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Testing the Linear Regression Model

Using Burr Critical Value and p-Value Approximations

Merran A. Evans and Tim R.L. Fry*

Department of Econometrics, Monash University, Clayton, 3168, Australia.

Abstract:

The accuracy of Burr approximations of critical values and p-values is evaluated for

the usual tests of the general linear regression model. These include tests for coefficients

and autocorrelation and heteroscedasticity, based both on standard distributions and those

for which the distribution is unknown. The results suggest that the Burr approximations

are reasonably accurate and should prove useful both in applied research and in teaching.

KEY WORDS: Burr distributions; approximations; p-values; critical values; hypoth-

esis testing; regression.

* We are most grateful to Simon Peters for the Burr computer algorithm and for the
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1. INTRODUCTION

Frequently in econometrics one may wish to test a hypothesis or construct a confidence

interval, but the distribution of the test statistic is either intractable or unknown, or the

use of true critical values may not be feasible. This paper aims to explore the efficacy of

using the Burr (1942) family of distributions to approximate the distribution of a variety

of test statistics used in economic modelling based on the linear regression model.

Hypothesis tests play a crucial role in econometric modelling as diagnostic tests to

help determine the validity of econometric models, economists being unable to perform

experiments as verification. A statistical hypothesis test involves determining whether

the value of a test statistic, based on the given data, is consistent with the probability

distribution specified by the proposed hypothesis. A hypothesis is rejected if the test

statistic lies in the extremes of this distribution, beyond a critical value, or if its associated

p-value is very small. In econometric modelling it is important that hypothesis tests and

associated confidence intervals be as accurate as possible, given the serious consequences of

misspecification, which may include inefficient parameter estimates, misleading statistical

inferences and poor forecasts.

Unfortunately, in applied economic analysis, the true probability distribution of a test

statistic or estimator is often unknown. However, in practice the shape of any distribution

can be described reasonably adequately by certain characteristics which are usually known

or can be determined. These are the first four moments: the mean (location), variance

(spread), skewness and kurtosis (thickness of tails). It is possible to use this information

to approximate the unknown distribution with one selected from the Burr family. By

matching these four moments, the Burr distribution which most closely approximates the

distribution of a given statistic is identified.

Burr distributions cover a variety of different shapes' and have the ability to model

distributions with a wide range of moment coverage (Fry(1988,1989)). Two particular

distributions, Type XII and its 'reciprocal' Type III, have distribution functions and as-

sociated inverses in a simple closed mathematical form. Consequently, p—values for any
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calculated value of a test statistic can easily be generated from the distribution function,

and critical values from its inverse. This explicit analytic form is not available for tradi-

tional moment matching methods using the Pearson and Johnson families of distributions,

so gives the Burr approach a considerable computational advantage. All such approx-

imation methods require computation of moments, but only with Burr distributions is

numerical integration avoided in determining the distribution function and its inverse.

This study evaluates the usefulness in practice of the Burr approximations to distribu-

tions of a range of test statistics likely to be employed in analysis of the standard general

linear regression model. In the next section the methodology is described. In section 3 the

accuracy of Burr approximations is examined for the standard normal, x2, Students' t and

F distributions, as well as for tests of autocorrelated and heteroscedastic disturbances for

which the true distribution of the test statistic is unknown but true critical values can be

determined. Section 4 presents practical examples in applied economics.

2. THE BURR XII AND III DISTRIBUTIONS

• The cumulative distribution function of members of the Burr XII family of distribu-

tions is summarised by two parameters c and k, and is given by

F(x) =1 — (1+ xc) k , > 0,k > 0). (1)

With the following existence conditions, ck > r and c> 0, the moments about the origin

are given by

•

r r r(1 rIc)r(k — r / c)
= kB(1 k — —)

c c r(k)
(2)

The distributions are unimodal if c > 1 and L-shaped if 0 < c < 1. The distribution

function of members of the 'reciprocal' Burr III family is

F(x) = (1+ x—c)_k (x > 0,k >0) (3)

with its moments obtained from the expression for the Burr XII moments (2), by replacing

c by —c, and hence the existence conditions are c < —r. These distributions are unimodal

for ck > 1 and twisted L-shaped if ck <1.

3



•

The existence regions of these two distributions are given in Rodriguez (1977, 1982)

in terms of skewness and kurtosis. They cover an extensive range, which includes that of

many standard distributions. Determining which of the family of Burr distributions most

closely approximates the distribution of the test statistics of interest involves matching

the first four moments. For a test statistic, t, with mean (pt), variance (4), skewness

(01 = \bzi/A) and kurtosis (02 = 1i,4//23) (where pr is the rth moment about the

mean) coefficients should be determined. Its distribution can be approximated by finding

values of k and c so that the skewness and kurtosis coefficients of the Burr distribution are

equal to the corresponding quantities of the distribution of t.

Selecting the appropriate Burr distribution for any given ,132, involves solving two

non-linear simultaneous equations for the parameters c and k which characterise the Burr

distribution (see Rodriguez (1982)).

= r2(k)A, - 3r(k)A2A1 2m 
[r(k)A, - 43/2

r3(k)A4 - 4r2(k)A3A1 + 6r(k)A2A? - 3M
/92= [r(k)A2 - An2

where Ar = 4T(k) = r(1 r I c)r (k — r c), (r = 1, 2, 3, 4). Solutions c and k of these

equations can be obtained approximately using the tables given in Burr (1973) by tak-

ing V3i, 02 nearest to those of the given test statistic. These published tables do not

include negative skewness values, so for accuracy and completeness, we used an algorithm

to obtain the solutions here. Note that Rodriguez (1980) has developed SHAPE, an inter-

active algorithm for use with the SAS package to fit Burr III (and hence also Burr XII)

distributions.

These computed c and k identify which Burr distribution to use as an approximation to

that of the given test statistic, t, and its mean (,2B) and variance (al) are then deterrained.

Matching the first and second moments involves equating the standardised variates and

solving:

t

— IB = t — pt 

aB at

at

aB
V 1113)+ Sx+ (pt - SILB) = Sx + L.
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Hence by relocation (L = — S /IB) and scaling (S = crt crB), the two distributions with

corresponding skewness and kurtosis are matched. Effectively this involves 'standardising'

the distributions to have a zero mean and unit standard deviation, and matching the

two shape parameters of skewness and kurtosis. This approach was used by Burr (1967)

and Tadikamalla and Ramberg (1975) as an approximate method to generate normal and

Gamma variates, respectively.

For tests with rejection regions in the left hand tail, the Burr p—value can be computed

from the approximating Burr XII cumulative distribution function:

P(t tcra) = P(x xcra) = 1 — [1+ xccrstrk = 1 — [1 4- (  crit  )c}_k
S

The inverse of this distribution function is easily obtained and the approximated Burr

critical value for a rejection region of nominal significance level a in the lower tail of the

distribution is given by:

icalZr = L Sxcnt = L arlik —1111c.

If c < 0, then using x* = 1/x implies that the rejection region is in the right-hand tail of

the distribution, with calculations changing appropriately. In this case the null hypothesis

is rejected for large values of t or small values of 1/t, which is the appropriate Burr III

distribution if c < 0.

To guage the accuracy of this Burr approximating procedure, in the next section

the true sizes of tests using these approximated Burr critical values, as well as the Burr

p—values for tests involving the true critical values, were computed and compared with

nominal sizes a = .01, .05 and .10. The criterion for accuracy was whether the computed

values lie within 1%, 5% or 10% of the true value, i.e. within + (.0001, .0005, .0010) of a

= .01, within + (.0005, .0025, .0050) of a = .05 and within + (.0010, .0050, .0100) of a

= .10. This was done for a variety of tests used in analysis of the general linear regression

model,

y = u,
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where y is n x 1, X is n x k, is k x 1, and u is n x 1. The matrix X is comprised of

non-stochastic regressors, and the unknown disturbances u are assumed to be normally

distributed. Note that this is not a simulation study as exact sizes are computed.

3. TEST STATISTICS USED IN REGRESSION ANALYSIS

3.1 TESTS WITH WITH KNOWN STANDARD DISTRIBUTIONS

Our first comparisons of the Burr approximations were with four distributions in

common use in hypothesis testing situations, either through exact or asymptotic results,

namely the standard normal, the Students' t, chi-squared (x2) and Fisher's F distribution.

Selected results are given in tables 1 to 3, but full results are available on request from

the authors. Tables 1 and 2 give (a) the true test size when using the Burr approximation

to the critical value and (b) the calculated Burr p-value of the true critical value for

nominal sizes a = .01, .025, .05 and .10. Table 3 presents corresponding results for the F

distribution, but only for a = .05 for reasons of space. These 'true' values were determined

from double precision IMSL routines: DNORDF, DNORIN for the normal distribution;

DTDF, DTIN for the t distribution; DCHIDF, DCHIIN for the x2 distribution; and DFDF,

DFIN for the F— distribution.

Both the t(v) (with v degrees of freedom) and the standard normal are symmetric dis-

tributions with first four moments (p, a, 01, /32) given by (0, Vv/(v — 2), 0, 3(v — 2)/(v —

4)) and (0, 1, 0, 3) respectively. In our approximations we exploited this symmetry, as

suggested by Burr (1967), by averaging F(x) and 1 — F(x). This improved the approxi-

mations marginally (results without averaging are available on request from the authors).

Note that the moment existence condition (v > r for the rth moment to exist) means

that only t(v) distributions with v > 5 can be approximated with methods that involve

the first four moments. Further, distributions with v '< 8 have skewness-kurtosis values

outside the Burr existence regions. Hence our methodology can only be applied for v=

9 to 120. The t(9) distribution with (A, f32) = (0,4.2) corresponds to the logistic dis-

tribution with scale parameter o = 077, and also to the Burr distribution with k = 1
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and c oo on the boundary of the existence region. Exact analytic results therefore can

be obtained for t(9) using the logistic distribution: exact p-values from the distribution

function F(x) = 1 + esp(-49), and p-values from its inverse x„it = Olog[al(1 — a)],

where 0 = Vdcr/r. Table 1 shows that our approximating procedure, using averaging,

gives results for the t and standard normal distributions which are very close to those for

the 'true' case (typically within 5% and often within 1%). Before averaging, the true test

size when using the Burt approximation to the true critical value was slightly below the

nominal size in the lower tail, and above in the upper tail, whereas the converse applied

for the Burr p—value approximations. This suggests a small shift in location between the

true and approximating distributions. Any systematic difference in the shape of the tails

is obliterated by averaging: the upper tail was generally closer to the true value, and hence

the averaged values in both columns (a) and (b) are below the nominal size. Therefore

any inference based upon the approximations is likely to be 'conservative'. The exception

to this was for the a = .10 significance level for the fatter tailed t(v), v < 20 distributions,

where the opposite result applied.

The chi-squared distribution is not symmetric so averages are not used and the up-

per tail is generally of interest. For a x2(v) distribution, the skewness coefficient is

0-3-17) and the kurtosis coefficient is g, = 3 + 12/v. Approximations for x2(v)
distributions with degrees of freedom v = 1,120 were examined. For all values of v > 2,

the approximations were good, being typically within 5% of the 'true' values. The x2(2)

distribution can be shown to correspond to that of an exponential variate with scale param-

eter 2 and skewness-kurtosis values of (2,9), as well the Burr distribution with c =1 and

k oo, which is an extreme boundary point of the existence region. Hence exact p-values

can be obtained from the exponential distribution function F(x) = 1 — exp(—x12), and

critical values from its inverse, xcrit = 2log[11(1— a)]. For the more extreme x2(1), with

(01, 02) = (2.83,15), the approximations were less accurate, usually only within 20% of

the true value. Table 2 suggests that generally for the x2 distribution the approximating

distribution has slightly thinner upper tails than the 'true' distribution as column (a) was

typically above the nominal size and column (b) below it. The only exception was for the

=.10 significance point with degrees of freedom v < 10, where the opposite consistently
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occurred, suggesting a cross-over of the true and approximating distributions between the

a = .05 and .10 significance points.

For Fishers' F(v, ) distribution, the skewness coefficient is given by

(2v + — 2)((8(w — 4))1/2

(w — 6)(v + w — 2)1/2 (41) > u).

The kurtosis coefficient (for w > 8) can be determined using the rth moments about the

origin,
(w/v)rr(v/2 r)r(w/2 — r)

w > 2r.Pr = r(v/2)r(w/2)

Existence conditions for the first four moments require v > 1, w > 8. Approximations to the

upper critical points of this (non-symmetric) variance ratio distribution were determined

for values of the degrees of freedom parameters v = 1,120 and w= 9,120. For most degrees

of freedom values, the approximations of critical values of the Fisher's F distribution were

generally within 5% of the.true value, and often within 1%, as can be seen in table 3. The

true test size using the Burr' critical value was generally slightly above the nominal size,

and the Burr p-value slightly below it. Analytic results are readily obtained for v = 2, by

equating the moments y'r of the Burr and F-distributions, respectively. These solutions

are c = 1, k = w/2, and the Burr results correspond exactly to the true values for the

F(2, w) distribution. Analytic solutions for other distributions are being investigated.

3.2 TESTS OF DISTURBANCES WITH UNKNOWN DISTRIBUTIONS

The accuracy of normal, two- and four-moment beta approximations to critical values

of a range of tests of disturbance behaviour has been explored by Henshaw (1966) and Evans

and King (1985). Given the definite computational advantage of the Burr approximations,

it is of interest to determine whether they are competitive with the highly accurate four-

moment beta approximations. This is being explored in Evans (1990) for a wide range

of such tests. Burr approximations are examined here, however, for tests which appear

to be the most commonly used in practice against autocorrelation and heteroscedasticity.

Against first-order autoregressive (AR(1)) disturbances the first-order Durbin and Watson
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(1950) test was used, and against simple fourth-order autoregressive (AR(4)) disturbances

its fourth-order analogue by Wallis (1972).

For each of these tests, critical values cannot be tabulated as they depend on the

actual regressors used, so bounds are required, and these involve an inconclusive region,

which can be large for small samples. However, true critical values can be determined, even

though the true distribution is unknown. This is a consequence of being able to express

each of these one-sided tests as a ratio of quadratic forms in normal variables:

t = — u MAMtquimu,

where A is the first- and fourth-order differencing matrix for the first- and fourth-order

tests, respectively, ü = (I — X(X1X)-1X')y = My = Mu is the OLS residual vector and

M = I — X(XIX)-1X'. From Durbin and Watson's (1950) lemma, under normality, the

true critical value for a specified significance level a or, alternatively, the actual size for

any specified critical value tcrit can be obtained from

Pr(t < tcrit) = Pr[ul(MAM — tcritnu <01 = a.

The null hypothesis of independence is rejected for small values of the test statistic for

positive, and large values for negative, autocorrelation.

Two standard popular tests for heteroscedasticity are those of Goldfeld and Quandt

and of Breusch and Pagan (1979). The former has an F-distribution, and the latter is

asymptotically _x2, both distributions which were covered in the preceding section. Al-

though the true distribution of the Breusch and Pagan test statistic is unknown, true

critical values and sizes can be determined in a similar fashion to those above, and com-

pared with the asymptotic values (which are known to be suspect), as well as the Burr

approximations. The two-sided Breusch and Pagan (1979,p1290) Lagrangian multiplier

test statistic, t2 = = (u'MAMu/u1Mu)2, has the matrix A in diagonal form

with ith element In(zi — i)/2[E(zi _ for i = 1, n, against heteroscedasticity

of the additive form, vaqui) = = a2 f(1 Azi), (where f is an unknown monotonically
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increasing non-negative function and zi is a non-stochastic variable). The true sizes and

critical values can be determined from

> tLit) = Pr(ft'Aft/i1111 > tcrit) < —tcrit)'=

Both true critical values and true sizes of the Burr approximations to the critical values

were computed for each of these tests, assuming normally distributed disturbances, using

the Imhof procedure in an approach analogous to that of Koerts and Abrahamse (1969)

for the Durbin-Watson test, with maximum integration and truncation errors set to 10-6.

The first four moment characteristics for each test were obtained using the methods of

Evans and King (1985) which involve traces of products of the matrices MAM.

Several actual and artificial X matrices were chosen to reflect a range of behaviour

characteristic of economic variables, and all have been used previously in experiments

concerning tests of autocorrelation and heteroscedasticity. All include a constant intercept

term. The real regressors include: the annual spirit income and price data of Durbin and

Watson (1951); the mildly seasonal quarterly Australian Consumer Price Index (CPI), and

also lagged one quarter; and quarterly Australian liquidity or capital movements, private

and government, which are hi4la1y seasonal and subject to large fluctuations. Artificial

regressors represent alternative characteristic behaviour, such as a time trend for slowly

evolving non-seasonal economic time series, observations with a lognormal distribution

for skewed cross-sectional data, and a set of 0-1 dummies for quarterly additive seasonal

behaviour. Uniformly distributed data is common is such experiments. Small, moderate

and relatively large sample sizes (n) were examined for each set of regressors, with n

= 20,40,60 for the autocorrelation tests, and n = 24,40,64 for the Breusch and Pagan

heteroscedasticity test.

Selected results on the approximations for the one-sided AR(1) and AR(4) tests are

given in table 4. For several data sets and for nominal sizes a = .01,.05, .10, these show:

(a) the true test size when using the Burr approximation to the critical value; and (b)

the calculated Burr p—value when the test involves the true critical value. Corresponding

results for the two-sided Breusch and Pagan test are presented in table 5, as well as the
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true size of the test when the standard x? asymptotic value is used. (The deflator zt was

assumed in this study to correspond to the first non-constant regressor in each data set).

For the autocorrelation tests, the true size of the Burr approximation always slightly

exceeded the nominal size at a = 0.01, and was slightly smaller for a = 0.05 and 0.10,

suggesting a cross-over of the true and approximating probability density function curves

near the tails between a = .01 and .05. The converse results for the Burr p-values of tests

using true critical values confirm this. For a = 0.01, the Burr p— values were slightly lower

than the nominal size, but for higher values a = .05 and .10, they were slightly higher.

All these tests were characterised by near symmetry with a range of 01 E (-.03, .04) and

short tails with 02 E(2.86,2.89). With the exception of the CPI data for AR(4) with small

samples and the extreme tail (n = 20, a = .01), all sizes and p-values were within at least

5% of the nominal sizes.

For the two-sided Breusch and Pagan test shown in table 5, the skewness and kurtosis

of each data set is also shown, as more variation was found than for the autocorrelation

tests. The two tails of the distribution are used, such that approximations for a = .01

involve summing values for a = 0.005 and .995, reaching further into the tails. The

few cases where the Burr approximation was poor occurred this extreme situation, and

for the liquidity data with n = 64 the p-value could not be obtained within our limits of

computation. With a = .01 and small samples (n=24), the true sizes of tests with the Burr

approximated critical value and the p-value approximations were sometimes within 10% of

the nominal size (and within 5% for the trend data). With larger samples they were usually

within 10% and often within 5%. However, for larger values of a, the approximations

improved: for a = .05, they always were within 10%, usually within 5%, and often within

1% of the nominal size; and for a = .10, they were usually within 1% and always within

5% (with the exception of the highly skewed lognormal data for n = 24).

The usefulness in applied work of the Burr approximation is highlighted by a com-

parison of the Breusch and Pagan results with those obtained using the conventional x2

asymptotic critical value also shown in table 5, for all sample sizes. The test using this

asymptotic critical value is well known to underestimate the true size, which is confirmed
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by our results. None of the values were within even 10% of the nominal size for n = 24.

Only for test statistics with moderate skewness and kurtosis (for the trend and uniform

data) were they within 10% of the nominal value, at a = .10 for n = 40 and a > .05 for

n = 64. Given this asymptotic value is the standard recommended procedure in textbooks

and econometric software, the Burr approximation technique has obvious practical value.

4. PRACTICAL EXAMPLES

To illustrate the potential application of our methodology, consider the examples in

chapter 9 of the econometrics text book by Judge, Griffiths, Hill, Lutkepohl and Lee (1988).

These concern autocorrelation and heteroscedasticity in the general linear model and use

a common data matrix with 20 observations on a constant and two regressors x2 and x3.

The data can be found in tables 9.1 and 9.2 in the textbook and results using SHAZAM

in White, Haun and Gow (1988).

In the heteroscedasticity example (Table 9.1), an OLS estimation is carried out with

the following results (with calculated t-statistics given in brackets below the estimated

coefficients):

9t= —0.991 + 1.651 x2t+ 0.997 :C3t,
(-0.110) (3.404) (2.431)

The second example, focussing on autocorrelation (Table 9.2), has OLS results:

Qt = 3.842 -I- 1.811 S2t+ 0.634 s3t,
(.861) (7.556) (3.132)

Note that critical values and sizes are independent of the data for the t and F tests, and

depend only on the X matrix for the disturbance behaviour tests, so are common to each

example. (True values are also calculated as a benchmark).

Fcaic = 18.44'

Fcctic = 63.66.

The two-sided 5% critical value for the t distribution with 17 degrees of freedom is

2.110 and the corresponding Burr approximation is 2.119. The F-test on the regression

has (2,17) degrees of freedom and both the tabulated and Burr 5% critical values are 3.59.

Thus identical conclusions will be drawn from each approach, but our methodology can
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also provide p-values for the calculated t and F statistics. These are: 0.5480, 0.0019, 0.0131

and 0.0000 respectively, for the first example, and 0.1991, 0.0000, 0.0033 and 0.0000 for

the second.

In the heteroscedasticity example, it is postulated that the disturbance variance de-

pends upon x2, and the Breusch and Pagan test yields a value of 4.03. With the standard

procedure of comparing this with the asymptotic x2 critical value 3.84 at the 5% signifi-

cance level, the null hypothesis of homoscedasticity would be rejected. As this asymptotic

value may not be appropriate with 20 observations, we determine the relevant Burr critical

and p-values. For this data the test statistic has skewness and kurtosis values (01,,(32)

of 0.095 and 3.102, respectively. The selected approximating Burr distribution gives a 5% ...

critical value of 3.47 (compared to the true 3.50) and a p-value for the calculated statistic

of 0.0354 (compared to the true size of 0.0359). Hence we would now reject the null hy-

pothesis at the 5% level with more confidence, but accept it at the 1% level (which has a

true critical value of 6.14 and an asymptotic value of 6.64).

Initial interest usually is in testing for an AR(1) process. The calculated value for

the Durbin-Watson test statistic is 0.91 in the second autocorrelation example. Tabulated

bounds for critical values of this test statistic are {dL = 1.100, du = 1.537} at the 5%

significance level, and {c/L = 0.863, du = 1.271} at the 1% level. Hence at the 5% level,

we would reject the null hypothesis of no autocorrelation, but at the 1% level the test is

inconclusive. For this data, the skewness and kurtosis of the Durbin-Watson statistic are

-.057 and 2.756, respectively. The approximating Burr distribution gives the 5% critical

value as 1.425 and the 1% value as 1.167, (which compare well with the exact critical

values of 1.431. and 1.166). The Burr p-value for the calculated statistic corresponds to

the true value of .001. Thus we would now reject the null hypothesis of no first order

autocorrelation at both levels.

If we were to use this example to test for fourth order autocorrelation (as would be done

in practice with quarterly data), the calculated value for the Wallis variant of the Durbin

and Watson test statistic is 2.62, indicating a test for negative correlation is appropriate,

which involves the upper tail of the distribution. Tabulated bounds (see Johnson (1984))
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for critical values at the 5% significance level are {du, = .827, diu= 1.203}. Unfortunately,
the distribution of the test statistic is asymmetric for regression models with an intercept

such as these, so we cannot compare 4 - 2.62 = 1.38 with (interpolated) values of these

bounds, as would be done in the first-order case. However, bounds can be obtained from

King and Giles (1977) and Giles and King (1978), and these are {thiL = 1.977, d4u =
2.673} at the 5% level. The test statistic of 2.62 just falls in the inconclusive region. Our

methodology readily provides further information. The skewness and kurtosis values for

this test statistic are -0.057 and 2.756, respectively. The corresponding Burr upper 5% and

1% critical values are 2.427 and 2.706 (compared to the true values of 2.433 and 2.705),
respectively. The Burr p—value of the calculated statistic 2.62 is 0.0173 (true size = .0175).
Hence we would reject the null hypothesis of no fourth order autocorrelation at the 5%
level, but accept it at the 1% level.

In summary, for the t, F and x2 tests conventional practice is to compare calculated
values of the test statistic with tabulated critical values at standard significance levels. For

the usual Durbin-Watson type tests of autocorrelation, the calculated values are compared

with tabulated bounds for these true critical values, but the test is often inconclusive in

small samples. In all these cases, our methodology approximates the true critical values

well, and has the added attraction of producing quite accurate p-values for any calculated

statistic. To our knowledge no p-value is produced routinely in a standard econometrics

package for tests with critical regions dependent on the regressors, with the exception

of the first-order Durbin-Watson test in SHAZAM. However, even this package does not

automatically produces the true critical values.

A recent research example where these Burr approximations might be useful is in a

recent study of specification analysis in dynamic models by Fiebig and Maasoumi (1990).
For example, in their regressions (for regime 1) of interest rates on seasonal dummies
and trend and also on these regressors plus the lagged dependent variable, they report

Durbin-Watson statistics of 1.59 and 1.55, respectively, which lie in the 5% inconclusive

region. For dynamic models, such as the latter, Inder (1986) has found that the Durbin-

Watson test with the distribution approximating that of the model without the lag is

superior to the h— test. Adopting this approach, the set of fixed regressors and hence the
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approximating Burr distribution used for each of the two models is the same, the Burr 5%
critical value is 1.43 and the p-values are .12 and .10, respectively. As seasonal variation
is of interest, the Burr p-values for the fourth-order Wallis analogue of the Durbin-Watson
test also can be computed analogously. For these two models the p-values are .06 and .116,
respectively, indicating significant fourth order residual correlation in the model with trend
and seasonal dummies as regressors. In contrast, this test for their model with seasonal
dummies, a lagged dependent variable but no trend has a p-value of .58.

In an applied research study involving financial data by Faff, Lee and Fry (1990), Burr
p-values approximations were used for a locally best invariant test for AR(1) behaviour of
the model coefficients. The test statistic has an unknown distribution, but is expressible
as a ratio of quadratic forms in normal variables so our methodology is applicable.

5. CONCLUSIONS AND FUTURE RESEARCH

Our empirical study of approximating critical values and determining p-values of stan-
dard tests in applied regression analysis by matching the first four moments with those of
distributions from the Burr family is most encouraging. It provides an incentive to extend
this methodology to test statistics and estimators in a range of econometric applications.
In summary, it appears that tests using Burr approximations are reasonably accurate:
they generally lie within 5%, and at least within 10%, of the true size, when the skewness
and kurtosis parameters fall within the Burr existence regions. A useful feature of this
approach is that an initial inspection of these permissible regions in terms of skewness
and kurtosis of a test statistic of interest will indicate whether the Burr approximation is
likely to be successful. These regions are given in Rodriguez (1977,1982) and cover most
distributions likely to be encountered in practice.

This methodology has marked computational advantages over other approximating
methods and should prove useful in applied, research and teaching. Critical values can
be determined for tests which are often inconclusive, as well as for some where only the
asymptotic critical value is known but is inappropriate in small samples characteristic of
economic analysis. Further, intuitively appealing and readily comprehensible p-values can
be calculated easily for all the standard test statistics.
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Table 1

Burr Accuracy for Students' t(v) and N(0,1) distributions

Nominal size 17.

(a)

LI

(b) (a)

2.5%

(b)

5% 10%

(a) (b) (a) (b)

9 1.000 1.000 2.500 2.500 5.000 5.000 10.000 10.000

10 .940 .982 2.413 2.431 4.948 4.883 10.092 9.868

11 .952 .978 2.427 2.407 4.951 4.839 10.062 9.819

12 961 .978 2.437 2.395 4.953 4.818 10.043 9.794

13 .967 .977 2.443 2.389 4.954 4.806 10.031 9.779

14 .971 .978 2.448 2.386 4.956 4.798 10.022 9.770

15 .975 .979 2.452 2.384 4.957 4.794 10.016 9.764

16 .977 .980 2.455 2.384 4.958 4.791 10.011 9.760

17 .979 .982 2.457 2.383 4.959 4.789 10.008 9.757

18 .981 .983 2.459 2.383 4.960 4.788 10.005 9.755

19 .983 .984 2.461 2.384 4.960 4.787 10.003 9.754

20 .984 .985 2.462 2.384 4.961 4.787 10.001 9.752

21 .985 .986 2.464 2.385 4.961 4.787 9.999 9.752

22 .986 .987 2.465 2.385 4.962 4.787 9.998 9.751

23 .986 .987 2.466 2.386 4.962 4.787 9.997 9.751

24 .987 .988 2.466 2.386 4.963 4.787 9.996 9.751

25 .988 .989 2.467 2.387 4.963 4.787 9.995 9.750

26 .988 .989 2.468 2.387 4.964 4.787 9.995 9.750

27 .989 .990 2.468 2.388 4.964 4.788 9.994 9.750

28 .989 .991 2.469 2.388 4.964 4.788 9.994 9.750

29 .990 .991 2.469 2.389 4.964 4.788 9.993 9.750

30 .990 .992 2.470 2.389 4.965 4.789 9.993 9.750

40 .992 .995 2.473 2.393 4.966 4.792 9.990 9.752

60 .994 .999 2.475 2.397 4.968 4.795 9.989 9.754

120 .996 1.002 2.477 2.401 4.969 4.800 9.988 9.757

N(0,1) .997 1.006 2.479, 2.405 4.971 4.805 9.987 9.760

•

(a) True size (') of Burr critical value approximations

(b) Burr p-value (%) approximations using true critical values

a

lc%



Table 2

Burr Accuracy for the x
2
(v) disturbances

Nominal size 1% 2.5% 5% 10%

(a) (b) (a) (b) (a) (b) (a) (b)

1 1.105 .877 2.235 2.870 4.075 6.147 8.687 11.169
2 1.000 1.000 2.500 2.500 5.000 5.000 10.000 10.000
3 1.011 .989 2.512 2.448 5.002 5.002 9.958 10.043
4 1.019 .981 2.525 2.475 5.008 4.992 9.948 10.053
5 1.025 .976 2.536 2.464 5.021 4.979 9.951 10.050
6 1.028 .972 2.545 2.455 5.033 4.967 9.958 10.042
7 1.031 .970 2.553 2.448 5.044 4.956 9.968 10.033
8 1.033 .969 2.558 2.442 5.053 4.946 9.977 10.023
9 1.034 .967 2.563 2.437 5.062 4.938 9.987 10.013
10 1.035 .967 2.567 2.433 5.069 4.931 9.996 10.004
11 1.035 .966 2.571 2.430 5.075 4.924 10.004 9.996
12 1.036 .966 2.574 2.428 5.081 4.918 10.012 9.988
13 1.036 .966 2.576 2.425 5.086 4.913 10.020 9.980
14 1.036 .966 2.578 2.423 5.091 4.909 10.026 9.973
15 1.036 .966 2.580 2.422 5.095 4.905 10.033 9.967
16 1.036 .966 2.581 2.420 5.099 4.901 10.039 9.961
17 1.036 .966 2.583 2.419 5.102 4.898 10.044 9.955
18 1.035 .966 2.584 2.418 5.105 4.895 10.049 9.950
19 1.035 .966 Z,.585 2.417 5.108 4.892 10.054 9.945
20 1.035 .967 2.586 2.416 5.111 4.889 10.058 9.941
30 1.032 .969 2.591 2.412 5.128 4.872 10.091 9.907
40 1.029 .973 2.593 2.410 5.138 4.863 10.112 9.887
50 1.027 .975 2.593 2.409 5.144 4.857 10.126 9.873
60 1.025 .976 2.593 2.409 5.148 4.853 10.136 9.863
70 1.026 .978 2.594 2.410 5.149 4.851 10.136 9.855
80 1.024 .979 2.594 2.410 5.151 4.848 10.143 9.848
90 1.023 .980 2.594 2.410 5.153 4.847 10.149 9.843
100 1.022 .978 2.593 2.410 5.155 4.847 10.154 9.845
120 1.019 .982 2.592 2.411 5.157 4.845 10.162 9.837

(a) True Size (%) of Burr critical value approximations

(b) Burr p-value (%) approximations with true critical values

••••



Table 3

Burr Accuracy for F(v,w) distribution-approximations to the 57. nomihal size

2 3 4 5 6 7 8 9 10 15 20

20(a) 5.000 5.029 5.030 5.026 5.020 5.015 5.010 5.006 4.952 4.990 4.984
(b) 5.000 4.972 4.971 4.975 4.981 4.986 4.990 4.994 5.048 4.973 4.966

22(a) 5.000 5.021 5.017 5.008 5.000 4.992 4.960 4.979 4.974 4.957 4.948
(b) 5.000 4.980 4.984 4.992 5.000 5.008 5.041 5.020 5.025 5.041 5.049

24(a) 5.000 5.014 5.005 4.963 4.964 4.971 4.963 4.955 4.949 4.928 4.917
(b) 5.000 4.987 4.995 5.038 5.038 5.038 5.036 5.043 5.049 5.069 5.079

26(a) 5.000 5.008 4.995 4.980 4.966 4.954 4.943 4.935 4.927 4.902 4.993
(b) 5.000 4.992 5.005 5.019 5.033 5.044 5.054 5.063 5.070 5.094 5.007

28(a) 5.000 5.003 4.396 4.968 4.952 4.938 4.926 4.916 4.908 4.996 5.002
(b) 5.000 4.998 5.031 5.031 5.047 5.060 5.071 5.080 5.089 5.005 4.999

30(a) 5.000 4.998 4.479 4.958 4.978 4.981 4.911 4.900 4.991 4.906 5.009
(b) 5.000 5.002 5.021 5.040 5.024 5.018 5.085 5.097 5.009 5.119 4.991

35(a) 5.000 4.989 4.963 4.937 4.986 4.991 4.995 4.999 5.003 5.010 5.069
(b) 5.000 5.010 5.036 5.061 5.015 5.009 5.005 5.000 4.997 4.987 4.916

40(a) 5.000 4.983 4.951 4.987 4.992 4.998 5.003 5.007 4.969 5.027 5.035
(b) 5.000 5.017 5.048 5.013 5.008 5.003 4.997 4.992 5.040 4.973 4.964

45(a) 5.000 4.977 4.942 4.991 4.997 5.003 4.938 5.014 5.018 5.035 5.044
(b) 5.000 5.022 5.057 5.009 5.003 4.997 5.078 4.986 4.982 4.966 4.955

50(a) 5.000 4.973 4.988 4.994 5.001 4.920 5.013 5.019 5.024 5.199 5.051
(b) 5.000 5.027 5.012 5.006 5.000 5.102 4.986 4.980 4.977 4.765 4.948

55(a) 5.000 4.990 4.990 4.996 5.004 5.011 5.014 5.064 5.105 5.046 5.057
(b) 5.000 5.010 5.010 5.004 5.003 4.990 4.984 4.921 4.871 4.953 4.943

60(a) 5.000 4.966 4.991 4.998 5.006 4.980 5.052 5.013 5.032 5.051 5.062
(b) 5.000 5.033 5.009 5.002 4.994 5.020 4.949 4.987 4.968 4.950 4.937

(a) True size (%) of Burr critical value approximations

(b) Burr p-value (%) approximations with the true critical value



Table 4

Burr Accuracy for Autocorrelation Tests

Nominal
Size

Data

1% 5% 10%

(a) (b) (a) (b) (a) (b)

AR(1) Durbin Watson test

n = 20
spirit 1.011 .989 4.834 5.170 9.811 10.187
trend 1.018 .981 4.823 5.182 9.791 10.280
CPI 1.013 .986 4.808 5.197 9.782 10.216
liquidity 1.021 .971 4.788 5.218 9.750 10.247
n = 40
spirit 1.010 .989 4.803 5.202 9.774 10.225
trend 1.012 .987 4.800 5.205 9.767 10.232
CPI 1.010 .989 4.800 5.205 9.769 10.229
liquidity 1.012 .989 4.801 5.204 9.767 10.231
n = 60
spirit 1.008 .991 4.795 5.211 9.763 10.235
trend 1.010 .990 4.794 5.212 9.760 10.238
CPI 1.008 .991 4.794 5.211 9.763 10.235
liquidity 1.009 .990 4.792 5.213 9.759 10.239

AR(4) Wallis test

n = 20
CPI 1.056 .939 4.826 5.191 9.729 10.271
seasonals 1.039 .958 4.824 5.181 9.763 10.236
liquidity 1.041 .956 4.824 5.182 9.763 10.237
n = 40
CPI 1.020 .978 4.790 5.210 9.750 10.248
seasonals 1.015 .984 4.800 5.207 9.761 10.237
liquidity 1.020 .978 4.797 5.209 9.752 10.248
n = 60
CPI 1.014 .985 4.789 5.216 9.748 10.250
seasonals 1.011 .988 4.792 5.214 9.756 10.242
liquidity 1.013 .986 4.791 5.215 9.753 10.246

(a) True size (%) of Burr critical value approximations.

(b) Burr p-value (%) approximations with true critical values.



Table 5

Burr accuracy for the Breusch-Pagan heterscedasticity test

Nominal size

Data

1% 5%

(a) (b) (c) (a) (b) (c) (a)

10%

(b) (c)

n=24
trend
lognormal
liquidity
uniform

n=40
trend
lognormal
liquidity
uniform

n=64
trend
lognormal
liquidity
uniform

( 0, 2.89)
(-.67,3.65)
(-.42,3.46)
( .13,2.98)

( 0, 2.94)
(-.59,3.71)
(-.18,3.31)
( .14,2.99)

( 0, 2.96)
(-.48,3.57)
( .79,4.20)
( .12,2.99)

1.017 .824
.738 1.258
.932 1.068
1.060 .922

1.015 .980
.951 1.046
.967 1.024
1.062 .918

1.014 .981
.926 1.081
1.463
1.049 .933

.746

.554

.221

.641

.779

.678

.641

.782

.863

.824

.604

.863

4.974 5.035 2.706 9.958 10.051 6.650
4.939 5.292 2.462 10.464 9.625 5.019
4.938 4.962 1.817 10.022 9.831 5.040
4.984 5.013 3.873 9.922 10.153 8.369

4.967 5.043 4.464 9.952 10.057 9.301
4.938 5.073 2.993 9.991 10.004 6.780
4.911 5.017 3.464 9.948 9.968 7.495
4.991 4.999 4.366 9.929 10.083 9.140

4.964 5.046 4.672 9.950 10.066 9.574
4.920 5.107 3.667 10.006 9.991 7.811
5.256 4.670 2.355 9.895 10.251 8.643
4.984 5.011 4.611 9.934 10.077 9.475

(a) True size (%) with Burr critical value approximation
(b) Burr p-value (X) approximations with true critical values

(c) True size of test using asymptotic X2(1)critical value.
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