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ABSTRACT

In this paper the problem of computing maximum likelihood estimates of the

parameters of linear statistical models is considered. The proposed approach relies

on the prediction error decomposition of the likelihood function. A distinctive feature

is that the required prediction errors are obtained using conventional linear least

squares methods rather than the more usual Kalman filter. More specifically, it is

shown that the orthogonalization procedure based on fast Givens transformations,

used to obtain the triangular representation of the normal equations, automatically

yields the one-step ahead prediction errors and their mean squared errors without

additional side calculations.

Keywords: maximum likelihood estimation; fast Givens transformations; Kalman filter;

time series analysis.
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INTRODUCTION

Linear statistical models often contain parameters which cannot be estimated

directly with linear least squares methods. In the case of a linear regression with

moving average disturbances, for example, it is necessary to evaluate the likelihood

function for a sequence of trial values of the moving average parameters. Often each

trial is complicated by the need to invert the associated variance matrix. A common

strategy is to convert the model into its dynamic linear form and then to employ the

Kalman filter to effectively do this task in conjunction with the so-called prediction

error decomposition of the likelihood function (Jones, 1980). In this paper it is shown

that identical results can also be obtained with conventional linear least squares

methods. More specifically, it is demonstrated that the one-step ahead prediction

errors and their mean squared errors required for the evaluation of the likelihood

function are automatically obtained as part of the calculations associated with the

standard orthogonalization procedure based on fast Givens transformations

(Gentleman, 1973).

LINEAR LEAST SQUARES ESTIMATION

The linear statistical model considered in this paper involves a random n-

vector x with a diffuse probability distribution. A random m -vector y is dependent



on x according to the linear relationship:

y- A x+ u, (la)

A being a fixed matrix and u a vector of independent, normally distributed

disturbances with zero mean and a diagonal variance matrix V. The vector x cannot

be directly observed. So the problem is to utilize the observed value of y together

with the relationship (1) to infer a value for x. Given that this value is not unique

when m n, the problem is supplemented with the quadratic loss function

s(x)- (y-Axr V-1 (y-Ax)

for use as a criterion for estimating x.

(lb)

A problem of this kind possesses a structure that is not well suited for

computing the best estimate of x and so it is a common practice to transform it into

into a more amenable form. There are in fact an infinite number of problems which

are equivalent to the original problem. Pre-multiplication of (la) by ,an arbitrary non-

singular matrix P yields a new problem

y-A x+u

with Til-Py, A.-PA, YPu and where the variance of Ti is VI PVP . It is readily

2a)



established

that the new quadratic loss function

s(x)- (7-ix)

is equivalent to (1b) and so both problems have the same solution.

(2b)

A transformation is of little value unless it results in a new problem with a

more amenable computational structure. To this end we consider only

transformations with the following properties:

(Cl) P is orthogonal in the generalized sense that the new covariance

matrix i7-PVP/ is diagonal;

(C2) the new matrix A is unit, upper trapezoidal ie.

[ROI

where R is a unit, upper triangular matrix;

(C3) the (m -n)x (m-n) sub-matrix P22 in the partition

[P 1 1 P12
P

P21 P22

is unit lower triangular and the elements of P21 and P22 are independent of

m.

The properties Cl and C2 are common to all orthogonalization procedures used to

obtain linear least squares estimates and are well known in one form or another eg.

3



see Ansley (1985). Property C3, and its implications for maximum likelihood

estimation to be outlined below, appears to have been ignored.

In the appendix it is shown that the orthogonalization procedure based on fast

Givens transformations (Gentleman, 1973), when applied to each row of the data

matrix in succession, possesses all three of the above properties. The transformed

problem then has the form

7013-Rx+ii(13

--[23

involving the components of the partitioned vectors:

_u[1-7cl
y-

[2]

The associated loss function is

s(x)- (7[1].-RxY i71-1 (3-7f13-RX)+7

(3a)

(3b)

where .171 and 172 are diagonal sub-matrices of V. The best estimate of x must

4



therefore satisfy the convenient triangular equation system

with a minimum loss of

s(s) 7[21V2 7[2].

Although these results are well known, matters may be taken further by

providing an interpretation for 37E2] and i72. The triangularity condition C3 and the

fact that T. is a transformation of y, imply that

Let

Yi+E PiiYi
j-i

J-1

Because, by condition C3, the p do not change as the sample size m increases, the

371 in (4) may be viewed as one-step ahead linear predictors of the yi and the

y- .9 are then the associated one-step ahead prediction errors. Furthermore, by

the orthogonality condition (a), the one-step ahead prediction errors are statistically

independent. This is sufficient to guarantee that the 3,1 are minimum mean squared

error linear predictors.

(i-n+1...m)

(4)



LIKELIHOOD FUNCTION

Both A and V potentially depend on a vector of auxiliary parameters 0 which

must themselves be estimated. Because the distribution of x is undefined, the

likelihood function of model (1) does not exist. However, in the equivalent model

(3a), the (m-n)-vector 702 does not depend on x. Its density is given by

f(37.[2]).. (2n H -1/2 exp
i-n+1

- E Ti2/(2Tii))
i-n+1

When treated as a function of 0, this forms a marginal likelihood function

(Kalbfleisch and Sprott, 1970) and corresponds to the so-called 'prediction error

decomposition of the likelihood function' (Schweppe, 1965) normally used in

conjunction with the Kalman filter (Jones, 1980) in maximum likelihood applications.

Thus the prediction errors and the associated mean squared errors obtained as a by-

product of the fast Givens orthogonalization procedure can be used to evaluate the

likelihood function for trial values of 0.

CONCLUDING REMARKS

The method outlined in this paper can be applied to any dynamic, linear time

series model. Duncan and Horn (1972) have shown that the successive equations of

any dynamic linear model can be stacked to give an equivalent linear model of the

form (1). Although it may be quite large in size, Page and Saunders (1977) have

shown that the resulting problem can be solved efficiently with orthogonalization



methods such as Givens transformations which exploit the sparsity of the associated

design matrix. Their approach for incorporating prior information may also be

adapted to the context of this paper so as to circumvent the limitations of the non-

informative prior assumption. Thus, not only can the method be employed instead of

the Kalman filter, it may be used to estimate stationary as well as non-stationary time

series.

To utilize Givens transformations, it was necessary to assume that the

disturbances in the model are statistically independent. This may appear to be unduly

restrictive. However, where this condition does not prevail, an equivalent problem

satisfying this assumption can always be constructed. The basic strategy is to rewrite

the disturbances as a linear function of a vector of zero mean random variables e as

follows:

u-Le.

One possibility, if necessary, is to use the lower triangular matrix of the Cholesky

factorization of V as the matrix L in this relationship. Then the vector• e can be

absorbed into the vector x to yield a new, equivalent problem with the required

structure, despite the fact that the associated disturbances are now identically equal to

zero. As such the framework applies to all linear models and is therefore quite

general.

7
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APPENDIX

The purpose of this appendix is to show that when fast Givens transformations

are used for the linear least squares calculations then the associated transformation

matrix satisfies condition C3. The method of proof is inductive, beginning with the

assumption that an mxm matrix P conforming to the three conditions has already

been created with fast Givens transformations and applied to an m xn design matrix A

to create an upper trapezoidal matrix according to the relationship

[PilA

P2

(Al)

where the sub-matrix P1 has n rows and R is a commensurate unit upper triangular

matrix. Now assume that a new row represented by an n-vector a must be appended

to the design matrix. The situation may then be summarized by the equation:

[aA
0

a/

(A2)

where the matrix on the right hand size can be viewed as a reduced design matrix. It

is now necessary to convert this reduced design matrix to unit upper trapezoidal form

by eliminating the elements in the new row. This can be done with a series of fast

Givens transformations (Gentleman, 1973) which operate only on the the rows of the

triangular sub-matrix and the new row of the reduced design matrix. Accordingly,

these transformations are equivalent to an application of a matrix with the structure

depicted in the following equation

8



B 0 c

O 10

ci 0

0

a'

(A3)

B being a square n-dimensional matrix, c and d being n-vectors, and J the new unit

triangular matrix. Thus, on combining all the transformations into a single matrix, the

following is obtained:

p n e

From this it follows that

and

B 0 c

O I 0

c/01

P11 P12

P21 P22

0 0 1

P21pnew21

dP111

P22

P2n2"-

CfP12

0

11

BP11 BP12 C

P21 P22

CIP1 CIP12

Apart from the new row, the elements of P21 and P22 remain unchanged.

Furthermore, the new unit column for P22 ensures that its unit lower triangular

structure is preserved. Both these findings suffice to establish that the condition C3

holds in general.
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