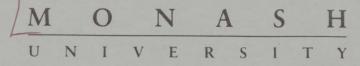


The World's Largest Open Access Agricultural & Applied Economics Digital Library


# This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search http://ageconsearch.umn.edu aesearch@umn.edu

Papers downloaded from **AgEcon Search** may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. MONASH



18/90



# ESTIMATING AGGREGATE CONSUMPTION FUNCTION USING RANDOM COEFFICIENT APPROACH: THE AUSTRALIAN CASE

Asraul Hoque

GIANNINI FOUNDATION OF AGRICULTURAL ECONOMICS LIBRARNIN 181991

Working Paper No. 18/90

November 1990

DEPARTMENT OF ECONOMETRICS

ISSN 1032-3813

ISBN 0 86746 948 X

# ESTIMATING AGGREGATE CONSUMPTION FUNCTION USING RANDOM COEFFICIENT APPROACH: THE AUSTRALIAN CASE

Asraul Hoque

Working Paper No. 18/90

November 1990

DEPARTMENT OF ECONOMETRICS, FACULTY OF ECONOMICS, COMMERCE & MANAGEMENT

MONASH UNIVERSITY, CLAYTON, VICTORIA 3168, AUSTRALIA.

# ESTIMATING AGGREGATE CONSUMPTION FUNCTION USING RANDOM COEFFICIENT APPROACH : THE AUSTRALIAN CASE

by

Asraul Hoque\* Department of Econometrics Monash University Clayton, Vic. 3168 Australia

July 1989

# ABSTRACT

We estimate a Friedman type consumption function incorporating varying coefficient approach to investigate the changing pattern of consumer responses in Australia using quarterly data from 1959IV to 1988IV. The methodology used was that of Hildreth and Houck (1968), Singh et al (1976) and Hoque (1988b). The Lagrange multiplier test conducted supports the hypothesis of randomness in the response coefficients, suggesting the use of a random coefficient technique rather than an OLS method in estimating our model. We also extended the model by considering separate treatment for both random and the systematic changes in the structural parameters. Our study clearly indicates a strong stickiness in consumer habits and the results also imply that the consumers tend to adapt to changes in income more and more quickly.

The author is grateful to Kim S. See for excellent computational assistance. He also thanks Professor Maxwell King and Grant Hillier for some helpful comments.

#### I. INTRODUCTION

1

As far as consumption studies in Australia are concerned, there are a number of empirical works that have generated useful results by considering a variety of explanatory variables. For example, Arndt and Cameron (1975), using annual data, have found a better fit between consumption and non-farm disposable income than between consumption and total disposable income.

Studies by Evans and Higgins (1972), Taylor (1975), Davy (1976) and Bonyhady and Caton (1976) have revealed that there is a significant negative relationship between consumption expenditure and price inflation. It has also been pointed out that liquid assets and interest rates have good explanatory power for the consumption expenditure as well.

For models where the underlying causal relationship involves the notion of permanent income and of habit persistence or inertia, we have studies by Smyth and McMahon (1972), Higgins and Fitzgerald (1973), Norton and Broadbent (1970) and Freebairn (1976). These studies have found that the inclusion of a lagged consumption variable improved the explanatory power of the consumption function significantly. However, all but one of the studies mentioned above<sup>1</sup> are based on the standard multiple regression model with constant coefficients which implies that the response of a unit change in the regressors to the dependent variable remains unchanged over observations.

The assumption of constancy of the coefficients seems rather restrictive and may be replaced by varying coefficient approach which could be useful and more realistic in applied economic research. For

Freebairn (1976) is the only exception who performed two tests to see whether the parameters of the model are constant over the sample period. He found no evidence of significant variation in the true parameters of the quarterly model over the sample period considered.

example, we often approximate functional forms by linear equations and use aggregate data by assuming representative micro unit. In the case of consumption function, sometimes unobservable variables (for example, permanent income) appear in the model and hence some proxy variables are Also, the government policy variables affect both used instead. consumption expenditures and disposable income over time. All these factors are expected to cause some changes in the coefficients as time Moreover, consumers often react differently to external passes by. factors under different conditions of temporal, psychological or demographic variations. Differing reactions of this kind provide poor support for stable econometric relationships since a 'correct' equation under one set of conditions becomes 'incorrect' when the conditions change. In Australia, many of the early estimated relationships did not stand the test of time, and under rapidly changing conditions became This has led to a unstable and untenable in any practical sense. concentration on intuitive and ad hoc applications of consumer survey data (See McDonnell, 1985).

However, a great deal of attention has focussed recently on random coefficient models applying to different economic problems [for example, see Akkina (1974), Singh et al (1976), Hoque (1988) among others]. Despite some use of this technique in several countries, no study so far has been undertaken using Australian data. It is, therefore, the aim of this paper to provide an alternative estimation of the consumption function using random coefficient approach and then compare with the OLS approach.

Plan of the paper: We describe the model in section II. We consider both constant mean response (CMR) model and the variable mean response (VMR) model. Section III deals with the estimation procedure while the

testing for a random coefficient model is discussed in section IV. Section V analyses the empirical results based on Tables 1 and 2. Section VI provides a conclusion. Finally, we present tables 3 through 12 to enable the readers to calculate the response coefficients for each observation.

# II. THE MODEL

The major feature of the random coefficient model (RCM) is that it allows the coefficients of the explanatory variables to vary randomly over observations. Besides being a more sensible approach in utilizing available information, the RCM has the ability to capture the effects of omitted variables like tastes, attitudes and other qualitative variables. The present paper deals with two versions of the RCM. We will first consider the Hildreth-Houck (H-H) model where the actual response  $\beta_{it}$  is subject to a random fluctation that causes it to deviate from its average value or the mean response coefficient,  $ar{eta}_{i}$  (for the i<sup>th</sup> explanatory variable). Since we are using time series data, it is likely that some systematic variations may appear in the sample. For instance, the peak or the trough of a business cycle may indicate systematic fall or rise of some parameters. Hence, a more general approach in which the actual response coefficient fluctuates not only about the average value  $\bar{\beta}_i$ , but also around some trend, is examined. We shall call these models constant mean response (CMR) model and variable mean response (VMR) model respectively.

These approaches will be illustrated with Friedman's permanent income hypothesis where personal consumption expenditure is a function

of personal disposable income and lagged personal consumption expenditure. That is,<sup>2</sup>

$$C_{t} = \beta_{1} + \beta_{2}Y_{t} + \beta_{3}C_{t-1}$$
(1)

where  $Y_{t}$  = personal disposable income at time t

where

 $C_{t}$  = personal consumption expenditure at time t.

If it is assumed that permanent income is a weighted average of present and past values of measured income such that the weights decline geometrically according to

$$C_{t} = a + b_{0}Y_{t} + b_{1}Y_{t-1} + b_{2}Y_{t-2} + \dots$$
(2)  
$$b_{t} = (1 - \lambda) \lambda^{i}b \text{ and } 0 < \lambda < 1,$$

then a consumption function of the following form is obtained:

$$C_{t} = a(1 - \lambda) + (1 - \lambda) b Y_{t} + \lambda C_{t-1}$$
(3)

The short term marginal propensity to consume (MPC) is thus simply the coefficient of  $Y_t$  or  $(1 - \lambda)b$  in the case of (3) where b is taken to be the long run MPC. Given all the estimates for the coefficients in (1), the long run MPC can be easily evaluated by taking the ratio  $\beta_2/(1-\beta_3)$  where  $\beta_2$  and  $\beta_3$  are analogues of  $(1 - \lambda)b$  and  $\lambda$  respectively.<sup>3</sup>

Now, let the random coefficient consumption function be

$$C_{t} = \beta_{1t} + \beta_{2t}Y_{t} + \beta_{3t}C_{t-1}$$

$$t=2,...,T.$$
(4)

It can be observed from (4) that the actual responses vary across time and so do the intercept terms. Model (4) can also be written as

$$C_{t} = \sum_{i=1}^{3} \beta_{it} X_{it}$$
(5)

where  $X_{it}$  represents the ith explanatory variable. It should be noted  $X_{1t}$  is an n  $\times$  1 vector of ones to represent the intercept term here.

<sup>2</sup> Disturbance term in equation (1) will be added later through random coefficients.

<sup>3</sup> Equations (1) and (3) are observationally equivalent.

We exclude the disturbance term from (5) primarily for the sake of convenience. We recognise that while the inclusion of an additive disturbance term together with random intercept term creates an identification problem, its exclusion in some cases may amount to losing part of the structure of the model [see Amemiya (1971) and Akkina (1974)].

The number of coefficients to be estimated in the model is  $3 \times n$ (n = T-1) but we have only n observations. Thus, straightforward estimation of (5) is not possible. We need certain assumptions regarding the distribution of the random coefficients before we proceed to estimate the model. We specify now these assumptions regarding CMR and VMR models.

# A. <u>CMR Model</u>

We consider the following specification which says that the actual response coefficients are random but fluctuate around its mean value, that is,

$$\beta_{it} = \bar{\beta}_{i} + \varepsilon_{it}$$
(6)

where  $\bar{\beta}_{i}$  is the mean response coefficient and  $\varepsilon_{it}$  is the usual random component (which serves as the disturbance term of the model), having the following properties:

$$E(\varepsilon_{it}) = 0 ; var(\varepsilon_{it}) = \sigma_{ii}^{2}$$
$$E[\varepsilon_{it}, \varepsilon_{i't'}] = 0 \text{ for } i \neq i', t \neq t'$$

and hence

$$E(\beta_{it}) = \overline{\beta}_{i} \qquad \text{and} \\ var(\beta_{it}) = var(\varepsilon_{it}) = \sigma_{ii}^{2}$$
(7)

This implies that the random coefficients  $\beta_{it}$  are independently and identically distributed with fixed means  $\bar{\beta}_i$  and variance  $\sigma_{ii}^2$ . In this case, model (5) can be expressed as:

$$C_{t} = \sum_{i=1}^{3} (\bar{\beta}_{i} + \varepsilon_{it}) X_{it}$$
$$= \sum_{i=1}^{3} \bar{\beta}_{i} X_{it} + W_{t}$$
(8)

where

$$W_t = \Sigma \varepsilon_{it} X_{it}$$

It can be easily verified that

$$E(W_t) = 0 for all t$$
  

$$E(W_t, W_{t'}) = \Sigma \sigma_{ii}^2 X_{it}^2 for t = t'$$
  

$$= 0 for t \neq t'.$$

Thus, CMR model reduces to a linear regression model with fixed coefficients and heteroscedastic errors.<sup>4</sup>

We note that one of the X's in our illustration is  $C_{t-1}$  which cannot be assumed non-stochastic. The problems associated with the use of a lagged dependent variable in time series models, namely the bias in and the inconsistency of the estimators are too well-known and too widely understood to need an elaboration here. However, it should be mentioned that the use of  $C_{t-1}$  in (8) may be free from such problems in To be more specific, the bias in and the the present case. inconsistency of the estimators in such models are dependent upon the autoregressive nature of the residual term and its relationship with the But the disturbance lagged dependent variable (see Griliches, 1961). terms W<sub>t</sub> in (8) are clearly serially independent because  $\varepsilon_i$ 's are so Further,  $Y_t$  and  $C_{t-1}$  are also assumed to be independent of assumed. ε's.

4

One might notice that this is an example where heteroscedasticity is not exclusively a problem related to cross-section data.

# B. VMR model

The actual response coefficients in this case are assumed to be

$$\beta_{it} = \bar{\beta}_{i} + \bar{\alpha}_{i} T + \varepsilon_{it}$$
(9)

where T is the calender time used to take into account those factors that affect  $\beta_{it}$  systematically. In a consumption function this might yield long run MPC greater than unity. Singh et al (1976) and we have found that this indeed is the case for certain observations which may be true of the modern consumer economy. However, even if one does not consider any version of random coefficient models, long run MPC might exceed unity as is evident from Tables 1 and 2 (the OLS results). Now

$$E(\beta_{i+}) = \overline{\beta}_{i} + \overline{\alpha}_{i}T$$
(10)

and the assumptions made for  $\varepsilon_{it}$  hold as well. These assumptions imply that the response coefficients fluctuate not only around a constant value but also around a trend component. Substituting (9) in (5) we get

$$C_{t} = \sum_{i=1}^{3} (\bar{\beta}_{i} + \bar{\alpha}_{i} T + \varepsilon_{it}) X_{it}$$
$$= \sum_{i=1}^{3} \bar{\beta}_{i} X_{it} + \sum_{i=1}^{3} \bar{\alpha}_{i} T X_{it} + W_{t}$$
(11)

where

$$W_t = \Sigma \varepsilon_{it} X_{it}$$

It should be noted that the error structure for the VMR model is the same as that of CMR model. This simplifies the estimation problem as we shall see in the next section. The VMR model like the CMR reduces to a linear regression model with constant coefficients and heteroschedastic errors.

# III. Estimation procedure

Equations (8) and (11) can be written in a general matrix notation as

$$C = Z \beta + W$$
(12)

where C and W are n  $\times$  1 vectors,  $\beta$  is k  $\times$  1 and Z is n  $\times$  k of non-stochastic regressors, X<sub>it</sub>. For the VMR model, we partition Z and  $\beta$  as

 $Z = [X X^*]$ ,  $\beta = [\overline{\beta} \overline{\alpha}]'$ 

where X and X\* are n × k matrices of  $X_{it}$  and  $TX_{it}$  respectively with  $\bar{\beta}$  and  $\bar{\alpha}$  being the column vectors of coefficients for  $X_{it}$  and  $TX_{it}$  respectively.

Given the assumptions about  $\epsilon_{it}$  in (7), the covariance matrix of W is a diagonal matrix given by

 $E(WW') = diag(d_{11}, d_{22}, \dots, d_{nn}) = D$ , let us say

where

$$d_{ii} = \Sigma \sigma_{ii}^2 X_{it}^2 .$$

If  $\sigma_{ii}^2$  's and hence D were known, we could use Aitken's procedure to obtain

$$\hat{\beta} = (Z'D^{-1}Z)^{-1} Z' D^{-1}C$$
(13)

However, these variances are not known and we must estimate them. One way would be to find the LS residuals to get an initial estimate of the variances as follows:

$$\hat{W} = C - Zb = MC = MW \tag{14}$$

where  $M = I - Z(Z'Z)^{-1}Z'$  is an n × n idempotent matrix and b is the OLS estimator of  $\beta$ . Next, we apply OLS technique to get the estimate of the variances<sup>5</sup> to the following model

$$\dot{W} = \dot{M} \dot{Z} \dot{\sigma} + \eta = G \dot{\sigma} + \eta \tag{15}$$

where  $\dot{W}$ ,  $\dot{M}$ ,  $\dot{Z}$  and  $\dot{\sigma}$  are the squared elements of W, M, Z and  $\sigma_{11}$  respectively and

See Hoque (1989) for details.

 $m = \dot{W} - E(\dot{W})$  is a vector of new disturbances.

Now, from (15)

$$\hat{\sigma} = (G'G)^{-1}G'\hat{W}$$
(16)

Finally, the operational GLS estimator of  $\beta$  is obtained by substituting the  $\hat{\sigma}_{ii}^2$  's in D with their respective estimates from (16). Thus, the new estimator of  $\beta$  is

$$\tilde{\beta} = (Z'\hat{D}^{-1}Z)^{-1} Z' \hat{D}^{-1}C$$
(17)

where  $\hat{D} = \text{diag}(\hat{d}_{11}, \hat{d}_{22}, \dots \hat{d}_{nn})$ with  $\hat{d}_{ii} = \Sigma \hat{\sigma}_{ii}^2 X_{it}^2$ .

Having estimated  $\beta_i$ 's, the individual response coefficients can be obtained from the following<sup>6</sup>

$$\hat{\beta}_{it} = \tilde{\beta}_{i} + e_{it} , \quad \text{for CMR model}$$
$$\hat{\beta}_{it} = \tilde{\beta}_{i} + \tilde{\alpha}_{i} T + e_{it}, \quad \text{for VMR model}$$

Estimates for e<sub>it</sub> are obtained by applying Griffiths' (1972) method which gives

$$\mathbf{e}_{it} = \mathbf{u}_{t} \mathbf{x}_{it} \hat{\sigma}_{ii}^{2} / \Sigma \hat{\sigma}_{ii}^{2} \mathbf{x}_{it}^{2}$$
(18)

where

$$\begin{aligned} u_t &= C_t - \Sigma \ \tilde{\beta}_i \ X_{it} \ , \ \text{if CMR model} \\ &= C_t - \Sigma \ \tilde{\beta}_i \ X_{it} - \Sigma \ \tilde{\alpha}_i \ TX_{it} \ , \ \text{if VMR model}. \end{aligned}$$

#### Testing for randomness of the coefficients IV.

To determine which model suits our present study best, we conduct the LM test reported in Breusch and Pagan (1979). This test amounts to testing for heteroscedasticity which is the central focus in random

No empirical work using random coefficient model has reported the range and individual values for the actual response coefficients so far. We calculated and reported this to give a fair idea to the reader about the variation in coefficients. For example, Singh et al (1976) report only the mean and variance of the actual response coefficients.

coefficient technique. The effect of introducing stochastic variation in coefficients is that the errors in the reduced model become heteroscedastic. Thus, this test suits our purpose. Basically, we are testing the null hypothesis<sup>7</sup>

$$H_0: \sigma_{22}^2 = \sigma_{33}^2 = \ldots = \sigma_{kk}^2 = 0$$

against the alternative that they are non-zeros.

The test turns out to be simply one-half of the explained sum of squares in the regression of  $\dot{g}$  on  $\dot{X}$  (we replace  $\dot{X}$  by  $\dot{Z}$  in VMR model), that is,

$$LM = 1/2 \dot{g}' \dot{X} (\dot{X}' \dot{X})^{-1} \dot{X}' \dot{g} \sim \chi^2_{(k-1)}$$
(19)

where g is n  $\times$  1 vector whose t<sup>th</sup> element is given by

$$\dot{g}_{t} = (\hat{W}_{t}^{2}/\hat{\sigma}_{11}^{2} - 1).$$

This test statistic is distributed asymptotically as a  $\chi^2$  with k-1 degrees of freedom.<sup>8</sup> Our calculated LM values for the two consumption functions appear to be much higher than the tabulated values of  $\chi^2$  with k-1 degrees of freedom (88.62 for CMR model and 63.46 for VMR model). This suggests rejection of the hypothesis of zero variation in the estimated coefficients. Thus, the random coefficient model should be used to analyse the Australian consumption function.

# V. <u>Data and Results</u>

The estimation of the above models are conducted using quarterly data over the period 1959IV - 1988IV obtained from the Australian Bureau of Statistics (ABS). The consumption functions have been estimated both

Note that  $\sigma_{11}^2$  represents the variation in the model as a whole. Therefore, to test for variability of the coefficients, we need only test from  $\sigma_{22}^2$  to  $\sigma_{kk}^2$ .

8

7

See Hoque (1988a) for a simplified derivation of the test.

by OLS (fixed coefficient) and RC methods and the results are presented in Tables 1 (CMR model) and 2(VMR model). Both models yield very high value of  $R^2$  (.9999) and the Durbin's h-statistic clearly does not As can be seen from Table 1, all the indicate serial correlation. coefficients (with the exception of the constant term in the OLS case) The mean response coefficients, are significant at the 5% level. whether estimated using the OLS or the RC method, appear not to be very different from one another in terms of their magnitude. However, the range of the actual response coefficients turns out to be quite substantial because of the large variation in the error component. This suggests the presence of randomness in the response coefficients. This is reinforced by significant LM value (at 1% level) and significant  $\hat{\sigma}_{_{22}}$ and  $\hat{\sigma}_{22}$  values (at 5% level).

The results are quite interesting in the sense that they question the findings of existing Australian studies concerning fixity of the marginal propensity to consume. In fact, over the period of estimation the short run MPC is found to vary between .1196 and .2798. The more puzzling but rather interesting result is obtained in connection with The mean long run MPC is calculated to be 1.0178. No long run MPC. such result has been obtained before as far as past Australian studies on consumption function are concerned. The long run MPC varies between .404 and 2.516 during the sample period. However, this result supports Singh's (1976) in connection with Canada. Our results suggest that consumption expenditures might exceed current income for a number of Given the excellent credit observations in our sample period. facilities in a modern consumer economy which is growing, our results are not unexpected. Until recently, interest rates on borrowing such as housing mortgage rate and consumer credit rate did not have any dampening effect on consumption expenditures. Our preliminary

regressions with interest rates as additional explanatory variables found them statistically insignificant which has also been found true in many empirical demand for money functions. It is the availability of credit that matters as well as the belief that the expected income will be higher. Both of these factors are true for the Australian consumers. This might explain the higher values of the long run MPC. The lower values may be explained by bad times like recession or absence of government welfare programme or lower MPC for the farm sector as reported by Smyth and McMahon (1972). As regards the mean long run MPC we expect that to be around unity which is normally obtained in the fixed coefficient regression model as can be checked from Table 1.

Regarding  $\tilde{\beta}_3$  (coefficient of lagged consumption) we see that it dominates  $\tilde{\beta}_2$  in size reflecting strong stickiness in consumer habits. This high dependence of current consumption on past consumption could be due to the introduction of wage-indexation in 1975 designed to stabilize the inflation rate and to the introduction of well-developed credit facilities. Moreover, the persistent nature of the government policy in controlling import and foreign exchange and tariff protection could have increased confidence among the public in maintaining standard of living. This would reinforce stickiness in consumer habits.

When the CMR model is extended to capture the influence of factors that may vary systematically with time, we find that the resulting model fits the data quite well.<sup>9</sup> A number of points are worth making in regard to the results obtained from this extended version. Firstly, as evident from Table 2, there are quite substantial variations in the

<sup>&</sup>lt;sup>9</sup> It should be noted that the VMR model does not include an intercept term. Our initial estimate shows that this term is statistically insignificant. Its inclusion also leads to a poorer fit. However, the effect of this omission can be taken care of by the trend term included in the model.

error component of the VMR model and hence in the response coefficients. On the other hand, if we consider the statistically insignificant estimates of  $\sigma_{22}$  and  $\sigma_{33}$ , we may be tempted to conclude that there is no random character of the response coefficients in the model. But their joint significance is established by the LM value which is 63.462. Secondly, we note that  $\tilde{\alpha}_1$  and  $\tilde{\alpha}_2$  are not significant at the 5% level while  $\tilde{\beta}_2$  and  $\tilde{\beta}_3$  are. This suggests that the response coefficients of both income and lagged consumption fluctuate around a constant value rather than a trend which makes the simpler version (CMR model) more acceptable.

Despite the statistical insignificance of  $\widetilde{\alpha}$  's, the VMR model possesses some interesting implications. When the coefficients  $\tilde{lpha}_2$  and  $\tilde{\alpha}_2$  are compared, it is apparent that they are very close to each other in magnitude but opposite in sign. There is the tendency for  $\bar{\alpha}_{1t}$  to rise and  $\bar{\alpha}_{2t}$  to fall. One possible interpretation is that the consumers may be gradually decreasing their dependence of current consumption on past consumption and tend to adapt to changes in income. We note that such a finding was obtained by Singh et al (1976) for Japan, Netherlands This suggests that there has been structural change in the and U.K. consumption pattern during the period under study, resulting in Structural shift in income. increasing dependence on current consumption behaviour may have been due, in part, to increasing industrialization with a consequently rising proportion of wage earners in population. On the other hand, there is also a strong evidence of stickiness which may be the result of bad performance of the economy from time to time in terms of recession, inflation, balance of payments On the whole, the Australian difficulties, devaluation and so on. consumers show both backward-looking and forward-looking tendency in their consumption pattern.

# Table 1

# The CMR Model

Estimates of Mean Response Coefficients and the Ranges for the Actual Response Coefficients and for the Error Component.

| Coefficients       | OLS Model RC Model                    |             | Range f   | or $\hat{\beta}_{it}$ | Range for e <sub>it</sub> |  |  |
|--------------------|---------------------------------------|-------------|-----------|-----------------------|---------------------------|--|--|
| <br>β <sub>1</sub> | -25.7576                              | -28.9327*   | -141.97 t | o 118.6               | -113 to 147.5             |  |  |
| •                  | (-1.5684)                             | (-1.7609)   |           | •<br>•                |                           |  |  |
|                    |                                       |             |           |                       |                           |  |  |
| β <sub>2</sub>     | .2025**                               | .1999**     | .1196     | to .2798              | 08 to .08                 |  |  |
|                    | (8.9624)                              | (8.8426)    |           |                       |                           |  |  |
| β <sub>3</sub>     | .8005**                               | .8036**     | .7044     | to .8888              | 099 to .099               |  |  |
| 5                  | (31.9277                              | ) (32.0379) |           |                       |                           |  |  |
| σ <sub>22</sub>    |                                       | 000139*     |           |                       |                           |  |  |
| 22                 | · · · · · · · · · · · · · · · · · · · | (-1.7057)   |           |                       |                           |  |  |
| °33                |                                       | .000201*    |           | •                     |                           |  |  |
| 33                 |                                       | (1.9956)    |           |                       |                           |  |  |
| $R^2 = .999$       | h = .                                 | 2817        | LM = 8    | 8.6206                |                           |  |  |

A single star indicates significance at 5% level while a double star at 1% level. The figures in brackets are t values. Further, note that  $e_{it}$  displays remarkable symmetry in connection with  $\tilde{\beta}_2$  and  $\tilde{\beta}_3$ .

# Table 2

# The VMR Model

Estimates of Mean Response Coefficients and the Ranges for the Actual Response Coefficients and for the Error Component.

| Coefficients    | OLS Model | RC Model | Range for $\hat{\beta}_{it}$ | Range for e <sub>it</sub> |
|-----------------|-----------|----------|------------------------------|---------------------------|
| β <sub>2</sub>  | .0755     | . 1752*  | .1721 to .2370               | 00008 to .0004            |
|                 | (.8097)   | (1.7528) |                              |                           |
| β <sub>3</sub>  | .9395**   | .8254**  | .7255 to .8405               | 0208 to .0284             |
| C               | (8.5986)  | (7.4052) |                              |                           |
| ã <sub>1</sub>  | .00137    | .00055   |                              |                           |
| <b>.</b>        | (1.2536)  | (.496)   | ·                            |                           |
| â2              | 00153     | 00053    |                              |                           |
|                 | (-1.2391) | (4184)   |                              |                           |
| σ <sub>22</sub> |           | 000001   |                              |                           |
| 22              |           | (0017)   |                              |                           |
| σ <sub>33</sub> |           | .00008   |                              |                           |
| <b>JJ</b>       |           | (:1008)  |                              |                           |
| $R^2 = .99$     | 99 h      | = .7641  | LM = 63.46                   | 52                        |

A single star indicates significance at 5% level while a double star at 1% level. The figures in brackets are t values.

# VI. <u>Conclusion</u>

Although CMR model appears more sensible in terms of statistical significance and random variation in coefficients, the VMR model also indicates some interesting implications despite the lack of strong statistical significance. On the whole, the Australian consumers exhibit strong dependence on past consumption but this habit is gradually diminishing as consumers tend to adapt to changes in income more and more quickly. This is normal in a growing economy where old standard of living is replaced by a new one in a continual process. People always keep part of the old habits while adapt to new ones in the transition period in a technologically advanced industrialized country.

The fact that consumers are able to spend beyond their means with the help of loan finances should not be taken lightly. High interest rate alone cannot control aggregate demand (consumption being the major The government policy must be directed part of aggregate demand). towards inducing more savings by abolishing tax on interest income and This will increase by making real interest rate more attractive. savings especially private household savings and thus private consumption expenditure will decrease. Although the end of production is consumption, investment must also be a continuous process to maintain and augment consumption for future generations. Without savings this is not possible and the future generations will be presented with debt burdens only both national and international.

#### REFERENCES

- Akkina, K.R. (1974), "Application of random coefficient regression model to the aggregation problem", *Econometrica*, 42, 369-75.
- Amemiya, T. (1971), "The estimation of the variances in a variance-components model", International Economic Review, 12, 1-31.
- Arndt, H.W. and B. Cameron (1957), "An Australian consumption function," *Economic Record*, 33, 108-15.
- Bonyhady, B.P. and C. Caton (1976), "The savings ratio A progress report," mimeographed seminar paper delivered at A.N.U., Canberra, Australia.
- Breusch, T.S. and A.R. Pagan (1979), "A simple test for heteroscedasticity and random coefficient variation," *Econometrica*, 47, 1287-94.
- Davy, G.M. (1975), "A consumption function with money illusion: The Australian experience," *Economic Analysis and Policy*, 6, 23-41.
- Evans, E.A. and C.I. Higgins (1972), "Consumption behaviour in accelerating inflation," mimeographed seminar paper delivered at A.N.U. Canberra, Australia.
- Freebairn, J.W. (1976), "Determination of consumption," in W.E. Norton and D.W. Stammer (eds.), Conference in Applied Economic Research: papers and proceedings, Reserve Bank of Australia, Sydney.
- Griffiths, W. (1972), "Estimating actual response coefficients in the Hildreth-Houck random coefficients model," *Journal of American Statistical Association*, 67, 633-35.
- Griliches, Zvi (1961) "A note on serial correlation bias in estimates of distributed lags," *Econometrica*, 29, 65-73.
- Higgins, C.I. and V.W. Fitzgerald (1973), "An econometric model of the Australian economy," mimeographed, Treasury, Canberra, Australia.
- Hildreth, C. and J.P. Houck (1968) "Some estimators for a linear model with random coefficients," *Journal of American Statistical Association*, 63, 584-95.
- Hoque, A. (1988a), "An application and test for a random coeficient model in Bangladesh agriculture," delivered at Australian Economic Congress, A.N.U., Canberra, Australia.
- Hoque, A. (1988b), "Farm size and economic-allocative efficiency in Bangladesh agriculture," *Applied Economics*, 20, 1353-68.
- Hoque, A. (1989), "Estimation in a single equation model involving coefficient variation and expectation variable," delivered at the Far Eastern Meeting of the Econometric Society held in Kyoto, Japan.

- McDonnell, J.S. (1986), "What do consumer surveys tell us about consumers?" Working paper No. 2, IAESR, University of Melbourne, Australia.
- Norton, W.E. and J.R. Broadbent (1970), "Equations for personal consumption expenditure," Occasional Paper No. 38, Reserve Bank of Australia, Sydney.
- Singh, B., A.L. Nagar, N.K. Choudhry and B. Raj (1976), "On the estimation of structural change: A generalization of the random coefficients regression model," *International Economic Review*, 17, 340-61.
- Smyth, D. and P. McMahon (1972), "The Australian short-run consumption function," *Economic Record*, 48, 220-31.
- Taylor, J.C. (1975), "A current policy issue: household savings," mimeographed, delivered at Reserve Bank of Australia, Canberra.

# Estimates of $e_{1t}$ for the period 1959IV - 1988IV

|          | •         |          |            |     |           |
|----------|-----------|----------|------------|-----|-----------|
| 1        | 33.79918  | 40       | 5.02105    | 79  | -64.61829 |
| 2        | 42.24775  | 41       | 23.42192   | 80  | 20.90054  |
| 3        | 35.05976  | 42       | 4.04700    | 81  | -15.76163 |
| 4        | 10.12766  | 43       | 8.59883    | 82  | 79.62375  |
| 5        | -11.15312 | 44       | 18.09074   | 83  | -30.08413 |
| 6        | -20.01367 | 45       | 24.77250   | 84  | 11.44675  |
| 7        | -33.25308 | 46       | -23.76343  | 85  | 6.68213   |
| 8        | -12.62538 | 47       | -9.88597   | 86  | 4.24746   |
| 9        | 5.67398   | 48       | 27.54114   | 87  | 32.97166  |
| 10       | 20.64013  | 49       | -53.33640  | 88  | 37.84548  |
| 11       | 16.79062  | 50       | -2.31868   | 89  | -8.58528  |
| 12       | -1.37404  | 51       | -32.23813  | 90  | 8.40884   |
| 13       | 6.72727   | 52       | -10.48565  | 91  | 59.05992  |
| 14       | 7.54849   | 53       | -26.06797  | 92  | 7.52574   |
| 15       | -0.11098  | 54       | -32.55489  | 93  | 22.30850  |
| 16       | 25.26062  | 55       | -11.86285  | 94  | 12.98525  |
| 17       | -27.49999 | 56       | -28.10324  | 95  | -14.65616 |
| 18       | -11.25729 | 57       | 26.21784   | 96  | -10.01832 |
| 19       | 6.35195   | 58       | -24.62669  | 97  | 9.89886   |
| 20       | 3.48047   | 59       | 19.80067   | 98  | -9.56803  |
| 20       | -6.27536  | 60       | 147.53584  | 99  | -26.35378 |
| 22       | -8.44237  | 61       | -51.39723  | 100 | -17.47275 |
| 22       | -8.40386  | 62       | 42,95486   | 101 | 0.65015   |
| 23<br>24 | -11.56148 | 63       | 40.16316   | 102 | 21.66310  |
| 24<br>25 | -7.30558  | 64       | 28.23397   | 103 | 20.09355  |
| 25<br>26 | -10.54044 | 65       | -10.83999  | 104 | 18.09161  |
| 26<br>27 | 1.84875   | 66       | 42.99211   | 105 | 13.29179  |
| 28       | -18.09817 | 67       | 27.29949   | 106 | -20.29386 |
| 28       | -14.66467 | 68       | -113.03699 | 107 | 18.64076  |
| 30       | 4.95817   | 69       | 2.83130    | 108 | 7.05926   |
| 30       | -25.30933 | 70       | -75.95947  | 109 | -2.24674  |
|          | 23.62238  | 70       | -15.38796  | 110 | -2.46434  |
| 32       | 17.61499  | 72       | -53.90295  | 111 | -6.62923  |
| 33       | 31.08604  | 73       | -42.66204  | 112 | 14.59098  |
| 34       |           | 74       | -100.89952 | 113 | -13.65300 |
| 35       | 2.88830   | 74       | 98.48744   | 114 | 5.30793   |
| 36       | -9.12710  | 76       | -37.17895  | 115 | -13.72483 |
| 37       | 8.28640   | 76<br>77 | -24.85216  | 116 | -5.29127  |
| 38       | 11.55790  |          | -41.22344  | 110 | -12.65387 |
| 39       | -3.19862  | 78       | -41.22344  |     |           |

Estimates of  $e_{2t}$  for the period 1959IV - 1988IV

|          |          | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                      |                                                      |
|----------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|
| -0.00394 | 40       | -0.00122                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 79                                                   | 0.05975                                              |
| -0.00500 | 41       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                      | -0.01928                                             |
| -0.00436 | 42       | -0.00104                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                      | 0.01506                                              |
| -0.00126 | 43       | -0.00221                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                      | -0.07808                                             |
|          | 44       | -0.00472                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                      | 0.03100                                              |
|          | 45       | -0.00690                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 84                                                   | -0.01213                                             |
|          |          | 0.00691                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 85                                                   | -0.00736                                             |
|          |          | 0.00292                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 86                                                   | -0.00471                                             |
|          |          | -0.00840                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                      | -0.03819                                             |
|          | 49       | 0.01656                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                      | -0.04524                                             |
|          | 50       | 0.00073                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                      | 0.01069                                              |
|          | 51       | 0.01067                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                      | -0.01055                                             |
|          | 52       | 0.00356                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                      | -0.07704                                             |
|          | 53       | 0.00929                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                      | -0.01007                                             |
|          | 54       | 0.01220                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                      | -0.03082                                             |
|          | 55       | 0.00463                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                      | -0.01832                                             |
|          | 56       | 0.01172                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                      | 0.02063                                              |
|          | 57       | -0.01124                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                      | 0.01502                                              |
|          | 58       | 0.01104                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                      | -0.01511                                             |
|          |          | -0.00921                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 98                                                   | 0.01504                                              |
|          |          | -0.07434                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 99                                                   | 0.04224                                              |
|          |          | 0.02701                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100                                                  | 0.02846                                              |
|          |          | -0.02406                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 101                                                  | -0.00108                                             |
|          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 102                                                  | -0.03682                                             |
|          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 103                                                  | -0.03529                                             |
|          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 104                                                  | -0.03254                                             |
|          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 105                                                  | -0.02464                                             |
|          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 106                                                  | 0.03822                                              |
|          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 107                                                  | -0.03574                                             |
|          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 108                                                  | -0.01397                                             |
|          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 109                                                  | 0.00452                                              |
|          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 110                                                  | 0.00506                                              |
|          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 111                                                  | 0.01423                                              |
|          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                      | -0.03224                                             |
|          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                      | 0.03063                                              |
|          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                      | -0.01245                                             |
|          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                      | 0.03237                                              |
|          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                      | 0.01284                                              |
|          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                      | 0.03199                                              |
| 0.00076  | 10       | 0.03/13                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ± ± 1                                                |                                                      |
|          | -0.00500 | -0.0050041 $-0.00436$ 42 $-0.00126$ 43 $0.00144$ 44 $0.00255$ 45 $0.00424$ 46 $0.00163$ 47 $-0.00073$ 48 $-0.00273$ 49 $-0.00230$ 50 $0.00019$ 51 $-0.00094$ 52 $-0.00108$ 53 $0.00002$ 54 $-0.00385$ 55 $0.00431$ 56 $0.00176$ 57 $-0.00101$ 58 $-0.00057$ 59 $0.00106$ 60 $0.00144$ 61 $0.00126$ 64 $0.00126$ 64 $0.00126$ 64 $0.00345$ 67 $0.00285$ 68 $-0.00034$ 66 $0.00511$ 70 $-0.00473$ 71 $-0.00473$ 71 $-0.00642$ 73 $-0.00642$ 73 $-0.00189$ 76 $-0.00269$ 77 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |

Estimates of  $e_{3t}$  for the period 1959IV - 1988IV

| 1      | 0.00516  | 40 | 0.00156  | 79  | -0.07410 |
|--------|----------|----|----------|-----|----------|
| 2      | 0.00663  | 41 | 0.00747  | 80  | 0.02461  |
| 2<br>3 | 0.00566  | 42 | 0.00133  | 81  | -0.01916 |
| 4      | 0.00168  | 43 | 0.00289  | 82  | 0.09936  |
|        | -0.00188 | 44 | 0.00620  | 83  | -0.03921 |
| 5      | -0.00340 | 45 | 0.00869  | 84  | 0.01530  |
| 6      | -0.00564 | 46 | -0.00861 | 85  | 0.00923  |
| 7      | -0.00213 | 40 | -0.00367 | 86  | 0.00607  |
| 8      | 0.00097  | 48 | 0.01049  | 87  | 0.04840  |
| 9      | 0.00356  | 49 | -0.02105 | 88  | 0.05760  |
| 10     | 0.00296  | 50 | -0.00093 | 89  | -0.01356 |
| 11     | -0.0025  | 51 | -0.01323 | 90  | 0.01366  |
| 12     | 0.00123  | 52 | -0.00441 | 91  | 0.09863  |
| 13     |          | 53 | -0.01130 | 92  | 0.01310  |
| 14     | 0.00140  | 54 | -0.01457 | 93  | 0.03988  |
| 15     | -0.00002 | 55 | -0.00550 | 94  | 0.02397  |
| 16     | 0.00485  | 56 | -0.01357 | 95  | -0.02780 |
| 17     | -0.00545 | 57 | 0.01325  | 96  | -0.01921 |
| 18     | -0.00226 | 58 | -0.01304 | 97  | 0.01948  |
| 19     | 0.00129  | 59 | 0.01093  | 98  | -0.01939 |
| 20     | 0.00072  | 60 | 0.08516  | 99  | -0.05470 |
| 21     | -0.00134 | 61 | -0.03150 | 100 | -0.03691 |
| 22     | -0.00184 | 62 | 0.02750  | 101 | 0.00140  |
| 23     | -0.00186 | 63 | 0.02714  | 102 | 0.04788  |
| 24     | -0.00260 | 64 | 0.02001  | 103 | 0.04587  |
| 25     | -0.00167 |    | -0.00803 | 104 | 0.04264  |
| 26     | -0.00243 | 65 | 0.03314  | 101 | 0.03229  |
| 27     | 0.00043  | 66 |          | 105 | -0.05074 |
| 28     | -0.00433 | 67 | 0.02196  | 107 | 0.04712  |
| 29     | -0.00358 | 68 | -0.09460 | 108 | 0.01839  |
| 30     | 0.00124  | 69 | 0.00244  | 103 | -0.00600 |
| 31     | -0.00647 | 70 | -0.06782 | 110 | -0.00671 |
| 32     | 0.00614  | 71 | -0.01401 | 110 | -0.01842 |
| 33     | 0.00470  | 72 | -0.05065 | 112 | 0.04150  |
| 34     | 0.00847  | 73 | -0.04102 | 112 | -0.04012 |
| 35     | 0.00081  | 74 | -0.09937 |     | 0.01587  |
| 36     | -0.00259 | 75 | 0.09905  | 114 | -0.04233 |
| - 37   | 0.00239  | 76 | -0.03918 | 115 | -0.04255 |
| 38     | 0.00343  | 77 | -0.02689 | 116 | -0.01000 |
| 39     | -0.00097 | 78 | -0.04584 | 117 | -0.04008 |
|        |          |    |          |     |          |

ì

Estimates of  $\tilde{\beta}_{1t}$  for the period 1959IV - 1988IV

| 1  | 4.86645   | 40 | -23.91169  | 79  | -93.55102   |
|----|-----------|----|------------|-----|-------------|
| 2  | 13.31501  | 41 | -5.51082   | 80  | -8.03220    |
| 3  | 6.12702   | 42 | -24.88573  | 81  | -44.69437   |
| 4  | -18.80508 | 43 | -20.33390  | 82  | 50.69102    |
| 5  | -40.08586 | 44 | -10.84199  | 83  | -59.01687   |
| 6  | -48.94641 | 45 | -4.16023   | 84  | -17.48598   |
| 7  | -62.18582 | 46 | -52.69616  | 85  | -22.25061   |
| 8  | -41.55812 | 47 | -38.81870  | 86  | -24.68528   |
| 9  | -23.25875 | 48 | -1.39160   | 87  |             |
| 10 | -8.29261  | 49 | -82.26914  | 88  | •           |
| 11 | -12.14211 | 50 | -31.25141  | 89  |             |
| 12 | -30.30678 | 51 | -61.17087  | 90  |             |
| 13 | -22.20546 | 52 | -39.41838  | 91  |             |
| 14 | -21.38425 | 53 | -55.00071  | 92  |             |
| 15 | -29.04371 | 54 | -61.48763  | 93  |             |
| 16 | -3.67212  | 55 | -40.79559  | 94  |             |
| 17 | -56.43273 | 56 | -57.03598  | 95  |             |
| 18 | -40.19003 | 57 | -2.71490   | 96  |             |
| 19 | -22.58078 | 58 | -53.55942  | 97  |             |
| 20 | -25.45227 | 59 | -9.13206   | 98  |             |
| 21 | -35.20809 | 60 | 118.60310  | 99  |             |
| 22 | -37.37511 | 61 | -80.32996  | 100 |             |
| 23 | -37,33660 | 62 | 14.02213   | 101 |             |
| 24 | -40.49421 | 63 | 11.23042   | 102 |             |
| 25 | -36.23831 | 64 | -0.69876   | 100 | •           |
| 26 | -39.47317 | 65 | -39.77272  | 104 |             |
| 27 | -27.08399 | 66 | 14.05937   | 105 |             |
| 28 | -47.03091 | 67 | -1.63325   | 106 |             |
| 29 | -43.59740 | 68 | -141.96972 | 107 |             |
| 30 | -23.97456 | 69 | -26.10144  | 108 |             |
| 31 | -54.24207 | 70 | -104.89221 | 109 |             |
| 32 | -5.31036  | 71 | -44.32069  | 110 |             |
| 33 | -11.31774 | 72 | -82.83569  | 11: |             |
| 34 | 2.15331   | 73 | -71.59478  | 112 |             |
| 35 | -26.04444 | 74 | -129.83225 | 11: |             |
| 36 | -38.05983 | 75 | 69.55470   | 114 |             |
| 37 | -20.64633 | 76 | -66.11169  | 11  |             |
| 38 | -17.37483 | 77 | -53.78490  | 11  |             |
| 39 | -32.13136 | 78 | -70.15617  | 11  | 7 -41.58661 |
|    |           |    |            |     |             |

Table 7: <u>CMR Model</u>

Estimates of  $\tilde{\beta}_{2t}$  for the period 1959IV - 1988IV

| 1        | 0.19591 | 40 | 0.19864 | 79  | 0.25961 |
|----------|---------|----|---------|-----|---------|
| 2        | 0.19486 | 41 | 0.19405 | 80  | 0.18058 |
| 3        | 0.19549 | 42 | 0.19882 | 81  | 0.21492 |
| 4        | 0.19860 | 43 | 0.19765 | 82  | 0.12178 |
| 5        | 0.20130 | 44 | 0.19514 | 83  | 0.23086 |
| 6        | 0.20240 | 45 | 0.19296 | 84  | 0.18773 |
| 7        | 0.20410 | 46 | 0.20677 | 85  | 0.19250 |
| 8        | 0.20149 | 47 | 0.20277 | 86  | 0.19514 |
| 9        | 0.19913 | 48 | 0.19146 | 87  | 0.16166 |
| 10       | 0.19713 | 49 | 0.21642 | 88  | 0.15461 |
| 11       | 0.19756 | 50 | 0.20059 | 89  | 0.21055 |
| 12       | 0.20005 | 51 | 0.21052 | 90  | 0.18931 |
| 13       | 0.19892 | 52 | 0.20341 | 91  | 0.12282 |
| 14       | 0.19878 | 53 | 0.20915 | 92  | 0.18979 |
| 14       | 0.19987 | 54 | 0.21206 | 93  | 0.16904 |
| 15       | 0.19601 | 55 | 0.20449 | 94  | 0.18154 |
|          | 0.20417 | 56 | 0.21158 | 95  | 0.22049 |
| 17       | 0.20417 | 57 | 0.18861 | 96  | 0.21488 |
| 18       | 0.19884 | 58 | 0.21089 | 97  | 0.18475 |
| 19       | 0.19884 | 59 | 0.19064 | 98  | 0.21489 |
| 20       | 0.20091 | 60 | 0.12552 | 99  | 0.24210 |
| 21<br>22 | 0.20130 | 61 | 0.22687 | 100 | 0.22832 |
|          | 0.20130 | 62 | 0.17580 | 101 | 0.19878 |
| 23       | 0.20131 | 63 | 0.17682 | 102 | 0.16304 |
| 24       | 0.20112 | 64 | 0.18309 | 103 | 0.16456 |
| 25       | 0.20175 | 65 | 0.20653 | 104 | 0.16732 |
| 26<br>27 | 0.19952 | 66 | 0.17265 | 105 | 0.17521 |
| 28       | 0.20331 | 67 | 0.18192 | 106 | 0.23808 |
|          | 0.20270 | 68 | 0.27802 | 107 | 0.16412 |
| 29       | 0.19888 | 69 | 0.19788 | 108 | 0.18589 |
| 30       | 0.20497 | 70 | 0.25378 | 109 | 0.20438 |
| 31       |         | 70 | 0.21113 | 110 | 0.20491 |
| 32       | 0.19513 | 72 | 0.24014 | 111 | 0.21409 |
| 33       | 0.19627 | 73 | 0.23240 | 112 | 0.16762 |
| 34       | 0.19344 | 74 | 0.27988 | 113 | 0.23049 |
| 35       | 0.19925 |    | 0.11958 | 114 | 0.18741 |
| 36       | 0.20187 | 75 | 0.23109 | 115 | 0.23222 |
| 37       | 0.19797 | 76 |         | 115 | 0.21270 |
| 38       | 0.19717 | 77 | 0.22123 | 117 | 0.23185 |
| 39       | 0.20062 | 78 | 0.23699 | 11/ | 0.20100 |
|          |         |    |         |     |         |

Estimates of  $\tilde{\beta}_{3t}$  for the period 1959IV - 1988IV

|    | · ·     |    |         |     |         |
|----|---------|----|---------|-----|---------|
| 1  | 0.80876 | 40 | 0.80516 | 79  | 0.72949 |
| 2  | 0.81023 | 41 | 0.81106 | 80  | 0.82821 |
| 3  | 0.80926 | 42 | 0.80492 | 81  | 0.78443 |
| 4  | 0.80528 | 43 | 0.80648 | 82  | 0.90296 |
| 5  | 0.80172 | 44 | 0.80980 | 83  | 0.76439 |
| 6  | 0.80020 | 45 | 0.81228 | 84  | 0.81889 |
| 7  | 0.79795 | 46 | 0.79498 | 85  | 0.81282 |
| 8  | 0.80146 | 47 | 0.79992 | 86  | 0.80966 |
| 9  | 0.80456 | 48 | 0.81409 | 87  | 0.85199 |
| 10 | 0.80715 | 49 | 0.78255 | 88  | 0.86120 |
| 11 | 0.80655 | 50 | 0.80267 | 89  | 0.79004 |
| 12 | 0.80335 | 51 | 0.79036 | 90  | 0.81726 |
| 13 | 0.80482 | 52 | 0.79918 | 91  | 0.90222 |
| 14 | 0.80500 | 53 | 0.79229 | 92  | 0.81670 |
| 15 | 0.80357 | 54 | 0.78902 | 93  | 0.84348 |
| 16 | 0.80845 | 55 | 0.79809 | 94  | 0.82756 |
| 17 | 0.79814 | 56 | 0.79002 | 95  | 0.77579 |
| 18 | 0.80134 | 57 | 0.81684 | 96  | 0.78438 |
| 19 | 0.80489 | 58 | 0.79055 | 97  | 0.82308 |
| 20 | 0.80432 | 59 | 0.81452 | 98  | 0.78420 |
| 21 | 0.80226 | 60 | 0.88876 | 99  | 0.74889 |
| 22 | 0.80176 | 61 | 0.77209 | 100 | 0.76669 |
| 23 | 0.80173 | 62 | 0.83109 | 101 | 0.80500 |
| 24 | 0.80099 | 63 | 0.83073 | 102 | 0.85148 |
| 25 | 0.80193 | 64 | 0.82361 | 103 | 0.84947 |
| 26 | 0.80116 | 65 | 0.79556 | 104 | 0.84624 |
| 27 | 0.80403 | 66 | 0.83674 | 105 | 0.83589 |
| 28 | 0.79926 | 67 | 0.82555 | 106 | 0.75286 |
| 29 | 0.80001 | 68 | 0.70899 | 107 | 0.85072 |
| 30 | 0.80483 | 69 | 0.80603 | 108 | 0.82199 |
| 31 | 0.79713 | 70 | 0.73577 | 109 | 0.79759 |
| 32 | 0.80973 | 71 | 0,78959 | 110 | 0.79688 |
| 33 | 0.80829 | 72 | 0.75294 | 111 | 0.78518 |
| 34 | 0.81207 | 73 | 0.76257 | 112 | 0.84509 |
| 35 | 0.80440 | 74 | 0.70422 | 113 | 0.76347 |
| 36 | 0.80101 | 75 | 0.90265 | 114 | 0.81946 |
| 37 | 0.80599 | 76 | 0.76441 | 115 | 0.76126 |
| 38 | 0.80702 | 77 | 0.77670 | 116 | 0.78699 |
| 39 | 0.80262 | 78 | 0.75775 | 117 | 0.76292 |
|    |         |    |         |     |         |

# Table 9 : <u>VMR Model</u>

Estimates of  $e_{1t}$  for the period 1959IV - 1988IV

|    | 0.00010      | 40       | -0.00002     | 79  |     | 0.00022  |
|----|--------------|----------|--------------|-----|-----|----------|
| 1  | -0.00019     | 40<br>41 | -0.00010     | 80  |     | -0.00012 |
| 2  | -0.00024     | 41       | -0.00002     | 81  |     | 0.00005  |
| 3  | -0.00020     | 42       | -0.00004     | 82  |     | -0.00041 |
| 4  | -0.00002     | 43       | -0.00008     | 83  |     | 0.00013  |
| 5  | 0.00011      |          | -0.00011     | 84  |     | -0.00007 |
| 6  | 0.00018      | 45       | 0.00008      | 85  |     | -0.00004 |
| 7  | 0.00026      | 46       | 0.00003      | 86  |     | -0.00005 |
| 8  | 0.00012      | 47       | -0.00012     | 87  |     | -0.00020 |
| 9  | 8.21797D-06  | 48       |              | 88  |     | -0.00024 |
| 10 | -0.00009     | 49       | 0.00020      | 89. |     | 0.00004  |
| 11 | -0.00007     | 50       | -2.05186D-06 | 90  |     | -0.00008 |
| 12 | 0.00004      | 51       | 0.00011      | 91  |     | -0.00042 |
| 13 | -6.84982D-06 | 52       | 0.00003      | 92  |     | -0.00008 |
| 14 | -0.00001     | 53       | 0.00008      | 93  |     | -0.00019 |
| 15 | 0.00003      | 54       | 0.00009      | 94  |     | -0.00013 |
| 16 | -0.00013     | 55       | 0.00002      | 95  |     | 0.00010  |
| 17 | 0.00018      | 56       | 0.00006      | 96  |     | 0.00008  |
| 18 | 0.00009      | 57       | -0.00009     | .97 |     | -0.00010 |
| 19 | -0.00002     | -58      | 0.00005      | 98  |     | 0.00008  |
| 20 | -5.82594D-06 | 59       | -0.00007     | 99  |     | 0.00025  |
| 21 | 0.00005      | 60       | -0.00028     | 100 |     | 0.00017  |
| 22 | 0.00006      | 61       | 0.0009       |     |     | -0.00001 |
| 23 | 0.00006      | 62       | -0.00007     | 101 |     | -0.00025 |
| 24 | 0.0008       | 63       | -0.00010     | 102 | · . | -0.00023 |
| 25 | 0.00006      | 64       | -0.00009     | 103 |     | -0.00024 |
| 26 | 0.00007      | 65       | 2.69504D-06  | 104 |     |          |
| 27 | 3.42553D-06  | 66       | -0.00014     | 105 |     | -0.00018 |
| 28 | 0.00010      | 67       | -0.00010     | 106 |     | 0.00026  |
| 29 | 0.00008      | 68       | 0.00025      | 107 |     | -0.00027 |
| 30 | -0.00002     | 69.      | -0.00003     | 108 |     | -0.00011 |
| 31 | 0.00013      | 70       | 0.00024      | 109 |     | 0.00002  |
| 32 | -0.00011     | 71       | 0.00002      | 110 |     | 0.00003  |
| 33 | -0.00008     | 72       | 0.00017      | 111 |     | 0.00014  |
| 34 | -0.00014     | 73       | 0.00013      | 112 |     | -0.00024 |
| 35 | -5.27336D-06 | 74       | 0.00032      | 113 |     | 0.00027  |
| 36 | 0.00004      | 75       | -0.00034     | 114 |     | -0.00003 |
| 37 | -0.00004     | 76       | 0.00012      | 115 |     | 0.00031  |
| 38 | -0.00005     | 77       | 0.00008      | 116 |     | 0.00018  |
| 39 | 0.00001      | 78       | 0.00013      | 117 |     | 0.00056  |
| 37 | 0.00001      |          |              |     |     |          |

Table 10: <u>VMR Model</u>

Estimates for e<sub>2t</sub> for the period 1959IV - 1988IV

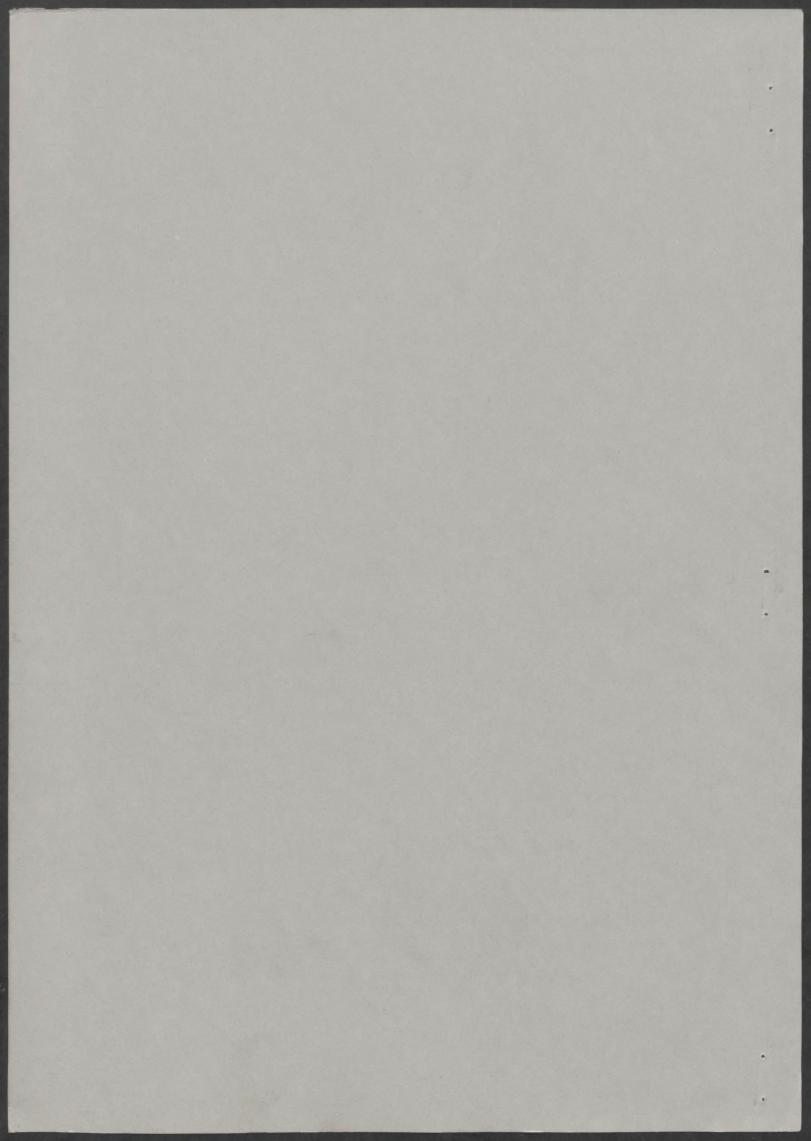
| 1        | . 0.01306 | 40 | 0.00161  | 79  | -0.01437 |
|----------|-----------|----|----------|-----|----------|
| 2        | 0.01673   | 41 | 0.00706  | 80  | 0.00819  |
| 3        | 0.01360   | 42 | 0.00147  | 81  | -0.00347 |
| 4        | 0.00132   | 43 | 0.00277  | 82  | 0.02728  |
| 5        | -0.00762  | 44 | 0.00556  | 83  | -0.00843 |
| 6        | -0.01228  | 45 | 0.00726  | 84  | 0.00472  |
| 7        | -0.01831  | 46 | -0.00556 | 85  | 0.00286  |
| 8        | -0.00850  | 47 | -0.00195 | 86  | 0.00322  |
| 9        | -0.00057  | 48 | 0.00782  | 87  | 0.01315  |
| 10       | 0.00641   | 49 | -0.01322 | 88  | 0.01613  |
| 11       | 0.00503   | 50 | 0.00014  | 89  | -0.00271 |
| 12       | -0.00305  | 51 | -0.00712 | 90  | 0.00550  |
| 13       | 0.00047   | 52 | -0.00173 | 91  | 0.02839  |
| 14       | 0.00102   | 53 | -0.00507 | 92  | 0.00551  |
| 15       | -0.00210  | 54 | -0.00593 | 93  | 0.01315  |
| 16       | 0.00876   | 55 | -0.00146 | 94  | 0.00914  |
| 17       | -0.01182  | 56 | -0.00375 | 95  | -0.00704 |
| 18       | -0.00584  | 57 | 0.00558  | 96  | -0.00540 |
| 19       | 0.00116   | 58 | -0.00314 | 97  | 0.00668  |
| 20       | 0.00039   | 59 | 0.00444  | 98  | -0.00563 |
| 21       | -0.00318  | 60 | 0.01657  | 99  | -0.01722 |
| 22       | -0.00399  | 61 | -0.00524 | 100 | -0.01175 |
| 23       | -0.00398  | 62 | 0.00406  | 101 | 0.00091  |
| 24       | -0.00533  | 63 | 0.00625  | 102 | 0.01709  |
| 25       | -0.00396  | 64 | 0.00542  | 103 | 0.01649  |
| 26       | -0.00461  | 65 | -0.00017 | 104 | 0.01621  |
| 27       | -0.00023  | 66 | 0.00903  | 105 | 0.01253  |
| 28       | -0.00651  | 67 | 0.00655  | 106 | -0.01783 |
| 29       | -0.00527  | 68 | -0.01611 | 107 | 0.01885  |
| 30       | 0.00125   | 69 | 0.00223  | 108 | 0.00776  |
| 31       | -0.00853  | 70 | -0.01576 | 109 | -0.00133 |
| 32       | 0.00724   | 71 | -0.00163 | 110 | -0.00180 |
| 33       | 0.00522   | 72 | -0.01108 | 111 | -0.00964 |
| 34       | 0.00961   | 73 | -0.00878 | 112 | 0.01596  |
| 35       | 0.00037   | 74 | -0.02082 | 113 | -0.01837 |
| 36       | -0.00303  | 75 | 0.02175  | 114 | 0.00200  |
| 37       | 0.00254   | 76 | -0.00781 | 115 | -0.02116 |
| 38       | 0.00353   | 77 | -0.00503 | 116 | -0.01225 |
| 38<br>39 | -0.00083  | 78 | -0.00814 | 117 | -0.03755 |
| 22       | -0.00005  | ,0 |          |     |          |
|          |           |    |          |     |          |

Estimates of  $\tilde{\beta}_{2t}$  for the period 1959IV - 1988IV

| · • |         |    |         |     |         |
|-----|---------|----|---------|-----|---------|
| 1   | 0.17207 | 40 | 0.19381 | 79  | 0.21563 |
| 2   | 0.17258 | 41 | 0.19428 | 80  | 0.21584 |
| 3   | 0.17317 | 42 | 0.19492 | 81  | 0.21656 |
| 4   | 0.17390 | 43 | 0.19545 | 82  | 0.21666 |
| 5   | 0.17459 | 44 | 0.19597 | 83  | 0.21774 |
| 6   | 0.17520 | 45 | 0.19649 | 84  | 0.21810 |
| 7   | 0.17584 | 46 | 0.19724 | 85  | 0.21868 |
| 8   | 0.17626 | 47 | 0.19773 | 86  | 0.21923 |
| 9   | 0.17670 | 48 | 0.19814 | 87  | 0.21963 |
| 10  | 0.17715 | 49 | 0.19901 | 88  | 0.22014 |
| 11  | 0.17772 | 50 | 0.19936 | 89  | 0.22098 |
| 12  | 0.17839 | 51 | 0.20003 | 90  | 0.22141 |
| 13  | 0.17889 | 52 | 0.20050 | 91  | 0.22162 |
| 14  | 0.17944 | 53 | 0.20110 | 92  | 0.22251 |
| 15  | 0.18004 | 54 | 0.20167 | 93  | 0.22295 |
| 16  | 0.18043 | 55 | 0.20215 | 94  | 0.22357 |
| 17  | 0.18129 | 56 | 0.20274 | 95  | 0.22435 |
| 18  | 0.18175 | 57 | 0.20315 | 96  | 0.22489 |
| 19  | 0.18220 | 58 | 0.20384 | 97  | 0.22526 |
| 20  | 0.18277 | 59 | 0.20427 | 98  | 0.22600 |
| 21  | 0.18337 | 60 | 0.20462 | 99  | 0.22672 |
| 22  | 0.18394 | 61 | 0.20553 | 100 | 0.22719 |
| 23  | 0.18449 | 62 | 0.20593 | 101 | 0.22756 |
| 24  | 0.18506 | 63 | 0.20645 | 102 | 0.22788 |
| 25  | 0.18559 | 64 | 0.20702 | 103 | 0.22844 |
| 26  | 0.18616 | 65 | 0.20766 | 104 | 0.22900 |
| 27  | 0.18665 | 66 | 0.20807 | 105 | 0.22960 |
| 28  | 0.18729 | 67 | 0.20867 | 106 | 0.23059 |
| 29  | 0.18783 | 68 | o.20957 | 107 | 0.23062 |
| 30  | 0.18828 | 69 | 0.20984 | 108 | 0.23133 |
| 31  | 0.18898 | 70 | 0.21067 | 109 | 0.23202 |
| 32  | 0.18930 | 71 | 0.21100 | 110 | 0.23258 |
| 33  | 0.18989 | 72 | 0.21170 | 111 | 0.23325 |
| 34  | 0.19038 | 73 | 0.21222 | 112 | 0.23342 |
| 35  | 0.19106 | 74 | 0.21296 | 113 | 0.23448 |
| 36  | 0.19167 | 75 | 0.21286 | 114 | 0.23473 |
| 37  | 0.19214 | 76 | 0.21386 | 115 | 0.23562 |
| 38  | 0.19267 | 77 | 0.21437 | 116 | 0.23605 |
| 39  | 0.19329 | 78 | 0.21498 | 117 | 0.23698 |
|     |         |    |         |     |         |

# Table 12: <u>VMR Model</u>

| Estimates | of | β <sub>3t</sub> | for | the | periods | 1959IV | - | 1988IV |
|-----------|----|-----------------|-----|-----|---------|--------|---|--------|
|           |    | 00              |     |     |         |        |   |        |


|    |         |    | 0.00504 | 79  | 0.76876 |
|----|---------|----|---------|-----|---------|
| 1  | 0.83737 | 40 | 0.80534 | 80  | 0.79080 |
| 2  | 0.84051 | 41 | 0.81026 | 80  | 0.77861 |
| 3  | 0.83685 | 42 | 0.80414 |     | 0.80883 |
| 4  | 0.82405 | 43 | 0.80491 | 82  | 0.77259 |
| 5  | 0.81458 | 44 | 0.80718 | 83  |         |
| 6  | 0.80940 | 45 | 0.80835 | 84  | 0.78522 |
| 7  | 0.80284 | 46 | 0.79500 | 85  | 0.78283 |
| 8  | 0.81211 | 47 | 0.79808 | 86  | 0.78266 |
| 9  | 0.81952 | 48 | 0.80733 | 87  | 0.79206 |
| 10 | 0.82597 | 49 | 0.78576 | 88  | 0.79451 |
| 11 | 0.82406 | 50 | 0.79858 | 89  | 0.77514 |
| 12 | 0.81546 | 51 | 0.79079 | 90  | 0.78282 |
| 13 | 0.81845 | 52 | 0.79566 | 91  | 0.80519 |
| 14 | 0.81847 | 53 | 0.79180 | 92  | 0.78178 |
| 15 | 0.81482 | 54 | 0.79040 | 93  | 0.78889 |
| 16 | 0.82516 | 55 | 0.79434 | 94  | 0.78435 |
| 17 | 0.80405 | 56 | 0.79153 | 95  | 0.76765 |
| 18 | 0.80949 | 57 | 0.80033 | 96  | 0.76876 |
| 19 | 0.81597 | 58 | 0.79108 | 97  | 0.78032 |
| 20 | 0.81467 | 59 | 0.79814 | 98  | 0.76748 |
| 21 | 0.81057 | 60 | 0.80973 | 99  | 0.75536 |
| 22 | 0.80924 | 61 | 0.78740 | 100 | 0.76030 |
| 23 | 0.80872 | 62 | 0.79617 | 101 | 0.77243 |
| 24 | 0.80684 | 63 | 0.79784 | 102 | 0.78809 |
| 25 | 0.80768 | 64 | 0.79648 | 103 | 0.78695 |
| 26 | 0.80651 | 65 | 0.79036 | 104 | 0.78615 |
| 27 | 0.81036 | 66 | 0.79903 | 105 | 0.78194 |
| 28 | 0.80355 | 67 | 0.79602 | 106 | 0.75105 |
| 29 | 0.80426 | 68 | 0.77283 | 107 | 0.78720 |
| 30 | 0.81026 | 69 | 0.79064 | 108 | 0.77559 |
| 31 | 0.79995 | 70 | 0.77212 | 109 | 0.76596 |
| 32 | 0.81519 | 71 | 0.78573 | 110 | 0.76497 |
| 33 | 0.81264 | 72 | 0.77575 | 111 | 0.75661 |
| 34 | 0.81650 | 73 | 0.77752 | 112 | 0.78167 |
| 35 | 0.80673 | 74 | 0.76496 | 113 | 0.74681 |
| 36 | 0.80281 | 75 | 0.80700 | 114 | 0.76666 |
|    | 0.80784 | 76 | 0.77691 | 115 | 0.74297 |
| 37 | 0.80831 | 77 | 0.77916 | 116 | 0.75136 |
| 38 | 0.80342 | 78 | 0.77553 | 117 | 0.72553 |
| 39 | 0.80342 | 10 | 0.11000 | •   |         |

### MONASH UNIVERSITY

#### DEPARTMENT OF ECONOMETRICS

### WORKING PAPERS

- 1/90 P. Burridge. "The Functional Central Limit Theorem: An Introductory Exposition with Application to Testing for Unit Roots in Economic Time Series".
- 2/90 Maxwell L. King and Ping X. Wu. "Locally Optimal One-Sided Tests for Multiparameter Hypotheses."
- 3/90 Grant H. Hillier. "On Multiple Diagnostic Procedures for the Linear Model."
- 4/90 Jean-Marie Dufour and Maxwell L. King. "Optimal Invariant Tests for the Autocorrelation Coefficient in Linear Regressions with Stationary or Nonstationary AR(1) Errors."
- 5/90 Keith R. McLaren. "A Reappraisal of the Neoclassical Approach to Modelling Business Investment."
- 6/90 Francis Vella. "Non-Wage Benefits in a Simultaneous Model of Wages and Hours: Labor Supply Functions of Young Females."
- 7/90 Francis Vella. "A Simple Estimator for Simultaneous Models with Censored Endogenous Regressors."
- 8/90 Nicola J. Crichton and Timothy R.L. Fry. "An Analysis of the Effect of an Offender's Employment Status on the Type of Sentence Chosen by the Magistrate."
- 9/90 Paramsothy Silvapulle and Maxwell L. King. "Testing Moving Average Against Autoregressive Disturbances in the Linear Regression Model."
- 10/90 Asraul Hoque and Brett A. Inder. "Structural Unemployment in Australia."
- 11/90 Maxwell L. King, Chandra Shah and Kees Jan van Garderen. "Tutoring in Economic Statistics: The Monash experience."
- 12/90 R.D. Snyder. Why Kalman Filter?
- 13/90 Grant H. Hillier and Christopher L. Skeels. "Some further exact results for structural equation estimators."
- 14/90 Robert W. Faff, John H.H. Lee and Tim R.L. Fry. "Time stationarity of systematic risk: some Australian evidence."
- 15/90 Ralph D. Snyder, "Maximum likelihood estimation: A prediction error approach."
- 16/90 Grant H. Hillier, "On the variability of best critical regions and the curvature of exponential models."
- 17/90 Simone D. Grose & Maxwell L. King, "The locally unbiased two-sided Durbin-Watson test".

