region.

The test of different algorithms on well kndwn test problems
often shows that the systematic methods have a higher speed of
convergence (number of function evaluations). Nevertheless
Figure 8 depicts that for a complex simulation model the evolu-
tion exhibit a higher performance.
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5. Conclusions

,

Numerical optimization techniques do open a number of op-
portunities to derive optimal controls from complex simulation
models. The performance of different methods depends on the
nature of the problem. In general, if little is known about the
surface of the solution space, random strategies in general per-
form better than directed search methods.

Although there is no explicit restriction with respect to the
structure of the simulation model, one should bear in mind that
smooth surfaces facilitate the optimization. while sharp ridges
and narrow valleys decrease the performance or may cause a
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complete failure of the algorithm. Therefore, if deriving an op-
finial control law is the final objective, simulation models
should be constructed as to ease the optimization process.

Applying numerical search methods is not a straight forward
matter, since the algorithms cannot determine the optimum
with certainty. Thus their successful application requires ex-
perience and knowledge about the simulation model. Although
these methods are valuable tools in research, their use in prac-
tical decision-making is however limited.

Table 1: Optimal temperature strategies for radish in autumn
using different methods of optimization (start of cul-
tivation: 14.10)

Temperature set points rq

Search Until Growth phase
method emergence 1 2 3 4 •

Revenue minus
Heating,costs
[DM/m1

Initial
values 8,0 8,0 8,0 8,0 8,0 1,82

Deterministic
EXTREM 8,8 8,4 8,0 8,2 6,8
GLOBEX 3,7 7,5 11,8 11,7 3,2

Stochastic
EVOL 1.6,5 4,7 10,7 6,4 3,5
GRUP 14,8 3,3 9,1 7,9 4,4

2,09
2,41

2,78
2,84

Notes

1. The basic research for this article was done while the
authors were visiting professors at the Michigan
State University in 1988. The authors wish to thank
Steve Harsh and Jan Groenewald for valuable com-
ments.

2. See for example Adby and Dempster (1974) and
Schwefel (1977)
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