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DUALITY AND ELASTICITIES OF SUB-
STITUTION I: THEORETICAL CONSIDERATIONS*

by J. VAN ZYL**

ABSTRACT

An alternative approach to the estimation of
functional specifications from physical input data,
involves estimation of factor share equations from
cost data. This is done by using the duality that
exists between the production function and the , cost
function along the expansion path.

The basic dual input definition of elasticity of
substitution renders a number of alternative concepts
possible. The Allen, Morishima and Shadow
measures are particularly useful.

Although specific production functions
frequently embody assumptions that may have
important disadvantages with respect to the
substitutability of inputs, the translog specification
represents relaxations of these maintained
hypotheses.

The translog functional specification is thus the
production function of choice for empirical
estimation of elasticities of substitution between
input pairs when little information about the
production process other than cost data, is available.

INTRODUCTION

Elasticity is the ratio between the proportional
change in one variable and proportional change in
another. It is no more than a useful descriptive
summary of the characteristics of a relationship
between two variables, and might be described as the
derivative of one natural log with respect to another.

The elasticity of substitution is a pure number
that indicates the extent to which one input
substitutes for another (Henderson and Quant,
1971). If there are two inputs, X, ' and X2, the
elasticity of substitution between X, and X2 is
usually defined as:

Es = % change in (X2/X1)/% change in MRSx1x2 

The elasticity of substitution provides an
indication of the shape of an isoquant. A large
elasticity of substitution indicates that the
entrepreneur has a high degree of flexibility in
dealing with input price variation. If a high elasticity
of substitution exists between a pair of factors, the

*This article, for some parts, makes use of two papers, one by
Fuss, McFadden and Mundlak (1978) and another by McFadden
(1978), from a. book "Production Economics: A Dual Approach
to Theory and Application" edited by Fuss and McFadden (1978).
It also relies on a publication by Devertin and Pagoulatos (1985)
**University of Pretoria, February 1986

manager can quickly adjust the input mix in
response to changing relative prices. However, if the
elasticity of substitution is small, the input mix can
hardly be altered even in the face of large relative
shifts in prices. The extent to which a farmer adjusts
the input mix to changing relative prices thus
indicates the magnitude of the elasticity of
substitution between input pairs (Hicks, 1932;
Varian, 1978). Technological change which increases
the elasticity of substitution between input pairs will
give farmers additional flexibility in dealing with
input price variation.

DUALITY CONCEPTS

General

As an alternative • to the estimation of
functional specifications from physical input data, a
contemporary approach frequently involves
estimation of factor share equations from cost data
(Fuss, McFadden 8z. Mundlak, 1978). This is an
advantage for agricultural economics research in that
cost data are usually more readily available than
physical input data, and frequently also more
reliable.

Production functions have corresponding dual
cost functions or perhaps correspondences. The term
dual as used in this context means that all of the
information needed to obtain the corresponding cost
function is contained in the production function,
and, conversely, the cost function contains all of the
information needed to derive the underlying
production function. Cost functions are usually
expressed in monetary rather than in physical terms.

Single input cost functions are not normally
thought of as arising from an optimalisation
procedure. However, it is widely accepted that any
point on a single input production function
represents a technical maximum output (Y) for the
specific level of input use (X) associated with the
point. Each point on the inverse cost function is
optimal in the sense that it represents the lowest cost
method of producing the specific amount of output
at the chosen point. However, if the underlying
production function is not always monotonically
increasing, and as a result the dual is a
correspondence, a point on the dual cost
correspondence is not necessarily a least cost point
for the chosen level of output. For example, if the
production function is the familiar neoclassical
three-stage production function, the resultant cost is
a correspondence, but not a function, for two values
of X exist for at least some values for Y.
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In a multifactor setting, the duality of the
production function and the corresponding cost
function becomes more complicated. Suppose that a
production function for an output Y is given by Y =
f(X), where X = a vector of inputs treated as
variable. The corresponding dual cost function exists
under the following specific set of conditions
(McFadden, 1978:8):
- Marginal products of the inputs are

non-negative. This implies free availability of
inputs.

- Marginal fates of substitution (MRS) between
input pairs are non-increasing. In the dual
factor case this implies that d(dX2/dX1)/dX1 is
non-positive.
These assumptions imply that isoquant maps

consisting of concentric rings are ruled out, and that
positive slopes on isoquants are not allowed. Each
isoquant is weakly convex to the origin.

The cost function that corresponds to the
production function is C(Y;P)= min (P'X:f(X)Y). If
the assumptions or conditions mentioned above are
met, then this minimum cost function that
corresponds to the production function displays the
following characteristics: (a) it exists; (b) it is
non-increasing for each price in the input price
vector; (c) it is continuous; (d) it is homogeneous to
degree one in all variable input prices; and (e) it is
concave in each input price for a given level of
output (Y*). Detailed proofs of statements (a)-(e) are
provided by McFadden (1978:10-13).

The isoquant maps needed for the existence of
a corresponding dual cost function are not
necessarily more plausible in an applied setting than
other isoquant maps, but are rather a matter of
mathematical convenience.

Consider a particular class of production
functions known as homothetic production
functions, which include both homothetic production
functions and monotonic transformations of
homogeneous production functions. A key
characteristic of the homothetic production functions
is that a line of constant slope drawn from the origin
of the corresponding isoquant map will connect
points of constant slope. Hence, homothetic
production functions have linear expansion paths.
Moreover, any isocline drawn from the origin will
have a constant slope. An isocline of constant slope
represents all points in which the ratio of the inputs
remains fixed or constant, and can be referred to as
a factor beam (Beattie and Taylor, 1985:42).

Now consider the factor beam for the
homothetic production function representing the
expansion path, or at least lowest cost combination
of inputs. The production surface arising above the
expansion path represents the production function
for the use of the optimal input bundle as defined by
the lowest expansion path conditions. Therefore,
every point on the production surface directly above
the expansion path is optimal in that it represents
the minimum cost of producing a given level of
output.

The cost function that is dual to the production
function represented by the expansion path
conditions along the factor beam can be obtained by

making use of expansion path conditions. Detailed
elicitation procedures can be found in Debertin and
Pagoulatos (1985:8-11).

Any point on the dual cost function
representing a particular quantity of output is
optimal in the sense that it represents the minimum
cost, or least cost combination of inputs to produce
that output. However, at most only one point on the
dual cost function represents universal optimality
where the marginal cost of producing the
incremental unit of output, using the least cost
combination of factors, is exactly equal to the
marginal revenue obtained from the sale of this
incremental unit of output.

If total product is increasing at a decreasing
rate along the expansion path, then costs are
increasing at an increasing rate. If total product
along the expansion path is increasing at an
increasing rate, then costs are increasing at- a
decreasing rate. If total product along the expansion
path is increasing at a constant rate, then costs are
also increasing at a constant rate. If the product sells
for a fixed price, that price is a constant marginal
revenue (MR). Marginal revenue (MR) can be
equated to the least cost marginal cost (MC*) only if
MC* is increasing. With fixed input prices and
elasticities of production, this can happen only if the
cost elasticity is greater than one, which means that
the function coefficient for the underlying production
function is strictly less than one.

Duality theorems

The two most important theorems relating to
duality are Hotelling's lemma and Shephard's lemma
(Beattie and Taylor, 1985:Ch.6). Both are specific
applications of a mathematical theorem known as
the envelope theorem.

Shephard's lemma states that for the cost
function arising from expansion path conditions with
respect to change in the price of the i-th factor,
evaluated at any particular point (output level) on
the least cost total cost function, the change in cost
is equal to the least cost quantity of the i-th factor
that is used (Shephard, 1970).

Hotelling's lemma makes use of the envelope
theorem with respect to profit, rather than cost
functions, and can be applied to the product supply
or to the factor demand side. When applied to
product supply, Hotelling's lemma states that the
change in the indirect profit function arising from
the expansion path with respect to the k-th product
price is equal to the optimal quantity of the k-th
output that is produced. When applied to the factor
demand side, the lemma states that the change in the
indirect profit function with respect to a change in
the k-th factor price is equal to the negative of the

optimal quantity of the k-th input as indicated by
expansion path conditions.

Hotelling's and Shephard's lemmas are of
considerable importance for empirical research. If
the undertaking is operating according to the
assumptions embodied in the expansion path
conditions on both the factor and product sides, then
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product supply and factor demand equations can be
obtained without any need for estimating the
production function from physical input data.

ELASTICITIES OF SUBSTITUTION

A number of alternative definitions for the
elasticity of substitution are possible. Each definition
can be based on constant output cost or marginal
cost (Fuss, McFadden & Mundlak, 1978:241).
Furthermore, each alternative can also be evaluated
assuming that prices of the remaining inputs remain
constant. The other quantities of inputs can also be
held constant or allowed to vary, thereby generating
short and long-run elasticity of substitution
estimates.

In the dual factor case, the elasticity of
substitution will lie between zero and plus infinity.
However, if there are more than two inputs, some
input pairs may be complements to each other, thus
leading to a potential negative elasticity of
substitution between some input pairs. The definition
of an elasticity of substitution in an n-factor case is
futher complicated because a series of specific
assumptions must be made with respect to the prices
and input levels for those factors of production not
directly involved in the elasticity of substitution
calculations, and the calculated elasticity of
substitution between inputs i and j will vary
depending on these assumptions.

The "usual" definition of elasticity of
substitution is attributed to Hicks (1932) and can be
generalized to the n-factor case such that:
oii = [d ln(Xi/Xi)] / [(d in (Pi/Pi)]
= (d hi X - d in X) / (din Pi/d In Pi)   (2)

Equation 2 is sometimes referred to as the two
output-two price elasticity of substitution (TTES)
(Fuss, McFadden and Mundlak, 1978; Ball and
Chambers, 1982). Allen (1983:504) uses Hicksian
(1932) definition of the elasticity of substitution, but
also develops an alternative measure of his own
which is linked to the own and cross price constant
output factor demand elasticity.

o..A = SiEIJ -  (3)U 
where: Si th. = e share of total cost attributable to the j-th input (PiXi/C*)
and Eii = (d in X)Id in Pi) evaluated at constant output.

The Allen elasticity of substitution (AES) is of
the one output-one input (00ES) variety (Ball and
Chambers, 1982).

The AES concept forms the basis for still other
elasticity of substitution concepts. For example, the
Morishima elasticity of substitution (MES)
(Koizumi, 1976) is an example of TOES (Two
output-one input elasticity of substitution) and is
defined in terms of the AES as:

01jM = S•J 
(0-A - 0-A).0

= E. - (4)

The Shadow elasticity of substitution (SES)
(McFadden, 1963) is an example of TTES, and is
therefore closer to the original Hicksian definition
than is the Morishima (MES) or Allen (AES)
definitions. SES allows all inputs not involved in the

calculation to vary, and can thus be thought of as a
long-run elasticity of substitution. SES can be
expressed in terms of the Allen measure (AES) as:

()kis = Rsisms; + Si)] [2 0.A - oiiA _ ojiA] (5)

ELASTICITIES OF SUBSTITUTION
AND FUNCTIONAL SPECIFICATION

General

Specific production functions frequently
embody assumptions related with the functional
form. Fuss, McFadden and Mundlak (1978) refer to
these assumptions as maintained hypotheses. These
maintained hypotheses are frequently not explicitly
recognized by researchers, but do impose constraints
on the possible outcomes that can be generated by
the analysis.

An example of a maintained hypothesis is the
assumption with regard to Hicksian elasticity of
substitution that exists between input pairs when a
Cobb-Douglas type functional form is chosen to
represent the production process. The TTES for any
functional form of the Cobb-Douglas type is equal
to 1,0 as a maintained hypothesis (Henderson and
Quandt, 1971: Ch 3; Debertin and Pagoulatos,
1985:27). This holds even if the production function
is not linearly homogeneous, and the partial
production elasticities sum to a number other than
one (1,0). It can moreover be easily shown that the
relationship holds for any factor pair if the function
contains more than two inputs.

A maintained hypothesis that the elasticity of
substitution between labour and capital is one (1,0)
may be tolerable in a 19th-century study dealing with
a production process representing the output of a
society and utilizing capital and labour as inputs. As
is empirically shown (Debertin & Pagoulatos, 1985),
it is clearly intolerable in a study conducted in the
1980's dealing with substitutability between inputs.

Since the original Hicks (1932) and Allen
(1938) publications, economists have devoted
considerable effort in remodeling the original
Cobb-Douglas concept.

Constant elasticity of substitution
specification

The constant elasticity of substitution
specification (Arrow et.al, 1961) was an effort to
remodel the orginal Cobb-Douglas concept without
the maintained hypothesis regarding the elasticity of
substitution.

Henderson and Quandt (1971: Ch. 3) prove
that the Cobb-Douglas production function is a
special case of the constant elasticity of substitution
specification. The constant elasticity of substitution
function was an improvement if the interest centered
on the elasticity of substitution within a production
process that used only two inputs. However, if the
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function were extended to the n-input case, it
resulted in a maintained hypothesis of the same
elasticity of substitution for every input pair
(Renvankar, 1971).

Because agricultural economists are usually
interested in dividing input categories into more than
two inputs, the constant elasticity of substitution
specification was not extensively used.

The transcendental production function

Halter, Carter and Hocking (1957) proposed a
transcendental production function to depict the
three-stage production process as represented by
neoclassical theory. The transcendental production
function is actually a variable elasticity of
substitution production function (Debertin and
Pagoulatos, 1985: 29).

This function is readily estimable with data
from agricultural production processes (Halter and'
Bradford, 1959). Allen (AES), Morishima (MES)
and Shadow (SES) elasticities of substitution can be
calculated from the production function.

Despite recognition of the transcendental
functional form (Fuss, McFadden and Mundlak,
1978:242), it is not widely used for empirical
purposes. The function is not monotonically
increasing for at least certain parameter values,
which means that the inverse or dual cost curve
associated with it is a correspondence and not a
function. As a result, parameters of the production
process represented by the transcendental cannot be
readily derived from the corresponding cost data
(Debertin and Pagoulatos, 1985:30).

The translog production function

Although Diewert (1971) recognized that
advances in computing technology made it possible
to estimate functional forms that were non-linear in
the parameters, he introduced the concept of linear
in the parameters functional forms. The reason was
that little if any new information about the
production process would be gained by using more
complex and computationally burdensome functional
forms. He also recognized the close linkages that
exist between various functional forms by looking at
them in terms of Taylor's series expansions.

The translog production function was
introduced by Christensen, Jorgenson and Lau
(1971) and is simply a second order Taylor's series
expansion of ln Y in ln Xi, whereas the

Cobb-Douglas is a first order expansion (Debertin
and Pagoulatos, 1985:32).

The linearity in parameters makes parameter
estimation simple. It is normally monotonically
increasing with respect to the use of each input
under the usual parameter assumptions. However,
results depend upon the units in which the Xi are

measured. If O<X1<1,1n X i<O, and under certain

positive parameter combinations, the function may
not be increasing with respect to the i-th input

(Debertin and Pagoulatos, 1985:33). There is no
maintained hypothesis about the elasticity of
substitution between input pairs, and the various
elasticity of substitution measures can be derived
either directly from the production function, or as is
frequently more desirable, from a dual cost function
of the translog form.

The production function is therefore suitable
for empirical estimations of elasticities of
substitution between input pairs if the information
available is mainly production of cost data.

One can, instead of using the translog
production function to derive elasticities of
substitution between input pairs, rely on duality and
begin with a dual cost function of the translog form.
The translog cost function expresses cost as a
function of all input prices and the quantity of
output that is produced. For a given level of output
Y*, the corresponding point on the cost function is
assumed to be the minimum cost of producing Y*
arising from the expansion path conditions.

The least cost translog function is:

in C* = 00 + E Oi in + E E0ii in In Pi +
0,in Y + E E0iz in P in Zk Eeyz in Y in Zk°
EE0ik in Zi° in Zk° + Eez in Zk° E0yi in Y In P1 ... (6)

Where P = (P1,  , Pn) the vector of input prices
z° = (z1,   ) the vector representing levels of

the fixed inputs
Y = output
0 = the parameter vector to be estimated.

Equation 6 is normally estimated from a series
of cost share equations (Debertin and Pagoulatos,
1985: 35), which is given by:

si = 01 + E013 in Pi + Eeiz in Zk + OA in Y

Si = Oi + Ie1 in P + Eeiz in Zk Oyi in Y

Sn = On + Eeni ln Pj + Danz ln Zk Oyn ln Y (7)

The cost share equations (Equation 7) are
empirically estimated and include price and output
variables and levels of fixed inputs that would
normally be readily available from farm records or
from census data. If data on the level of fixed inputs
are not available, their combined impact is estimated
as part of the intercept term.

ESTIMATION PROBLEMS AND
RESTRICTIONS

Economic theory imposes a number of
restrictions on the estimation process (Debertin and
Pagoulatos, 1985). Firstly, total cost = LSi. Thus,
given total cost and any n-1 cost shares, the
remaining cost share is known with certainty.
Therefore, one equation is redundant, and the choice
of the equation to be omitted is arbitrary, but the
empirical results may not be invariant with respect to
the choice of the omitted equation unless an iterative
estimation procedure is used (Berndt and Wood,
1975).

As indicated earlier, any total cost function
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should be homogeneous of degree 1,0 in input prices.
This restriction can be imposed by restricting Xei =1
en —E0— — o. Since Young's theorem states that theij 
order of differentiation makes no difference and the
eij are in reality partial derivatives, a symmetry
restriction must also be imposed so that eej = s:4 is

applied for all i and j inputs. Finally, the cost share
for the i-th input is also related to the cost share for
the j-th input.

From the parameter estimates of the cost share
equations, the corresponding AES between input
pairs and the related measures can be derived. The
usual approach is to insert the mean of the cost
shares (Si) for each input category in the data for the

sample period in order to obtain the Allen estimates
(AES). Once the AES are obtained, the
corresponding MES and SES can then be calculated
from Equations 4 and 5. Again, the mean of the
factor shares for the sample data is introduced into
the formulas along with the estimated AES.

The SES estimate obtained from this model is
not quite the long-run measure envisaged by
McFadden (1978) since inputs in the Z vector are
treated as fixed. The true long-run measure
suggested by McFadden (1978) could be obtained if
all input categories were treated as part of the X
vector (Debertin and Pagoulatos, 1985:37).

CONCLUSION

The elasticity of substitution is an indication of
the extent to which one input substitutes for another,
thus providing an indication of the shape of an
isoquant. Technological change which increases the
elasticity of substitution between input pairs would
give farmers additional flexibility in dealing with
input price variation.

Instead of the estimation of functional
specifications on physical input data, a contemporary
approach frequently involves the estimation of factor
share equations from the cost data. This is done by
making use of the duality that exists between the
production function and the cost function along the
expansion path.

From the basic dual input definition of
elasticity of substitution, a number of alternative
concepts are possible. Each definition can be
evaluated in terms of constant output, cost or
marginal cost, or each alternative can also be
evaluated by assuming remaining inputs as constant.
The Allen, Morishima and Shadow -measures are
particularly useful.

Specific production functions frequently
embody assumptions related to the functional form.
Although not developed for that purpose, the
Cobb-Douglas production function was one of the
first forms consistent with the required assumptions
for the development of the dual cost function.

However, it also has important disadvantages with
respect to the substitutability of inputs. The translog
specification represents relaxations of 'these
maintained hypotheses.

The translog specification is thus the
production function suitable - for empirical
estimations of elasticities of substitution between
input pairs where little information about the
production process other than cost data is available.
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