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Abstract

An algorithm for. constructing locally unbiased two-sided critical

regions for the Durbin-Watson test is presented. It can also be applied

to other two-sided tests. Empirical calculations suggest that, at least

for the Durbin-Watson test, the current practice of using equal-tailed

critical values yields approximately locally unbiased critical regions.
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1. INTRODUCTION

For many decades, the Durbin-Watson (DW) test has been a standard

diagnostic test in econometric regression analysis. Although originally

designed as a bounds test, advances in computer hardware and numerical

algorithms now allow exact p-values to be calculated as a matter of

routine. For example, the SHAZAM computer package (White (1978)) will

calculate the DW p-value upon request.

The DW test may either be applied in a one-sided or two-sided

manner. It is standard practice for the two-sided test to be applied as

two one-sided tests of equal size. For an a-level test, this involves

either applying consecutive a/2-level tests for positive and negative

autocorrelation, respectively, or rejecting the null hypothesis if the

calculated p-value is less than a/2 or greater than 1 - a/2. While this

is a computationally convenient way to proceed, statistical theory

suggests that the criteria of local unbiasedness should be used to

construct the critical region. This paper presents a practical

algorithm for constructing locally unbiased two-sided critical regions

for the DW test. The approach has wider appeal in that it can easily be

adopted to any two-sided testing problem with a test statistic whose

size and power can readily be calculated. We also report the results of

a power comparison designed to discover whether the locally unbiased DW

test has advantages over the standard two-sided test.

2. THE CONSTRUCTION OF LOCALLY UNBIASED CRITICAL REGIONS

The underlying model is the linear regression model

y = XP + u (1)

where y is an n x 1 vector, X is an n x k nonstochastic matrix with full



column rank, p is a k x 1 vector of unknown parameters and u is an n x 1

vector of disturbances suspected of being generated by the stationary

first-order autoregressive (AR(1)) process
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denote the covariance matrix of u generated by (2) up to a scalar

constant. Under (1) and (2), we can write (see for example King (1987,

p.30))

Pr[d < d*] 
= prp(o(p)1/2),m(Al _ d*In)Mo(p)1/2( < 0]

n-k
= E T.e < 0] (5)

-where M = I
n 

X(X'X)
1 
X', T. are the eigenvalues of M(A

1 
- d*I

n
)MQ(p)

excluding k zero roots and IN(0, 1). Algorithms for calculating

(5) are given or described by Koerts and Abrahamse (1969), Davies

(1980), Farebrother (1980, 1990), Palm and Sneek (1984) and Shively,

Ansley and Kohn (1989).

that

and

The standard DW test against H
a 

involves finding d* and d* such1 2

Pr[d < d*
1

110] = a/2

Pr[d > d Ho] = 1 - Pr[d < d* I H0]
2 

= a/2.

Let 11(p) denote the probability of being in the critical region, i.e.

11(p) = Pr[d < + Prid > .

The critical region for the locally unbiased DW test involves finding

d* and d* such that (4) holds and1 2

amp)
ap p=0 = (6)

Equation (4) is known as the size condition while (6) is the local

unbiasedness condition. Unfortunately we do not have an analytical

expression for IT(p) but we can calculate its value for any value of p
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through (5). This suggests that we should use numerical methods

calculate (approximately) the left-hand side of (6).

For sufficiently small h > 0, the left-hand side of (6) can be

approximated by the numerical derivative

D(h) = fll(h) - 11(-h)1 / 2h .

The problem of finding the locally unbiased critical region involves

solving (4) and

D(h) = 0 (7)

jointly for dl and q. In the calculations reported below, we used a

modified version of Koerts and Abrahamse's (1969) FQUAD subroutine to

calculate (5) and the IMSL subroutine ZSCNT to solve (4) and (7)

simultaneously. The latter subroutine is designed to solve a system of

q homogeneous equations in q unknowns using the secant method. The

value of h was set to 0.001 because smaller values were found not to

affect the resultant solution.

3. EMPIRICAL POWER COMPARISON

Given that locally unbiased DW critical values can be constructed,

an obvious question is whether the extra computation yields worthwhile

improvements in small-sample power. Others (see for example Abrahamse

and Koerts (1969) and Koerts and Abrahamse (1969)) have found that there

can be considerable asymmetry in the power function of the DW test over

H
a 

: p > 0 and H
a 
: p < 0. A possible cause could be local biasedness

in which case the locally unbiased version of the test might be a better

test. In order to investigate this conjecture, we compared power curves

of the two DW critical regions, namely the locally unbiased (LU) and the

4



equal-tailed (ET) two-sided critical regions.

Let a1,... a denote the eigenvectors corresponding to the
n

eigenvalues of Al arranged in ascending order, i.e.,

a
1 

= n 112(1,1,... ,1)'

a.
1

= (2/n)
1/2

(cos[m(i-1)/2n1, cos[3n(i-1)/2n],..

cos[(2n-1)Tr(1-1)/2n1)',

i = 2,..

Powers of the LU and ET DW tests using exact one per cent critical

values calculated as outlined above were computed at p = -0.9 (0.1) 0.9

for the followingnxkXmatrices withn= 15,25,50 andk= 2,3 as well

as k = 4,5,6 for n = 25,50.

X1 : The k regressors are a .,a
k

X2 : The k regressors are a
l' 

a
n-k+2"'"an

1/2
X3 : The k regressors are al, (a

2
+a
n
)/'2

1/2
,...,(a

k
+a
n-k+2

)/r2 .

Each of the X matrices includes a
1 

which acts as an intercept term. X1

and X2 are the X matrices which result in the upper and lower bounding

distributions, respectively, of the DW statistic and were included in

the expectation that they would exhibit extreme behaviour. X3 is known

as Watson's (1955) X matrix. OLS is (approximately) least efficient

relative to generalised least squares and the DW test has been found to

have extremely poor power properties (see for example Tillman (1975) and

King (1985)) for this X matrix. One can also show that the distribution

of d for X3 under H
0 

is symmetric about 2. Hence upper tail critical

values can be obtained by subtracting the corresponding lower tail

critical values from 4 and vice versa.
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Selected calculated critical values for the two versions of the

two-sided DW test are presented in Table 1 while selected calculated

powers for n = 15, k = 3 and n = 25, k = 6 are given in Tables 2 and 3.

There is considerable evidence of asymmetry in the power curves,

particularly for X1 and X2 which have greatest power against H
a 

and H
a'

respectively. In contrast, there is virtually no evidence of bias in

the ET test. For X3, the ET and LU critical regions coincide exactly.

For the remaining X matrices, forcing local unbiasedness resulted in

only very small changes to the ET critical values and hence the power

curves for the ET and LU critical regions are almost identical. Any

differences are greatest for small n and large k, ceteris paribus.

Furthermore, where there are differences, the LU power curves are

typically more asymmetric than their ET counterparts. Our results also

demonstrate (see for example Table 3) the extreme influence the design

matrix can have on the power of the two-sided DW test.

4. CONCLUDING REMARKS

This paper discusses a practical algorithm for constructing locally

unbiased two-sided critical regions for the DW test. The approach has

wider appeal in that it can also be adopted to any two-sided testing

problem with a test statistic whose size and power can readily be

calculated. For the case of the DW test, however, our empirical

investigations suggest that the extra computation involved in finding LU

critical values is not rewarded by improvements in small-sample power.

It seems that the current practice of using ET critical values gives

approximately LU critical regions.
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Table : Calculated critical values, d* and d* for the ET and LU
1 2

two-sided Durbin-Watson tests at the one per cent level.

Test

X1 X2 X3

d* d* d* d* d* d*
1 2 1 2 1 2

n= 15

ET 0.9732 3.2759 0.7241 3.0268 0.9258 3.0742

LU 0.9694 3.2726 . 0.7274 3.0306 0.9258 3.0742

3 ET 1.1537 3.3793 0.6207 2.8463 1.0546 2.9454

LU 1.1530 3.3788 0.6264 2.8537 1.0546 2.9454

n=25

2 ET 1.1267 3.0248 0.9752 2.8733 1.0886 2.9114

LU 1.1251 3.0233 0.9767 2.8749 1.0886 2.9114

ET 1.3230 3.1677 0.8323 2.6770 1.2021 2.7979
LU 1.3180 3.1636 0.8364 2.6820 1.2021 2.7979

6 ET 1.5607 3.3101 0.6899 2.4393 1.3502 2.6498
LU 1.5527 3.3042 0.6958 2.4474 1.3502 2.6498

n=50

ET 1.3385 2.7390 1.2610 2.6615 1.3137 2.6863

LU 1.3380 2.7386 1.2614 2.6620 1.3137 2.6863

4 ET 1.4253 2.8165 1.1835 2.5747 1.3485 2.6515
LU 1.4239 2.8151 1.1849 2.5761 1.3485 2.6515

6 ET 1.5215 2.8959 1.1041 2.4785 1.3899 2.6101
LU 1.5191 2.8938 1.1062 2.4809 1.3899 2.6101



Table 2: Calculated powers of the ET and LU two-sided Durbin-Watsdn

tests for X1,. X2 and X3 with n = 15 and k = 3 at the one per

cent level.

X1 X2 X3

ET LU ET LU ET = LU

-0.9 0.6809 0.6814 0.2275 0.2216 0.0418

-0.8 0.5156 0.5162 0.1992 0.1941 0.0585

-0.7 0.3624 0.3629 0.1665 0.1619 0.0638

-0.6 0.2317 0.2322 0.1283 0.1245 0.0593

-0.5 0.1353 0.1356 0.0908 0.0877 0.0486

-0.4 0.0735 0.0737 0.0590 0.0568 0.0359

-0.3 0.0384 0.0385 0.0357 0.0343 0.0247

-0.2 0.0203 0.0203 0.0207 0.0199 0.0164

-0.1 0.0121 0.0121 0.0127 0.0123 0.0116

0.0 0.0100 0.0100 0.0100 0.0100 0.0100

0.1 0.0127 0.0126 0.0121 0.0124 0.0116

0.2 0.0206 0.0205 0.0201 0.0209 0.0163

0.3 0.0352 0.0351 0.0375 0.0391 0.0243

0.4 0.0580 0.0577 0.0709 0.0735 0.0352

0.5 0.0889 0.0886 0.1287 0.1327 0.0476

0.6 0.1258 0.1254 0.2174 0.2228 0.0586

0.7 0.1639 0.1634 0.3351 0.3414 0.0649

0.8 0.1974 0.1969 0.4676 0.4739 0.0644

0.9 0.2211 0.2206 0.5935 0.5991 0.0578
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Table 3: Calculated powers of the ET and LU two-sided Durbin-Watson

tests for X1, X2 and X3 with n = 25 and k = 6 at the one per

cent level.

X1 X2 X3

ET LU ET LU ET = LU

-0.9 0.9075 0.9102 0.2442 0.2368 0.0111

-0.8 0.7907 0.7960 0.2332 0.2264 0.0228

. -0.7 0.6226 0.6302 0.2048 0.1985 0.0338

-0.6 0.4288 0.4373 0.1665 0.1609 0.0398

-0.5 0.2550 0.2623 0.1238 0.1191 0.0393

-0.4 0.1325 0.1375 0.0830 0.0795 0.0332

-0.3 0.0621 0.0650 0.0498 0.0474 0.0248

-0.2 0.0278 0.0292 0.0270 0.0256 0.0170

-0.1 0.0135 0.0140 0.0143 0.0137 0.0118

0.0 0.0100 0.0100 0.0100 0.0100 0.0100

0.1 0.0143 0.0137 0.0134 0.0140 0.0118

0.2 0.0269 0.0256 0.0276 0.0291 0.0170

0.3 0.0496 0.0472 0.0615 0.0644 0.0247

0.4 0.0825 0.0791 0.1306 0.1356 0.0331

0.5 0.1231 0.1185 0.2501 0.2574 0.0393

0.6 0.1658 0.1602 0.4187 0.4273 0.0405

0.7 0.2045 0.1983 0.6059 0.6137 0.0356

0.8 0.2345 0.2279 0.7670 0.7727 0.0264

0.9 0.2537 0.2468 0.8757 0.8791 0.0168
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