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Abstract: We consider hypothesis testing problems in which a nuisance
parameter is present only under the alternative hypothesis. Standard
asymptotic tests, such as likelihood ratio, Lagrange multiplier and Wald tests,
are difficult to apply because of problems incurred in obtaining their asymptotic
distributions. To overcome this difficulty, we reparameterize the testing problem
to one for which an exact small sample test can be constructed using existing
hypothesis testing procedures. The reparameterization technique is applied to
two examples from the econometrics literature, and an empirical power
comparison shows that our test has better power properties than tests
previously proposed in the literature. Further, p-values for our test can be
computed in 0(n) operations so the test can be implemented efficiently.



1. Introduction

We consider hypothesis testing problems in which a nuisance parameter is

present only under the alternative hypothesis. Problems of this nature often occur

in the economics literature, particularly in the area of testing for stochastic

coefficients in time series regression models. Recent examples include Andrews

(1990), Bera and Higgins (1990), Shively (1988), and Watson and Engle (1985).

Davies (1977) provides several examples in the statistics literature. As an

illustration, suppose that the distribution of a random variable X depends on the

parameters and 5, and that we want to test Ho: y= 0 against the alternative HA:

y> 0. If the distribution of X does not depend on 8 when y= 0, then 8 is a

nuisance parameter present only under the alternative. Standard asymptotic tests,

such as likelihood ratio, Lagrange multiplier and Wald tests, are difficult to apply

because of problems incurred in obtaining their asymptotic distributions.

Therefore, tests need to be developed that do not rely on these testing principles.

Davies (1977) constructs a test for problems when a nuisance parameter is

present only under the alternative and shows how to obtain a bound on the

significance level. Watson and Engle (1985) use a slightly modified version of

Davies' test statistic to test for a stochastic coefficient in Rosenberg's (1973) return

to normalcy model while Shively (1988) derives the small sample equivalent of

Watson and Engle's (SSEWE) asymptotic test.

We propose an alternative method of constructing tests when a nuisance

parameter is present only under the alternative. We begin by noting that a multi-

dimensional testing problem typically can be reparameterized into polar

coordinates so that the resulting testing problem is one-dimensional and has

nuisance parameters only under the alternative. For example, suppose we want to

test Ho: 0 = (01, 02)' =0 against HA: 0 # 0 based on the n x 1 random vector X

whose density function is f(x10). To reparameterize into polar coordinates, set 0 =
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{r coot)), r sin(4))}' where r = (8'0)1/2 0 and 4) = tan-1(02/01) with 0 4) < 2n. Ho: 0

= 0 is now equivalent to Ho: r = 0 while 0 *0 if and only if r> 0. Thus, our testing

problem becomes one of testing Ho: r = 0 against HA: r> 0 where 4) is a nuisance

parameter present only under the alternative.

This suggests that one way of constructing tests when a nuisance

parameter is present only under the alternative is to reparameterize to a higher

dimensional testing problem that can be handled using existing testing techniques.

For example, one of the problems considered below can be reparameterized from

(y, Sy to 0 = (01,02)' in such a way that (i) 01 and 02 are both identified under the

null hypothesis; and (ii) the testing problem reduces to testing Ho: 0 = 0 against

HA: 01 > 0, 02 0. Given this reparameterization, the locally most mean powerful

(LMMP) test proposed by King and Wu (1990) can be applied.

This technique must be applied on a case-by-case basis because it may not

always be possible to reparameterize in such a way as to allow the application of a

known testing procedure. Our procedure is best illustrated by considering specific

examples, but the general reparameterization technique is quite straightforward

and can be applied to a variety of problems. Two important advantages of our

technique for the problems considered below are that we can (i) obtain the exact

small sample properties of our test statistic rather than only their asymptotic

properties; and (ii) compute exact small sample p-values in 0(n) operations using

the technique of Shively, Ansley and Kohn (1990).

Our examples are testing for a stochastic coefficient in Rosenberg's (1973)

return to normalcy model and testing for two stochastic coefficients generated by

random walk processes with correlated innovation variances. The return to

normalcy model has been applied frequently in the literature. For example, Bos

and Newbold (1984) used it to test whether the systematic risk of an asset or

portfolio is varying through time while Watson and Engle (1985) used it to check
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for stability in an efficient market for gold and silver prices. A discussion of multiple

random walk coefficient models and their applications in economics can be found

in LaMotte and McWhorter (1978).

The paper is organized as follows. Sections 2 and 3 apply the

reparameterization technique to the return to normalcy and the multiple random

walk coefficient models, respectively. Section 4 reports an empirical example and

Section 5 contains some concluding remarks.

2. Testing the return to normalcy model

Rosenberg's return to normalcy model is given by

Yt = xtat + ztii3 + Et

0 5.p<1 (3)

t = 1, n, where xt is an independent scalar regressor, zt is a k x 1 vector of

independent regressors, 13 is a k x 1 vector of unknown constant coefficients, and

et and at are independent disturbances with et - IN(0, e), at - IN(0, X.02) and 2t..?..

0. The parameter p is restricted to 0 5_ p < 1 because in typical economic

applications one would expect at to be positively correlated. Testing for a

stochastic coefficient in this model is equivalent to testing Ho; = 0 (constant

coefficient) against the alternative HA: > 0, 0 p < 1. In this problem p is a

nuisance parameter that is present only under the alternative.

We can rewrite (1) and (2) as

= xp. + Zt'13 + Vt (4)

where vt = x at - 11) + Et. in matrix notation, (4) can be written as
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y = (X Z)(L) + v

where y = (yip ye)', X = xny, z = (z1, zn)' and v = (v1, vn)'. It is

assumed that (X Z) has full column rank. Note that v - N[0, a2 + X.C2(p)}] with

the (s,t)th element of Sl(p) given by

(5)

Ost(P) = xx pIS tl / (1 - P2). (6)

The problem of testing Ho: X = 0 against HA: > 0, 0 p < 1 is invariant to

transformations of the form

y* = cy + (X Z)(g)

where a and c are scalars, and b is a k x 1 vector.

We reparameterize the problem from the parameter space (X,p)' to a

parameter space 0 = (01,02)' using a transformation involving polar coordinates.

Because A, 0 and we wish to test Flo. = 0, a natural transformation is

7t, = (0'0)1/2.

(7)

(8)

Note that testing Ho: X = 0 is equivalent to testing Ho: (010)1/2 = 0, i.e. testing

whether the length of the 0 vector is zero.

To complete the reparameterization from (X,p)' to the vector 0, we need to

determine the angle 0 makes with the 01-axis: Let 4) represent this angle.

Because A. defines the length of 0, p shouid determine 4). There are several

mappings of p onto 4) that one might consider. One possibility is to map p onto

0 5_ 4) < another is to map p onto 0 <7t, and a third is to map p onto 0 5_

<2n. We rule out the third mapping immediately because it would require the



limit as p tends to one to give the same covariance matrix of v as p = 0. Of the

remaining two transformations, we contend that the better reparameterization is to

map p onto 0 < r./2. The original alternative parameter space X> 0, 0 s p < 1

is a subset of the positive quadrant, so a natural transformation from (X,p)' to

(01,02)' is one that results in the new alternative parameter space lying in the

positive quadrant (i.e. 0 <7c/2) rather than in half the two-dimensional plane

(i.e. 0 5_ <n). We consider both reparameterizations below, but will focus

primarily on the mapping of p onto 0 < 7r/2.

If we map p onto 0 5_ < 7rJ2, a test statistic can be constructed that has a

desirable power property in the (01,02)' parameter space. If we map p onto 0

<7t, we can construct an intuitively appealing test statistic that is identical to the test

statistic constructed when p is mapped onto 0 5..4) < 7r./2. In particular, the two tests

are the locally most powerful invariant (LMP1) test of Ho: X =0 against H1: > 0, p

0.5.

Consider first the mapping of p onto 0 < ir./2. Then 0 is written as

(01,02)' = (2cos(pn/2), Xsin(p7d2))',

with 4) = p/c/2 determining the angle 0 makes with the eraxis. The testing

problem becomes one of testing Ho: 0 = 0 against HA: 01 > 0, 02 0. Note that p =

o corresponds to the positive 01-axis, and as p approaches one the vector 0
approaches the 02-axis. The null hypothesis implies that 0 has zero length, while

the alternative implies that 0 lies in the first quadrant, excluding the 02-axis. Using

this transformation and (6), the distribution of v is

v - N[0, (3-2{ I + (0'0)1/2 n(2 tan-1(02/01)ht)H. (9)

because 7 = (0'0)1/2, and pri2 = (1) = tan-1(02/01) implies p = 2 tan-1(02/00/n.
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The one-sided nature of the reparameterized problem indicates that a

multivariate one-sided testing procedure is needed. We could use one-sided

versions of the likelihood ratio, Wald or Lagrange multiplier tests. However, these

are asymptotic tests and it is not clear how they behave in small samples. In

addition, their asymptotic distributions under the null hypothesis are probability

mixtures of chi-squared distributions and the degenerate distribution at zero. King

and Wu (1990) recently proposed an alternative procedure that provides a test

statistic whose exact small sample distribution can be obtained. They constructed

a LMMP invariant (LMMPI) test (where invariance is with respect to transformations

of the form (7)) which is a multivariate one-sided test of the cfisturbance covariance

matrix in the linear regression model. Within the class of invariant tests of the same

size, the LIVIMPItest maximizes the mean slope of the power curve over all

permissible directions from the null hypothesis. A summary of King and Wu's

results is given in the appendix. King and Wu show that the LMMPI test is

equivalent to the LMPI test in the direction 01 = 02 > 0. Setting 01=02 in (9) gives

v - N[0, 0-2 { + 42 eiqo.5)}i.

The LMPI test in the direction 01 = 02> 0, and therefore the LMMPI test, is to reject

Ho for large values of

e'S2(0.5)e / e'e (10)

where e is the vector of ordinary least squares (OLS) residuals from (4). This is

also the LMPI test of Ho: = 0 against H1: > 0, p = 0.5.

Exact small sample p-values for this test can be computed using the results

in Shively, Ansley and Kohn (1990). They show how to compute p-values in 0(n)

operations for a large class of invariant test statistics, including (10).

6



The second reparameterization we consider is the mapping of p onto 0

<7t. This transformation implies

(01,02)' = (Xcos(pic), sin(fir)Y•

Thus, the testing problem becomes one of testing Ho: 0 = 0 against HA: {(01.02)': 01

> 0, 02 0} Li {(01,02)': 01 S 0, 02> 0). As before, the null hypothesis implies that the

length of 0 is 0, while the alternative implies that 0 lies somewhere in the first or

second quadrant, excluding the negative 01-axis and 8 = 0. Using this

transformation and (6), the distribution of v is

- N[0, (y2{ I + (0'0)1/2 S2(tan-1(02/01)/70)]. (11)

This reparameterization is no longer a multivariate one-sided testing

problem .so we cannot construct a LMMPI test. Recall that for the previous

reparameterization, the LMPI test in the direction 01 = 02> 0, which splits the

alternative parameter space in half, has desirable power properties. Thus a

reasonable test of Ho: 0 = 0 against HA: {(01,02)': el > 0, 02 u {01,02y: el 0, 02
> o} is the LMPI test in the direction of the 02-axis because the 02-axis splits the
alternative space.

The covariance matrix in (11) does not exist when 01 =0. However,

lirn tan-1(02/01) = 7E/2.$312-03

Thus, we construct the LMPI test of Ho: v N(O, (y21) against HA: V - N[0, (y2 I + 42

G2K2(0.5)1]. This test is given by (10). Therefore, the tests constructed fcr our two

different reparameterizations are identical.

We conducted an empirical power comparison of our suggested test based

on (10) with Shively's (1988) SSEWE test. While it is possible to compute exact
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small sample powers of our test, the powers of the SSEWE test must be simulated.

Therefore, to make the comparisons fair, 1000 repetitions were used to simulate

the power of each test against specific values of Ng in the context of (1) and (2).

For model MI k = 1, n = 20, xt is the U.S. monthly consumer price index for the

period October 1977 to May 1979 and zt = 1, t = 1, ..., 20. For model M2, k =2, n

= 30, xt is log of annual income for 1869-1898 and zt are observations of the

remaining regressors in Durbin and Watson's (1951) consumption of spirits

example. Both tests are based on ratios of quadratic forms in OLS residuals and,

therefore, are invariant to the values of the regression coefficients, which were set

to zero, and the error term variance, which was set to one. A step interval length of

0.1 was used to construct the SSEWE test; see Shively (1988).

Table 1, in which our test is denoted as the LMMPI test, provides the

estimated powers of the two tests. It is clear that, except for p=0.1, our LMMPI test

has the same or higher power than the SSEWE test. The differences in power

between the two tests are small, especially when p=0.1.

Our test has other advantages besides almost always having more power.

First it is an exact test and its critical values can be easily computed. The critical

values for the SSEWE test can only be approximated, although simulations

indicate that the approximation is very good (see Shively, 1988). Secondly, these

approximate critical values of the SSEWE test are extremely burdensome to

compute compared to the critical values of our test which can be calculated in O(n)

operations.

3. Multiple Random Walk Coefficients

Our second example involves testing for two stochastic coefficients

generated by random walk processes with correlated innovations. The model for

this problem is



Yt = xtat +zt'13 +

at = at-i + ait

= +a

t = 1, n, where xt and Wt are independent scalar regressors, zt is a kxl

vector of independent regressors, and fi is a k x 1 vector of constant coefficients.

The disturbances et and at = (an, any are independent with et - IN(0, 02) and at

IN(0, o2A) where

PXIX2
A =[ 2 2

pxi x2 X2
(15)

and II < 1. Testing for stochastic variation in the two coefficients is equivalent to

testing Ho: X.21= x22= 0 against the alternative HA: = (X2i, X22) # 0, Ipl < 1. Again,

p is a nuisance parameter that is present only under the alternative. The model

(12), (13) and (14) can be rewritten as

where

Yt = xtao + wtyo + zt'13 + vt

vt = et + • ixtaii wta2i.

In matrix notation, (16) can be written

(sao

Y = (X W Yo

j

+ V

(16)

(17)

where W = (w1, wily and y, X, Z and v are as defined in (5). It is assumed

that (X W Z) has full column rank. Note that
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v - N[0, a2{I + A,21E1 + A.22E2 + p2t42E3}]

with the (i,j)th element of El, E2 and E3 given by

= min(i,j) xixi,

E0241) = min(i,j) wiwj,

E i) = min(i,j) [xiwj + xjw•

respectively.

As with the return to normalcy model, we can often use economic arguments

to impose the condition 0 p < 1 on (15), rather than the weaker condition 1pl < 1,

and therefore increase the power of the test when 0 p < 1. We will show how to

reparameterize the model when 0 p < 1. A similar reparameterization can be

used when Ipl < 1.

We will reparameterize the problem from the parameter space (A.21, 4, p)' to
a parameter space 0 = (01, 92, 03)' using a transformation involving polar

coordinates. A polar coordinate representation usually specifies the length of the

vector, the angle 4)1 the vector makes with the 0102-plane, and the angle 4)2 the

projection of the vector into the 0102-plane makes with the 01-axis. We will consider

a slightly different, but equivalent, polar coordinate representation.

2 2 2
Because Xi, A.

2
2 0 and we wish to test Ho: =0, =0, a reasonable

transformation is

4 4
= X1 +

Therefore, the length of 0 is determined by 21 and 22. Testing Ho: = 0, A,2A. A. 2 =0 is

21 22 23
equivalent to testing 

H0: 0 + 0 4. 0 = 
u i.e. testing whether the length of 0 is

a

zero. Thus the reparameterized testing problem provides a natural method of

2 2 4 4
testing Ho: X1 = A.2 = 0 by checking whether 00 = A.1 + A-2 >0. Now consider a
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2 2
mapping of (Xi, X2, p)' into the first quadrant of the (01, 02, 03)' parameter space. A

transformation that accomplishes this is

(01, 02, 03)' = (Xlcos(pri2), X,22cos(pir/2), (A:1+X-42)/12sin(P1r/2)Y-

The testing problem now becomes one of testing Ho: 0=0 against HA: el > 0, 02>

0, 03 0, and King and Wu's (1990) one-sided muitiparameter testing technique

can be used.

Note that if 4)1 = pia then (I)i is the angle between the vector (01, 02, 03)' =

(X2icos(p/c/2), ?k_.22cos(pic/2), (A,41+X.42)1/2sin(pra)y and the 0102-plane. Considering the

projection of (01, 02, 03)' onto the 0102-plane, we see that if (1)2 represents the angle

the projection makes with the 01-axis then Xi and X2 determine 4)2. In particular,

62 =tan-I(XA-1).

In the context of (17),

v - N[0, a2 {I + µ1(0)E1 +112(0)E2 +113(0)E3)]

2 2
when 01 + 02 > 0, where

and

t(0) =.01h(0), i = 1, 2,

µ3(0 ) = 2(9102)112 h(0) cos-1{h(0)-1} / It

h(0) = 10'0 / (el +41 112.

Observe that N(9), i = 1, 2, 3, are discontinuous functions at 01 = 02 = 0.

However, upon noting that

Iimp(0)=013-40 = 1, 2, 3,
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a heuristically reasonable modification is to use the limiting value of gi(0) (i.e. 0)

as the function value at 0 = 0. The hypothesis testing problem has now been

reduced to one that can be handled using King and Wu's (1990) one-sided

multiparameter LMMPI test. Since the LMMPI test is equivalent to the LMPItest in

the direction 01 = 02= 03>0, we set 01= 02 = 03 in the expression µ;(0), i = 1, 2,

3, to give

111(e) =112(0) = 014(3/2) p3(0) = 00/(3/2)d

where d = 2[cos-1{4(2/3)}]/Tc. The LMPI test in the direction Eh = 02= 83 > 0, and

thus the LMMPI test statistic of Ho: 0 = 0 against HA: 01 > 0, 02 > 0, 03 0, is to

reject Ho for large values of

e'(Ei +E2 + dE3)e / e'e

where e is the OLS residual vector from (16). Exact small sample p-values for this

test statistic can be computed using the results in Shively, Ansley and Kohn (1990). .

4. An Empirical Example

In this section, we consider an empirical example first discussed by Watson

and Engle (1985) and also used by King (1987). Watson and Engle used

Rosenberg's return to normalcy model to check for stability in an efficient market for

gold and silver prices. The underlying model is

Rt = a+ Ort 4- Et

where Rt is the one-period holding yield on gold or silver, and rt is the risk free

rate of return as measured by the return on 90-day Treasury bills with one week

remaining until maturity, and et, t = 1, n, are IWO, 02) random variables. Let
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13t - = p(13t-i -11) + at

where at, t = 1, n are IN(0, X.02) random variables independent of et, t = 1, n.

A test for stability involves testing Ho: X = 0 against HA: X> 0, 0 p < 1. We

conducted this test using the test statistic derived in Section 2, i.e. en(0.5)e / e'e,

and Watson and Engle's data set of 208 weekly observations on gold and silver

prices over the period 1975-1979.

For gold prices, the value of our test statistic is 32.40 with a corresponding p-

value of 0.001. Watson and Engle also obtained a p-value of 0.001 so the two tests

strongly reject the null hypothesis of a stable relationship between gold prices and

the risk free rate of return. Similarly, for silver prices, the value of our test statistic is

53.45 with a p-value of 0.990 while Watson and Engle obtained a p-value of 0.75.

Thus, both tests indicate that there is a stable relationship between silver prices

and the risk free rate of return.

5. Conclusion

We have provided a new approach for handling testing problems when a

nuisance parameter is present only under the alternative. It involves

reparameterizing to a higher dimensional problem that can be handled using

existing hypothesis testing techniques. It is often possible to provide a natural

reparameterization of the problem in such a way that LMMP1 tests, which optimize

average power in the neighborhood of the null hypothesis, can be constructed. For

the return to normalcy model, our test has better power properties than the

computationally inefficient SSEWE test based on Davies' (1977) procedure. In

addition, our test is an exact small sample test for which we can compute p-values

in 0(n) operations.
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Appendix

This appendix provides a summary of King and Wu's (1990) unpublished

results.

Suppose X is an n x 1 random vector with density function f(x10) where 0

is a p x 1 vector of unknown parameters and we wish to test Ho: 0 = 0 against HA:

# 0 or Fl+A: 0> 0. For testing Ho against HA, SenGupta and Vermeire (1986)

introduced the class of LMMP unbiased tests. These tests maximize the mean

curvature of the power hypersurface in the neighborhood of 0 = 0 subject to local

unbiased conditions.

King and Wu showed that the LMMP test of Ho against H+A rejects Ho for large

values of

ainf(x10)/a0ii •
0=0'

i.e., the sum of the scores evaluated at Ho. They also showed that this test is locally

most powerful in the direction given by

(A.1)
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Consider the linear regression model

y = Zi3 + u, u - N(0, cy2S2(0)),

where y is an n x 1 vector, Z is an n x q nonstochastic matrix, (3 is a q x 1
vector of unknown parameters, is a known n x n positive definite matrix

function, and 0 is an unknown p x 1 vector. Without loss of generality, we

assume S2(0) = In. Testing Ho: 0 = 0 against H +A: 0 > 0 is invariant to mean and

scale transformations. Letting

A1 = -an(e)raelm,

King and Wu showed that the LMMPI test of H +A rejects Ho for small values of

ae'Aie/e'e = e'Ae/e'e

where A .11.P1A1 and e is the OLS residual vector. This test is also LMPI in the

direction given by (A.1).
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TABLE 1

Simulated powers for the return to normalcy model

-32-  X =1.0  ?t,= 0.5 X, =0.3 

i.MMPI SSEWE LMMP( SSEWE INNAPI SSEWE LMMPI SSEWE

bin

0.9 0.90 0.90 0.90 0.88 0.89 0.86 0.74 0.69
0.7 0.77 0.76 0.75 0.71 0.71 0.67 0.57 0.52
0.5 0.54 0.54 0.49 0.46 0.48 0.45 0.35 0.33
0.3 0.29 0.27 0.26 0.24 0.24 0.22 0.18 0.17
0.1 0.10 0.10 0.08 0.09 0.09 0.11 0.08 0.08

0.9 0.89 0.88 0.82 0.80 0.73 0.71 0.46 0.44
0.7 0.76 0.74 0.68 0.63 0.57 0.53 0.32 0.27
0.5 0.53 0.50 0.44 0.43 0.36 0.33 0.17 0.14
0.3 0.28 0.26 0.22 0.21 0.18 0.16 0.12 0.11
0.1 0.10 0.09 0.09 0.09 0.07 0.10 0.06 0.07
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