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ABSTRACT

The Neyman-Pearson Lemma usually implies that the best critical
region (BCR) for testing a given hypothesis varies with the alternative.
For this reason, most commonly used tests are justified either by
replacing the objective of maximum power by a weaker objective such as
maximum slope of the power function at the null, or by resorting to some
other testing principle, such as a likelihood ratio test. However, BCRs
that vary with the alternative may sometimes in fact vary very little,
and in this 'paper I suggest a measure of the variability of such
regions. Some examples confirm the conjecture that there are cases
where the BCRs vary very little.

Section 4 of the paper applies this idea to the family of
one-parameter curved exponential models, and relates it to Efron's [41
notion that inference in highly curved models is likely to be more
difficult that it is in uncurved or linear exponential models.

Finally, we discuss testing tactics in problems where it can be
shown that the BCRs for the problem vary very little.
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1. INTRODUCTION

For most hypothesis testing problems, of practical interest

application of the Neyman-Pearson Lemma (NFL) produces the negative

conclusion that there is no uniformly best critical region (BCR),

because the best region for testing the null hypothesis against

particular point alternative varies with the alternative. This

conclusion usually persists even when the problem is reduced to

sufficient statistics, is reduced by invariance, or is reduced by

imposing similarity.

For such problems it is common to compromise by replacing the

(evidently too demanding) objective of maximum power by a weaker

objective such as maximum slope of the power function at the null (in

the case of one-parameter one-sided alternatives), or (in

multi-parameter and/or two sided problems) by some other measure of the

local behaviour of the power surface - see, e.g., Cox and Hinkley [3],

Chapter 5. Alternatively, one may simply resort to a general testing

principle that has reasonable properties in a wide variety of

applications, e.g., a likelihood ratio or score test.

In this paper. I shall argue that, in certain circumstances, these

responses to a negative verdict from the NFL can be inappropriate, in

the sense that it may be possible to find a critical region that is very

close to being optimal, and may differ from the critical region implied

by any of these compromises.

The essence of the argument is that, while it may be technically

true that the BCR for .a given problem varies with the alternative, it is

plausible that, for some problems at least, the BCR does not in fact

vary very much. In problems of this type it is reasonable to expect

that the problem might admit a solution that, while not uniformly

optimal, is close to being so. Conversely, of course, in cases where
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the BCRs do vary considerably, no single critical region (including

those chosen by the compromises mentioned, above) will perform well over

the whole range of alternatives. Thus, our first objective will be to

define a quantitative measure of the variability of the best critical

regions for a particular problem. This is the subject of section 2, and

in section 3 we apply the ideas introduced in section 2 to a number of

examples, including cases where the BCRs vary considerably with the

alternative, and also cases where they vary very little.

Two of the examples dealt with in section 3 are instances of models

that, after reduction by sufficiency, are members of the class of curved

exponential models (Efron [4], Barndorff-Nielson [11), and in section 4

we examine the variability of BCRs for hypothesis testing problems in

general models of this type. The one-parameter (linear) exponential

model essentially characterizes the class of models for which standard

likelihood-based inference procedures yield neat solutions. This led

Efron [4] to the notion of the 'statistical curvature' of a model, and

to the conjecture that the adequacy of standard (linear) methods could

be related to a measure of that curvature. In section 8 of [4], Efron

argues that the difference between the locally best critical region and

the BCR for a nearby point alternative can be related to his measure of

statistical curvature. That is, Efron uses his curvature measure as a

local measure of the variability of the BCRs for testing problems in

this context.

Our second purpose in this paper is to examine the global behaviour

of BCRs for testing problems involving one-parameter curved exponential

models, and in section 4 we shall show that the measure of the

variability of BCRs introduced, in section 2 depends on the global

properties of the statistical manifold generated by such a model. This

result lends support to Efron's notion that inference is more difficult
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in models with large curvature, but, because the analysis involves

global concepts, rather than local, Efron's (local) curvature measure is

not implicated here.

To simplify matters we shall abstract from the problem of nuisance

parameters, although we tacitly assume that the problem has already been

reduced by sufficiency, invariance, or similarity, so this may not be as

serious a restriction as it may at first appear.

2. THE VARIABILITY OF BEST CRITICAL REGIONS

Suppose that the testing problem of interest can be reduced to one

involving a random vector x defined on a sample space 1, a parameter

vector 0 defined on a parameter space 8, and a null hypothesis Ho that

specifies a particular point 00 E 8. If the density of x is pdfo(x)

under H
0' 

and is pdf1(x,0) under the point alternative Ho, the NFL says

that the BCR of size a for testing Ho against H
0 

consists of those

values of x E X for which

pdf1(x;0) > c:;(0)pdf0(x), (1)

where c*(0) is a constant that, in general, depends on 0, and must be
a

chosen so that the size of the test is a.

form

Frequently the inequality (1) is equivalent to an inequality of the

f(x;0(0)) > ca(0(0)), (2)

where O(0) E T is some function of 0 defined on a space T that may

differ from 8. Clearly, (1) is a version of (2), but, as the examples

below will show, the distinction between (1) and (2) can be useful.
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For each fixed 0, let

x; pdf1(x;0) > cs1(0)pdf0(x)} n X

= fx; f(x;0(0)) > ca(0(9))1 n X (3)

denote the BCR of size a for testing Ho against Ho, where c*(0) anda

c (0(0)) satisfy Pr{x E wa(0)} = a. The question we want to address is
a

whether Laa(0) varies much with 0, and a natural way to measure this is

to use the union of the regions (3) as 0 varies over the parameter space

under the alternative. That is, to consider

ER(a) = U u. (0)}n X, (4)
0E01

where 8
1 
= 8 -{O}. The region (4) clearly contains every critical

0

region of size a for the given problem, and we shall therefore refer to

it as the enveloping region for the problem.

The next question is how to measure the size of the enveloping

region ER(a), and here it seems natural to use the probability content

of ER(a) under H
0' 

since this is the usual measure of the size of each

of the constituent regions usta(0). That is, we shall use the number

6(a) = Prfx E ERWIHol (5)

to measure the size of ER(a). Clearly, a < 6(a) < 1, with a number near

a indicating that the regions w(0) vary very little as 0 varies, and a

number near 1 indicating that Lo(0) can be almost anywhere in X. For a

one-parameter two-sided problem in which a BCR of size a exists for each

one-sided alternative, 8(a) = 2a, and it is useful to think of this as a

benchmark against which to compare the value of 8(a) for other problems.

Now, to be able to calculate 6(a) for any particular problem we

need a more explicit definition of the region ER(a). Consider first the
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simple case where c(0) in (1) (and therefore ca(0(0)) in (2)) does not

depend on 0. We have:

Lemma 1: Let w (0) = ix; pdfl(x;0) > capdf0(x)} n X, with c
a 
free of 0,

a

and let

LR(c
a
) = ix; sup pdf

1 
(x;0) > c

a
pdf

0
(x)} n X.

0E8
1 

(6)

Then, LR(ca) = ER(a). That is, the enveloping region is simply the

region determined by the maximum likelihood ratio. Equivalently, using

(2),

ER(a) = ix; sup f(
'
x-O) > c

a
l n X.

(PEW 
(7)

Proof: Let usLox(0) denote the complement of wa 0 in X, with

corresponding meanings for ER(a) and LR(ca), so that

ER(a) = { n i;a(0)} n
OE el

If x E ER(a) then pdyx;0) < c
a
pdf (x) for all 0E8, which implies that

supeEe pdfi(x;0) < capdfo(x). That is, X E ER(a) 4 X E Eff(c
a
), or x El 

LR(c
a
) 4 X E ER(a). Conversely, supeEe pdyx;0) < capdfo(x) impliesl 

pdf1(x;0) < capdfo(x) for all 
0E81' 

which implies that x E laa(0) for all

0E8
1 

i.e., that x E ER(a). That is, X E LR(c
a
) = x E ER(a), or x E

ER(a) 4 X E LR(c
a
).

A corollary of Lemma 1 is that, under our present assumptions, if a

uniformly BCR of size a exists it is given by the critical region for

the likelihood ratio test.

As a consequence of Lemma 1, if q*(0) and ca(0) in (1) and (2) do

not vary with 0, then

8(a) = Pr{ x E LR(c
a
)}. (8)

Thus, in cases where the critical values do not vary with the
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alternative, the number 6(a) is reasonably easy to calculate. Examples

1 and 2 in section 3 are of this type.

In most cases, of course, the density of the statistic f(x;0) in

(2) will depend on 0 = OW), so that the critical value in (2) will be a

function of 0. In such cases the problem of defining ER(a), and hence

of calculating 6(a), is more difficult. However, it is often possible

to approximate the distribution of a suitably standardized version of

f(x;0) by a standard distribution (e.g., standard Normal, Chi-square, or

perhaps Beta), and in such cases an approximation to 8(a) that is

adequate for the purposes we have in mind here can easily be found.

For instance, let 120(0) = Eo[f(x;101 and a'(0) = varo[f(x,0)] be

the mean and variance of f(x,0(0)) under H
0' 

and suppose that the

statistic

g(x,0) = (f(x;0) - µ0(0))/c0(0) (9)

is approximately standard normal under Ho. Then, if z
a 

denotes the

(1-a)th quantile of the standard normal distribution, ca(0) in (2) is

approximately equal to

11.
o
(0) + z c (0). (10)

o

A slight modification of the argument in the proof of Lemma 1 then shows

that 6(a) is approximately Pr{ x E ALR(za)}, where

ALR(a) = fx; supoEwg(x; 0) > zal n X. (11)

That is, an approximation to 8(a) can often be obtained by maximizing a

suitably standardized version of the likelihood, and then finding the

probability that x is in the region thus defined.
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3. EXAMPLES

Example 1: Testing Regression Coefficients - Unrestricted Alternatives

Suppose that y N(XP + Z7, T
2
I), where y is n x 1, X is n x k, Z

is n x p, p is k x 1, and 7 is p x 1, and we wish to test H0: 7 = 0

against an unrestricted alternative H1: 7 # O. The class of similar

tests may be characterized by the statistics

b = y'MxZ(Z/MxZ)- Z'Mxy/y/Mxy (0 < b < 1),

with M
x 
= I

n 
- X(X'X)

-1
X', and

g = (,, “

4' 1v1)(‘-aj

so that g'g = 1. The vector g lies on the surface of a p-dimensional

unit sphere and is a measure of the direction of the OLS estimator, 7,

for 7. The joint density of (b, g) (with respect to Lebesgue measure

for b and the invariant measure on the unit sphere for g) is given by

03

pdf
1
(b
'
g) = c(m,p) bP/2-1(1-b)(m-P)/2-1e-X/2

E am(i)[(Ab)1/2g,tiii
j=0

where A = 7'Z'MxZ7/T , A = (z,mxz)1/27/(7rl,,,,„ x44„)IL/2, m =

(12)

-k, c(m,p) =

[r(m/2)/21t13/2r((m-p)/2)], and a
m

 (j) = r(((j+m)/2)/j!. Note that g also

lies on the surface of the unit p-sphere and is a measure of the

direction of 7 under the alternative hypothesis. Under H
0 
(12) reduces

to

pdf (b,
--

= c(m,p) 
bp/2-1 

1-b 
mp)/21

(13)

so that, under H
0' 

b and g are independent, b B(p/2,(m-p)/2), and g is

uniformly distributed on the surface of the unit p-sphere.

Since the infinite series in (12) is a monotone increasing function

of b
1/2

gig for all A > 0, the ratio pdf
1 
(b,g)/pdfo(b,g) is large just if



b
1/2
gA is large. Hence, for fixed 7 the best similar region (BSR) of

size a for testing Ho against this 7 has the form

b
1/2

g'A > c
a
(A), (14)

which corresponds to (2) with x E (b, g), 0 E 7, 0(0) E A, and f(x;0) E

b
1/2

g Since the region (14) (a subset of (0,1) x 5, where S

denotes the surface of the unit p-sphere) depends on the direction of 7,

as measured by A, the BSR of size a varies with A. However, the

critical values c
a  (A) do not, in fact, vary with A, so that the regions

to(A) are of the forma 

tuta(A) = (b,g); b E (0,1), g E S b1/2g'A > c
a 
I (15)

where c
a 

is determined so that Pri(b,g) E W(A)} = a .

Since A is unrestricted under the alternative hypothesis, and

supAE 
(g'A) = 1 (when A = g), it follows from Lemma 1 that the

enveloping region has the form

ER(a) = b,g),IDE(0,1),gES;b> c
2
a} '

(16)

and the size of this region is easily evaluated under Ho because b and g

are independent under Ho and b B(p/2, (m-p)/2). Values of 6(a) are

given in Table 1 for selected values of m and p and a = .05.

TABLE 1 ABOUT HERE

Clearly, this is a case where the location of the BSR can vary

considerably with the alternative. The test usually used is, of course,

the F-test, with critical region of the form b > c, where c is chosen

so that the size of this region is a. On the evidence in Table 1, this

region will envelop all BCRs of size a*, say, only if a* is very small

indeed. In this sense the F-test is, within the class of similar tests,
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itself a compromise, and a very unsatisfactory one. On the other hand,

the F-test can, of course, be shown to be optimal within the smaller

class of invariant tests, and this stronger' restriction on the class of

tests considered might be judged an acceptable compromise.

Example 2: Testing Regression Coefficients: One-Sided Alternatives

With the same assumptions as in example 1, suppose that we wish to

test H0: 7=0 against the one-sided alternative H
+
: 7 > 0, where 7 > 0
1

means 7i 0 for i=1,...,p, with strict inequality for at least one i.

The BSR for fixed 7 is again given by (14), but since the direction of

7, 11, is restricted under the alternative, (16) no longer gives the

enveloping region for the problem. Instead, the supremum of gig must be

obtained subject to the restriction 7 > 0, and this is precisely the

problem discussed in Hillier [8].

The results in [8] show that the region LR(c
a
) depends on p =

Z/M z ,f(eM z z'M z )
11'2

in the case 2, and on p..1 x 2 1 x 1 2 x 2 j
1/2

Z/M Z /(ZI.M z.z.M z.) i#j=1,2,3, in the case p = 3. Equations (7)
ixj ixljxj'

and (8) in [8] are easily adapted to permit the calculation of 6(a) =

Pri(b,g) E LR(ca)}, and some results of such calculations are given in

Table 2(a) for the case p = 2 (for various values of m and p), and in

Table 2(b) for the case p = 3 (for various values of m and the pij's).

TABLES 2(a) AND 2(h) ABOUT HERE

It is clear from Tables 2(a) and 2(h) that, as one would expect

intuitively, information on the signs of the coefficients being tested

can significantly reduce the possible variation in the BSRs for the

problem. When p = 2 and p is large and positive the size of the

enveloping region ER(a) is quite close to that of any individual BSR,

and the situation is not much worse than that for a one-parameter
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two-sided problem for any positive p. When p = 3 information on the

signs of the coefficients is less restrictive on the BSRs, as one might

expect on dimension grounds," but again the situation is not much worse

than for a one-parameter two-sided problem for any configuration of

positive 
P 
..'s.
ij

Example 3: Standard Symmetric Multivariate Normal Distribution

Suppose that the p x 1 vectors yi (i=1,...,n) are independent

N(0,E(p)) variates, with E(p) = (1-p)Ip + pft', where t is a p x 1

vector of ones, and -1/(p-1) < p < 1 (so that E(p) is positive

definite). It is easy to check that the statistics V
1 
= p E.

1 
(Vy.)

1=

- V
1 
are minimal sufficient for p, are independent of

n ,
and V

2 
= E.

1 
y.y.

1= 

one-another, and that V
1,
/(1+(p-1)p) x

2
(1)
' 

V
2
/(1-p)

Hence, the joint density of V1 and V
2 

is given by:

pdf(V
1' 

V
2 
) = [2nP/21"(n/2)Nn(p-1)/2)]-1(1-p)-n(13-1)/2[1+(p-1)pl

-n/2

exp{-V
1
/2(1+(p-1)p)-V

2
/2(1-p)} V

n/2-1 
V
n(p-1)/2-1

1 2
(17)

For the problem of testing Ho: p = 0 against a specific alternative

H, with p > 0, the NFL says that the BCR of size a consists of the

values of V1 > 0, V > 0 for which

(p-1)(1-p)V1 - (1 + (p-1)p)V2 > ca(p), (18)

where c
a

 (p) is a constant to be chosen so that the size of the region is

a. Since the regions (18) depend on p, there is no BCR of size a for

testing Ho against H.

The critical regions (18) are shown graphically in Figure 1 for the

case n = 20, p = 5, c = .05. The region (18) with p = 0 is the locally

best similar region (Gokhale and Sen Gupta [7]), and the critical value
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c
a
(0) is obtainable from Table 2 in [7]. The regions (18) are bounded

below by the lines

V
1 
= a(p) + b(p)V2,

o
(19)

with intercept a
a
(p) = c

a
(p)/(p-1)(1-p) and slope b(p)

(1+(p-1)p)/(p-1)(1-p). The structure of the enveloping region is clear

from Fig. 1, and it is immediately apparent that the size of ER(.05) in

this case is very little more than the size of any single region to(p).

In section 4 below we give an approximate formula for the size of ER(a)

in this problem, and for other problems with a similar structure, and

Table 3 gives some (approximate) values of 6(a) for various values

of p and a. The results in Table 3 confirm the impression in Fig. 1

that 6(a) is very near a for this problem.

FIGURE 1, FOLLOWED BY TABLE 3, ABOUT HERE

Another point that is evident from Fig. 1 is that the locally BCR

is itself a reasonable approximation to ER(a). This explains the

satisfactory power characteristics of the locally best test noted by Sen

Gupta [11].

Example 4: Pure Autoregressive Process

Assume that the n x 1 vector y N(0, E(p)), with

Vic)) = { (1-p2)
-1

pli-ji , i,j = 1,2,...,n }, Ipl < 1,

so that iytl is a stable autoregressive process with parameter p. The

density of y is

pdf(y;p) (270-n/2(i-p2)1/2exp{-1[ (1+p
- 2pd + s211 (20)

n-12 . 2 2 n
where s

1 = L 
,

-t=2Yt, s2 = (n+yn), and d 
v

= -t=2YtYt-1. 
Hence, the

statistics s
1 
and d are minimal sufficient for p.
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We consider the problem of testing Ho: p = 0 against Hi: p > 0.

Under H
o 

the density of y reduces to (270
-n/2

exp{-(s
1
+s
2
)/2}, so that

the BCR for testing Ho against the point alternative H (with p > 0)

consists of those values of s
1 
and d for which

{2d - psi} > ca(p), (21)

where c(p) must be chosen so that the size of the test is a. Since the
a 

regions (21) (in (d,s
1
)-space) vary with p, there is no uniformly best

test for Ho. The regions (21) are evidently the regions above the

straight lines d = ca(p)/2 + (p/2)s1, with intercept ca(p)/2 and slope

p/2.

Now, it is straightforward to check that, under Ho, E0(d) = 0,

var0 ' 
(d) = (n-1) E

0 
(s

1 
) = (n-2), var

0
(s

1
) = 2(n-2), and 

cov0 
(s

1' 
d) = 0.

Hence, the variate (2d-ps1) has mean -(n-2)p and variance

2[2(n-1)+(n-2)p
2
] under H

0' 
and it is easy to see that the higher-order

cumulants of (2d-ps1) are 0(n) as n m. Hence, the standardized

variate [2d-ps1+(n-2)p]/{2[2(n-1)+(n-2)p
2
11lA2 is approximately standard

normal for large n, and ca(p) in (21) is therefore approximately equal

to z
a
{2[2(n-1)+(n-2)p2illA2 (n-2)p. Using this approximation, the

lines (21) are shown in Figure 2 for the case n = 40, a = .05, and

several values of p. The enveloping region, ER(a), is also indicated in

Fig. 2, and it is again clear that the size of this region, 6(a), is not

much greater than that of any individual BCR. Some (approximate)

values of 6(a) are given in Table 4 for various values of n and a, and

again these reveal that the BCRs for this problem vary very little with

the alternative.

FIGURE 2, FOLLOWED BY TABLE 4, ABOUT HERE
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Example 5: Testing for Non-Sphericity in Regression

Suppose that y N(XP,T
2
E(0)), where X is nxp, and 0 (rx1) is such

that E(0) is positive definite symmetric. We consider the problem of

testing H
0

.• 0 = 0
0 

against some class of alternatives, and assume

(without loss of generality) that E(00) = I. The classes of similar

tests and tests invariant under the transformations 
Y 70Y "4- X7

(7 > 0, 7 E RP) are both characterized by the statistic (cf. Hillier
0

[9])

y11/2,
= C' yifyi CC' (22)

where C (nx(n-k)) is such that C'X = 0 and C/ O = I
m
, with m = n-k.

Since v'v = 1, v is defined on the surface of the unit m-sphere, Sm, and

the density of v with respect to the invariant measure on Sm is

pdf
1 
(v;0) = A

-1
(m)IC'E(0)CI

-1/2
[vi(C'E(0)C)

-1
v]
-m/2

(23

where A(m) = 2n
m/2 

/r(m/2) is the surface content of S . Under H (23)
0

-
reduces to pdf

o
(v) = A

1 
(m), the uniform distribution on S

m' 
so that, by

the NFL, the BSR of size a for testing Ho against the point alternative

H has critical region

wa(0) = fv; v E S
m
, Vi(CiEWC)

-1
V < c

a
(0)1 , (24)

where c
a
(0) must be chosen so that the size of the test is a.

For most testing problems of this type (and there are many; e.g.,

tests for: autocorrelation of first or higher order, moving average

errors, heteroscedasticity (of any form), combinations of these, etc.),

the regions (24) vary with the alternative, so that there is no

uniformly best critical region. Typically the critical values ca(0) in

(24) themselves vary, so in order to calculate the size of ER(a) it is

again necessary to approximate this critical value.

13



Thus, let s(0) = vi(C'E(0)C)
-1

v. It is easy to show that

E
0 
(s(0)) = m

-1
tr[C'E(0)C]

-1 
= µ (0) say,

0 '

and

- 2
var0(s(0)) = 2[m

1 
tr(C'E(0)C)

-2 
- m

-2
(tr(C'E(0)C)

-1
)
2
1/(m+2) =

o
(0)
'

say. The variate

s*(0) = (5(0)) - µ0(0)) co(0) (25)

can be treated as approximately standard normal for large n (cf. Evans

and King [6]), so that c
a
(0) in (24) is approximately -z

a
c
0
(0)+µ0(0).

Note, though, that the density of s(0) depends on X, so the accuracy of

this approximation may vary with X.

Using this approximation, and applying Lemma 1, the size of the

enveloping region ER(a) is approximately 8(a) = Pr{v E ALR(za)}, where

ALR(z ) = fv; v E S
m' 

sup
0 
{-s*(0)} > z} ,

• a  a
(26)

where the supremum is taken over the region of interest under the

alternative hypothesis.

As an illustration we have evaluated the (approximate) value of

6(a) by this method (by simulation) for the case in which 0 = p, and

E(p) is as in example 4 (i.e., for tests for first-order autocorrelation

in the linear model). For the case p = 3, n = 40, a = .05, and

tests of the hypothesis p = 0 against the one-sided alternative p > 0 we

find that, as expected, the value of 8(a) varies with X, but only

between about .066 (for strongly seasonal data) and .092 (for highly

correlated explanatory variables). Thus, once again the BSRs may be

seen to vary little with the alternative.
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4. ONE-PARAMETER CURVED EXPONENTIAL MODELS

Examples 3 and 4 in section 3 are examples of one-parameter curved

exponential models (see Efron [4], Efron and Hinkley [5], Barndorff-

Nielson [1], [21). In this section we generalize those examples, and

consider arbitrary one-parameter exponential models for which the

minimal sufficient statistic has dimension k > 1. The ideas introduced

in section 2 will enable us to shed further light on Efron's [4] con-

jecture that inference in models with small curvature is, in some sense,

more straightforward than it is in models with large curvature.

Suppose that, after reduction by sufficiency, invariance, or

similarity, the class of tests of interest is characterized by the kx1

vector x defined on a sample space X c R
k
, and assume that the density

of x (with respect to some dominating measure on X) has the form

pdf(x;0) = g(x) exp{ ox - nK(0)} , (27)

where no = n(o) is a vector-valued function of the scalar parameter 0,

and 0 E 0, where 8 is some subset of the real line. We assume that x is

minimal sufficient in (27), so that the one-dimensional manifold At =

{n(0), 0 E 8} cannot be embedded in a Euclidean space of dimension less

than k. The coefficient n attached to the cumulant transform, K(0), in

(27) is included so that, in the approximations necessary later, x

behaves like a sum of Independent, identically distributed, random

variables. It can be replaced by any coefficient that is 0(n) as n co.

We consider the problem of testing Ho: 0 = 00 against the

alternative that 0 is in some subset of 8
1 
= 8 - 

{00 } 
(e.g., 0 > 0

' 
or

0

0 < 00), and write no = n(oo) and Ko = K(00). The NPL•applied to (27)

yields that the BCR of size a for testing Ho against the point

alternative H
0 

has critical region

15



x ; (710-n0)'x > ca(0) 1 n X , (28)

where c
a
(0) must be chosen so that

g(x) expin,? - nK 1(dx) =

(Ti

 a

0
-n
0 

> c
a
(0)

(29)

For fixed 0 the region (28) is the region 'above' the hyperplane

(n
e
-n
o 

= c
a
(0). The normal to the hyperplane, ), determines

its orientation in R
k
, and the constant c

a
(0) determines its location.

As 0 varies, the orientation of the hyperplane also varies, and this

aspect of the variation in BCRs is governed entirely by the behaviour of

(no-no) as 0 varies. Changes in the orientation of the hyperplane must,

however, be compensated for by changes in its position in such a way as

to satisfy equation (29) (see Figs 1 and 2 above).

Intuitively, the geometric structure of the BCRs in (28) suggests

that the structure of the enveloping region for the problem is

intimately related to the global structure of the one-dimensional

manifold in R
k 

generated by n . This contrasts with Efron's [4]
0

discussion of locally most powerful tests where, naturally, only the

local behaviour of the manifold n(0) near 0
0 

is relevant. To make

further progress with the general case, and to explicate this intuition,

we essentially need to approximate the, dependence of the critical value

c
a
(0) in (28) upon 0.

Let E
0 
(x) = nA

0 
and cov

0 
(x) = nE

0 
denote the mean and covariance

matrix of x under H0, and define

= (nE0)-1/2(x nx
(30)

It is straightforward to see that, as n 4 co, Z 4 N(0,1) under H, so

that the standardized variate

16



(7) -7) ) ' (x-nA.
0/ 
) /{n (

0
71 -17 YE

0 
(n
0 
-
0

7) ) 1
1/2

0 0 
(31)

has a limiting standard normal distribution as n co. Hence, ca(0) in

(28) is approximately

c
a
(0) nAi(17

0 
-n
0 
) + z

a0 
11070-n0yyn0-

.00)11/2,

and we can rewrite (28) in terms of z as

where

Piz > z (32)
0 a

o = 1/2(E
0 00 00000

(33)

is a point on the surface of the unit k-sphere, Sk.

The region (32) is the region in z-space 'above' the hyperplane

pi
0
z = z

a
, and p in (33) is the unit normal to that hyperplane. As 0

0

varies the orientation of the hyperplane changes, but each such

hyperplane is tangential, at a point in the direction of the unit normal

p to the k-dimensional sphere of radius z
a 

centred at the origin. The
0'

situation is illustrated in Figure 3 for the case k = 2: the

hyperplanes Piz = z
a 

are straight lines tangential to a circle centred
0

at the origin of radius z
a
.

FIGURE 3 ABOUT HERE

n the case k = 2 the (approximate) size of the enveloping region

ER(a) can be deduced quite easily from the geometry of Fig. 3 and the

symmetry of the (approximate) distribution of z. For, suppose, that po

varies (on the circumference of the unit circle) continuously with 0,

and traces out a continuous arc, a, of length a as 0 varies over the

parameter space under the alternative (we shall see shortly that this is

17



so only for tests against one-sided alternatives, but we defer those

matters for the moment). Since the probability content of the region

a 
22

outside the circle zi 2z = z is given by 
Prix (2) 

z}, the section of
a

ER(a) that is in the ,direction of the arc a has probability content

(under H0) approximately equal to (a/2n)Pr{x
2
(2) > z

2
}.
a

Also, the

symmetry of the approximate N(0,Ik) distribution for z implies that the

combined probability content of the remaining two sections of ER(a) is

simply a, so that, approximately,

6(a) a + (a/2n) Prfx
2
(2) > z

2
a
1

2
= a + (a/2n)expf-z

a
/2 (34)

Thus, in the case k = 2, 6(a) is an increasing function of the

length of the arc a. This arc is generated by projecting the points

onto the circumference of the unit circle, so that its
0 0 0

length, a, directly reflects the global behaviour of the curve n(0) as 0

varies. Equation (34) therefore expresses, for the case k = 2, the fact

that the global behaviour of the curve n(0) has a direct bearing on the

variability of the BCRs for testing a point hypothesis in these models.

Note, too, that a (and hence 6(a)) may depend on the hypothesis of

interest through E0 and no.

Now, let -1)0 = 3n(0)/801
0= 

, and let
e0

(35

It is easy to see that, for any k, pe 4 go as 0 4 0 from above, and po o

--) o as 0 --> 00 from below. Hence, for the case k = 2, and for

alternatives 0 > 0 a in (34) is the largest angle between p and f3 as
0' 0

0 varies over the region 0 > 00. Correspondingly, for alternatives 0 <

0
0' 

a is the largest angle between go and -g as 0 varies over 0 < 0 .0 0

In general, therefore (unless this angle is it in both cases), (34)

18



applies only for one-sided alternatives, and becomes (in an obvious

notation)

6(a) 2a + [(a+ + a-)/27dexpf-z2/2} (36)

for two-sided alternatives. The angle a is usually easy to calculate

in any particular case.

Example 3 continued:

Here k = 2, 0 E p, 00 = 0,

[1+(p-1)p
n
p 
= -

(1-p)-1

1

E
0 
= 2

1
1 0 )
0 p -1

and

gp

(1-p) (1)-1)11
fp [ }-1/2 

-[1+(p-1)p]

„ 1/2

Hence, p
p 
4 p

0 
= p

-1/2 (p-1)
as p 0, and Pp -4 pi = 

[_
i
] 

as p 4 1,
-1

so that a
+ 
= cos

-1
[p

-1/2
1. Some approximate values of 6(a) for the case

of alternatives p > 0, calculated using (34), are given in Table 3 for

(1various values of p and a. For alternatives -1/(p-1) < p < o, p 
)
0

as p 4 -1/(p-1), so that a = sin
--1
[p

-1/2
]

Example 4 continued:

Here, k = 2, 0 E p, 00 = 0,

4
- 

1+p
2
)

n . n
P 2( -2p j; 

.
0

0 1

i' 
nE
0 

( 
0 2(2))'

(n-1) 0nA
0 

= = and- n-
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-p(n-1)1"

P {(n-1)p
2
+8(n-2)}

-1/2

(8(n-2))112

Hence, p PO
( 0

as p 0, and p
p 
4 p1 as p 1, where

(n-1)1/2 1

(8(n-2) )1/2 j

[9n_17]-1/2

Therefore, a+ = cos-1[(8(n-2)/(9n-17)) 
1/2], 

and the length of the arc a

depends only on the sample size, n. It is easy to see that, for

alternatives p < 0, a = a
+
. Table 4 contains some values of 6(a) for

the case of alternatives p > 0, and for various values of n and a.

In the case k > 2 the argument leading to equation (34) can be

generalized, but in this case provides an approximation to 6(a) that is

necessarily an overestimate. Essentially this is because the points

p E S
k 

being the projections of the points E
1/2

o
(7) -n ) on a

0 '  0 o

one-dimensional manifold in R
k 

onto S
k 

themselves lie on a line on the

surface Sk. If we let B be the smallest circular 'cap' on S
k 

that

contains all points pe for 0 > 00, the points Po clearly cannot cover B,

2
so that not every hyperplane tangential to the k-sphere z'z = za 

at a

point in the direction of B defines a BCR. However, by assuming that

this is the case (as it is when k = 2) we can clearly obtain an upper

bound on 8(a) that is analogous to (34), and this is probably the best

generalization of (34) possible in general. Of course, in any

particular case the (approximate) value of 8(a) can be found by applying

Lemma 1 in (32), but this does not seem to lead to a theoretical result

analogous to (34).

Assume, then, that B is the smallest circular cap on S
k 

that

contains all points pe for 0 > 00, and that this cap subtends an angle a

at the centre of the unit k-sphere. As in the case k = 2, the angle a

reflects the global behaviour of the curve 17(0) as 0 varies over 0 > 0 .
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The probablility content of the region outside the k-sphere z'z = z
2 

i
a 

n

the direction of B is simply [C(B)/A(k)]Prfx2(k) > z2al, where A(k) =

2n
k/2

/r(k/2) is the surface content of S
k' 

and

a/2
k-2

C(B) = A(k-1) I sin x dx
0

is the surface content of the cap B.

The remaining region of interest is the region bounded below by the

family of hyperplanes tangential to the k-sphere z'z = z
2
a 

at points in

the direction of the 'rim' of B, and above by the surface of the cone of

points in the direction of B but outside the k-sphere z'z = z
2
a
. A

straightforward but tedious calculation yields, for the (approximate)

probability content of this region,

k-1
2

E f.(a)Prfx
2
(j) > z

a
1,

j=1

where

a/2).nj-1(a/2)cosk-j-1
"a) = [(11 

)4si (37)

Hence, 6(a) is approximately given by:

k-1
6(a) [C(B)/A(k)]Prfx

2
(k) > z

2
1 + E f.(a)Prf

2
x (j) > z

2
1 (38)

a

It is not difficult to see that the approximation (38) to 6(a) is,

for fixed a and k, an increasing function of a. As in the case k = 2,

this expresses the fact that the variability of the BCRs depends on the

global behaviour of the manifold generated by n(0). In addition,

it is clear from (38) that, ceteris paribus, o(a) is larger the larger

is the dimension, k, . of the full exponential model within which the

curved model (27) is embedded. Thus, (38) provides a rough indication

of the impact of two distinct aspects of 'model curvature' on

one-parameter hypothesis testing problems: (i) the dimension of the full
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exponential model needed to accomodate the curved model, and (ii) the

curvature, within that full model, of the manifold n(0), as measured by

the angle a.

5. CHOICE OF CRITICAL REGION WHEN BCRs VARY LITTLE

For problems like examples 2-5 in section 3, for which the BCRs of

a given size do not vary greatly, the question arises how best to

exploit this information - bearing in mind that no uniformly best test

exists, so that any procedure chosen must involve some compromise. Two

possible approaches suggest themselves here: (a) choosing as the

critical region the enveloping region, ER(a), itself, or (b) choosing

some subset of ER(a) of size a that is, in some sense, a good

approximation to every BCR t(0).

The first of these suggestions would entail the compromise of using

a critical region whose size, 6(a), is larger than the originally

intended size, a, but which is known to contain every BCR of size a.

The power of the test implied by this choice is therefore not less than

that of the best test of size a for any alternative. Provided 6(a) is

fairly close to a, and to compromise on size is not a serious matter for

the problem at hand, this would seem to be a sensible strategy for such

problems. Moreover, this strategy is reasonably easy to implement, at

least approximately: if the critical values in (1) and (2) do not depend

on 0 it is simply the likelihood ratio test carried out at (the possibly

unconventional) size 6(a). If the critical values in (1) and (2) do

depend on 0, the procedure can be implemented approximately as discussed

in section 2.

Note that, in this approach, we are thinking of a as fixed a

priori, so that 8(a), the size of the test actually used, is determined

by the problem. The second approach - choosing a subset of ER(a) of
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size a - would be appropriate for problems in which an increase in size

would be unacceptable. This approach can be implemented in a number of

ways, and we conclude by briefly discussing three of them: (i) choosing

the enveloping region ER(a*) for BCRs of size a* < a in such a way as to

ensure that 43(a*) = a; (ii) choosing the BCR of size a corresponding to

a particular point alternative 0 = 0*, i.e., choosing a single w(0*);

(iii) choosing a subset of ER(a) of size a that in some sense is a good

approximation to ER(a).

The first of these approaches is a generalization of the approach

usually adopted for one-parameter two-sided testing problems in which a

BCR exists for each one-sided problem. In that case a* = a/2. It is

also essentially the same as the Type I procedure suggested by Roy [10],

except that Roy did not impose the condition that a = 6(a*) should be

close to a* in suggesting the procedure. Since we are thinking here of

fixing a and allowing a* to be determined by the problem through the

relation a = 8(a*), and the region ER(a*) can claim only to contain all

BCRs of size a*, this condition is clearly important.

Now, normally (though see Stein [121), a* < a will imply that

ER(a*) is a subset of ER(a). Thus, this approach can be thought of as a

procedure for choosing a subset of ER(a) of size a. Viewed this way,

though, it suffers from one striking drawback: ER(a*) may not contain

some points x E Xthat are in every BCR of size a. An example of this

is provided by superimposing on Fig. 3 another circle of radius za*,

with a* < a. It is easy to see that, for a small and (a-a*)

sufficiently large, ER(a*) excludes some points that are in every w(0).

Thus, this strategy is likely to produce a poor approximation to ER(a),

and therefore involve an unacceptable compromise in terms of power.
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The second approach in this category - choosing the BCR for a

particular point 0* - is often suggested (cf. Cox and Hinkley [3], p.

102, Efron [4], §8). Here there is no compromise on size, but the power

of the test is inevitably below that of the BCR wa(0) at some points in

the parameter space. Clearly, usta(0*) is necessarily a subset of ER(a),

and the outstanding problem here is to choose 0* so that toix(0*) is, in

some sense, a good approximation to ER(a). For instance, a reasonable

criterion would be to choose 0* to minimize the maximum probability

content of the part of ER(a) that is not in wa(0*) over all

alternatives. That is, to choose 0* so as to minimize

A(0) = sup [Pr { X E ER(a)IH } - Prfx E Lim,x(0)11-101]
0E01

(39)

This brings us to the third approach mentioned above, which is

essentially just a generalization of the first two approaches in this

category. Whatever rule is used to determine 0*, the second approach

discussed above confines attention to those subsets of ER(a) that are

themselves BCRs for some 0. This restriction evidently simplifies the

problem, but it is not obvious that it is innocuous in terms of power.

Thus, we suggest generalizing this approach to allow arbitrary subsets

La of ER(a) of size a, so that in place of the criterion (39) we would

have the problem: minimize

A(u) = sup [Pr {X E ER(a)IHe} - Prfx E calHe1]
0E01

(40)

over choices of LIS satisfying /11 C ER(a) and Pr{x E lalHo} = a. This

region, if it can be found, would have the desirable property of

minimizing the maximum power lost by choosing a subset of ER(a).

Clearly, this minimum loss may be large unless the BCRs for the problem

vary little, so the compromise implicit here is again only likely to be

acceptable in cases where 6(a) is close to a. The technical
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difficulties involved in implementing either (39) or (40) are obviously

formidable, and are beyond the scope of the present paper.

Of course, for some problems it may turn out that 6(a) is very much

larger than a (as in example 1 when p = 4 or 5), indicating that the

BCRs do vary considerably. In such a case no compromise is likely to be

satisfactory, and the only remedies likely to simplify the problem are

(as in example 1): (i) to restrict the parameter space under the

alternative, or (ii) to invoke some additional, and acceptable,

restrictions on the class of tests considered. The measure of the

variability of BCRs we have proposed has the merit of distinguishing

cases of this sort from those in which satisfactory procedures can be

devised without further restrictions.
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Table 1

Testing Regression Coefficients: Unrestricted Alternatives

Size of Enveloping Region (a = .05)

P = 1 2 3 4 5

m = 10 .100 .281 .500 .701 .848

20 .100 .268 .466 .649 .791

30 .100 .266 .457 .635 .776

61 .100 .261 .447 .620 .759

Table 2(a)

Testing Regression Coefficients: One-sided Alternatives

Size of Enveloping Region: p = 2, a = .05

M 10 20 30 61

p = .99 .067 .061 .059 .056

.90 .081 .074 .072 .069

.60 .103 .094 .092 .089

.30 .118 .110 .106 .104

.00 .131 .122 .119 .117

-.30 .145 .135 .132 .130

-.60 .160 .149 .146 .144

-.90 .181 .170 .166 .164

-.99 .195 .183 .180 .178
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Table 2(h)

Testing Regression Coefficients: One-sided Alternatives

Size of Enveloping Region: p = 3, a = .05

m = 20 41 61

P12 P13 P23

.9 .9 .9 .0815 .0808 .0806

.9 .6 .2 .1104 .1091 .1087

.7 .5 .3 .1305 .1286 .1280

.7 .3 .1 .1435 .1412 .1405

.5 .3 .1 .1547 .1521 .1513

.9 -.4 -.4 .1645 .1618 .1610

.3 .2 .1 .1759 .1726 .1717

.7 -.4 -.4 .1878 .1843 .1832

0.0 0.0 0.0 .1964 .1925 .1914

.5 -.5 -.5 .2174 .2130 .2116

.9 .9 -.9 .2346 .2297 .2283

.5 -.7 -.7 .2527 .2471 .2454

-.5 -.3 .1 .2545 .2488. .2471

-.6 -.4 -.1 .2756 .2691 .2672

-.4 -.4 -.4 .2864 .2795 .2775

-.7 -.6 -.1 .3348 .3261 .3236
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Table 3

Symmetric Multivariate Normal Model: Approximate values of 8(a)

p= 2 3 4 5

8(.01) = .0183 .0202 .0211 .0218

8(.05) = .0823 .0894 .0931 .0955

8(.10) = .1550 .1669 .1733 .1775

Table 4

Pure autoregressive process: Approximate values of 8(a)

20 40 60 100

8(.01) = .0137 .0136 .0136 .0136

8(.05) = .0643 .0641 .0640 .0640

8(.10) = .1244 .1241 .1240 .1240
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Critical and Enveloping Regions for tests of an

Autoregressive Parameter: n = 40, a = .05



Figure 3

Approximate critical and enveloping regions in terms of
standardised variables for Curved Exponential Models: k = .
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