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Abstract. Nonrandom sample selection may render estimated treatment effects
biased even if assignment of treatment is purely random. Lee (2009, Review of Eco-
nomic Studies, 76: 1071-1102) proposes an estimator for treatment-effect bounds
that limit the possible range of the treatment effect. In this approach, the lower
and upper bound correspond to extreme assumptions about the missing infor-
mation that are consistent with the observed data. In contrast to conventional
parametric approaches to correcting for sample-selection bias, Lee’s bounds esti-
mator rests on very few assumptions. I introduce the new command leebounds,
which implements the estimator in Stata. The command allows for several options,
such as tightening bounds by using covariates.

Keywords: st0364, leebounds, nonparametric, randomized trial, sample selection,
attrition, bounds, treatment effect

1 Introduction

Random assignment of treatment provides an ideal setting for identifying treatment
effects. Most prominent randomized trials are designed to generate a situation where
randomness of treatment is guaranteed, ruling out any potential endogeneity bias. How-
ever, this ideal setting can easily be distorted by nonrandom sample attrition. For
example, attrition may happen when participants dropout from a program, when a re-
searcher is denied information on the outcome variable, or when death occurs during
a clinical trial. While treatment is purely random in the original population, this does
not hold for the actual estimation sample if attrition is linked to the treatment status,
which potentially leads to attrition bias with perhaps unknown direction.

Parametrically correcting for attrition and selection bias has become a standard pro-
cedure in applied empirical research, rendering the seminal method by Heckman (1976,
1979) a workhorse of applied econometrics. This procedure is implemented in Stata by
the heckman command. However, this parametric approach has been criticized for rely-
ing on restrictive assumptions, joint normality in particular, and for being vulnerable to
misspecification (Puhani 2000; Grasdal 2001), which has led to the development of semi-
parametric approaches (Ichimura and Lee 1991; Ahn and Powell 1993). Though these
estimators rely on less restrictive distributional assumptions, valid exclusion restrictions

© 2014 StataCorp LP st0364
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are even more essential. More recently, researchers have proposed bound estimators that
require very few assumptions and do not rely on valid exclusion restrictions. Rather
than correcting point estimates for potential bias, these estimators determine an inter-
val for the true treatment effect. The interval is based on extreme assumptions about
the impact of selection on the estimated effect that are consistent with the data. One
such estimator is Horowitz and Manski (2000). This approach does not involve any
assumption about the selection mechanism; however, it is applicable only to outcome
variables that are bounded to a certain interval because missing information is imputed
on the basis of minimal and maximal possible values. This impedes its application to
numerous problems and regularly yields very wide bounds.

In this article, I introduce the new command leebounds, which facilitates the esti-
mation of alternative bounds proposed by Lee (2009). These alternative bounds impose
more structure on the assumed selection mechanism and allow for outcome variables with
unbounded support while often yielding more narrow bounds. Thereby, 1eebounds com-
plements the contributions of Beresteanu and Manski (2000) and Palmer et al. (2011),
who have already made other bounds estimators available to Stata users. Beresteanu
and Manski (2000) provide Stata code for the bounds estimators introduced by Manski
(1990) and add further refinements (Manski 1994, 1995, 1997; Manski and Pepper 2000)
to the original approach. Unlike Lee’s estimator, Manski’s bounds are meant to obtain
treatment-effect bounds under (nonrandom) treatment selection. Palmer et al. (2011)
introduce a Stata command for the bounds estimator developed by Balke and Pearl
(1997), which is closely related to Manski’s estimators. Here the focus is on estimating
treatment-effect bounds under imperfect compliance with a randomly assigned treat-
ment.

In the following section, I summarize Lee’s bounds estimator. In section 3, I describe
the syntax of leebounds. In section 4, I illustrate the application of leebounds. In
section 5, I conclude the article.

2 The Lee (2009) bounds estimator

2.1 The intuition behind the estimator

Lee (2009) proposes a bounds estimator that estimates an interval for the true value
of the treatment effect in the presence of nonrandom sample selection. The estimator
rests on only two assumptions: random assignment of treatment and monotonicity. The
latter implies that assignment to the treatment group can affect attrition in only one
direction. That means that besides observations for which the outcome variable is
observed irrespective of the assigned treatment status, the actual estimation sample
includes either observations where the outcome is observed because of receiving the
treatment or observations where the outcome is observed because of not receiving the
treatment, but not both simultaneously.
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The bounds estimator trims either the treated or the nontreated observations so that
the share of observations with observed outcome is equal for both groups. Trimming is
either from above or from below. This corresponds to two extreme assumptions about
missing information that are consistent with the observed data and a one-sided selection
mechanism. That is, in the group that suffers less from attrition, either the largest or the
smallest values of the outcome are regarded as “excess observations” and are excluded
from the analysis. This implies that the treatment effect on those that never suffer
from attrition is subject to estimation. In this article, I focus on the practical issue of
how estimates for the bounds are calculated and, in particular, on how this procedure
is implemented in Stata; for more theory, readers can refer to Lee (2009).

2.2 Estimation

Estimating treatment-effect bounds as suggested by Lee (2009) is computationally
straightforward. Only a raw group mean and two trimmed group means of the outcome
variable need to be calculated. Here Y; denotes the outcome, T; is a binary treatment
indicator, and S; is a binary selection indicator, with S; = 0 indicating attriters for
which Y; is not observed. As usual, i indexes observations. The shares of observations
with observed outcome in the treatment group, gr, and its counterpart for the control
group, qc, can then be written as

S, 1(1i=1,8; =1)

T NAm =
(T =0,5=1)
T T =0

Here 1(-) denotes the indicator function. To simplify notation, we will consider the case

gr > qc; that is, the treatment group suffers less from attrition.! Then

ar —qc

- 1
qr W)

q:

and 1—q determines the quantiles at which the distribution of Y in the treatment group
are trimmed to exclude extreme values of Y from the analysis. Hence,

T -1
Y = GY|T:1,S:1(‘1)

T —1
Y1-¢ = GY|T:17S:1(1_q)

determine the marginal values qu and lefq of the outcome that enter the trimmed
means, with G;,l denoting the inverse empirical distribution function of Y.

1. For the opposite case of qr < g¢, all arguments hold symmetrically, with ¢ being defined as
(gc — q1)/qc, the control group being trimmed at ch and ylclq, respectively, and the treatment
group remaining untrimmed. For ¢y = g¢, both the upper and the lower bound coincide with the
difference in raw means.
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Using this notation, we calculate estimates for the upper bound and the lower bound
as

guer _ il(Ti=L1Si=1Yi>y)Y 31(1;=0S=1Y; )
Y l(T=1,8=1Y; =yl (T =0,8=1)

flower  _ YiHTi=1,8 =1Y; <yi_,)Yi 2 1(Ti=0,8=1Y; 3)
S UTi=1,8=1Y, <yl ) N 1(L=05=1)

Lee (2009) considers a purely continuous outcome variable Y. Yet, especially in survey
data, variables that are inherently continuous are often imprecisely reported, resulting
in “ties” in the observed outcome data. Monthly disposable income can serve as an
example, for individuals tend to report a round number, such as $1,000 or $1,500.
Such ties may violate the intuition behind (2) and (3) if the marginal values y! and
lefq are frequent. For this reason, leebounds excludes the ¢ - Ni? (rounded down to
the nearest integer) smallest—respectively, largest—values of Y when calculating the
trimmed means. Here N2 denotes the number of observations in the treatment group
for which the outcome variable is observed. This means that a certain fraction of the
observations that exhibit the marginal values y:{ and yI _ enter the trimmed means.

q
With no ties in Y, this procedure coincides with (2) and (3).

2.3 Tightening bounds

Estimating Lee (2009) bounds does not involve any covariates. This corresponds to
the assumption of random assignment of treatment, under which the differences in
conditional and unconditional expectations of Y coincide. Yet covariates that are de-
termined before treatment can be used to tighten treatment-effect bounds. Covariates
that have some explanatory power for attrition are used to split the sample into cells,
and bounds are separately calculated for each cell. Finally, a weighted average of cells’
bounds is computed. The appropriate weights are the probabilities of cell membership
for those that never suffer from attrition (Lee 2009, 1094). These probabilities are un-
known. However, because of random assignment of treatment and monotonicity, they
can consistently be estimated by >, 1(J; = 1,5, =1,7; =0) />, 1(S; = 1,T; = 0) for
each cell J, where J; = 1 indicates membership in J. Lee (2009) shows that such av-
eraged bounds are tighter than those that do not use any covariates (Lee 2009, 1086).2
Tightening bounds is offered by leebounds as an option.

Technically, only a limited number of discrete® variables can be used for tightening,
because the number of observations and the joint distribution of treatment status and
selection must allow for estimating the bounds for each cell. Thus estimation regularly
fails if a large number of covariates are used. Tightening could also fail if the control
group suffers relatively more from attrition for some cells, while attrition is more frequent

2. The proof is for the population parameters, not for their sample analogs. Hence, especially for
ill-suited covariates, estimated bounds may fail in getting tighter with option tight ().

3. In practice, continuous variables (for example, age) must be transformed into categorical ones (age
classes).
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in the treatment group for other cells. Because of sampling error, this will frequently
occur if the sample is split into too many cells.* leebounds checks for this, issues a
warning if it detects a selection pattern that is heterogeneous across cells, and saves a
macro that indicates the type of the selection pattern.

2.4 Standard errors and inference

Estimates for the treatment-effect bounds are subject to sampling error. Lee (2009,
1088) provides analytic standard errors for them; we refer to the original paper for details
about calculating standard errors. Analytical standard errors (or, alternatively, boot-
strapped standard errors) are implemented in leebounds. Using these standard errors,
one can determine “naive” confidence intervals that cover the interval [§'oVer, gupper]
with probability 1 — . Interestingly, on the basis of Imbens and Manski (2004), Lee
(2009, 1089) also derives a confidence interval for the treatment effect itself, that is,
the scalar parameter of ultimate interest. This interval is tighter than the combined
confidence interval for 8% and #"PPe'. It captures both uncertainty about the selec-
tion bias and uncertainty about the sampling error. leebounds optionally estimates the
confidence interval for the treatment effect.

3 The leebounds command

leebounds requires Stata 11 or higher. The prefix command bootstrap is allowed
but is not recommended. pweights (default), fweights, and iweights are allowed; see
[U] 11.1.6 weight. Observations with a negative weight are skipped for any type of
weight.

3.1 Syntax

leebounds depvar treatvar [zf] [m] [weight] [ , select (varname)

ght(varlist) cieffect vce(analytic|bootstrap) @el(#)]

depvar is a numeric outcome variable, and treatvar is a binary treatment indicator
that can be either numeric or a string variable. The (alphanumerically) larger value of
treatvar is assumed to indicate treatment.

3.2 Options

select (varname) specifies a binary selection indicator. varname can be either numeric
or a string variable. The (alphanumerically) larger value of varname is assumed
to indicate selection. If no selection indicator is specified, any observation with
nonmissing information on depvar is assumed to be selected, and all observations
with missing information on depvar are assumed to be not selected.

4. This may also indicate a violation of the monotonicity assumption.
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tight (varlist) specifies a list of covariates for computing tightened bounds. With
tight () specified, the sample is split into cells defined by the covariates in varlist.
Continuous variables in varlist will cause the estimation procedure to fail.

cieffect requests calculation of a confidence interval for the treatment effect. This
interval captures both uncertainty about the selection bias and uncertainty about
the sampling error.

vce(analytic|bootstrap) specifies whether analytic or bootstrapped standard errors
are calculated for estimated bounds. analytic is the default. bootstrap allows for
the suboptions reps(#) and nodots. For vce(analytic), the covariance for the
estimated lower and upper bound is not computed. If this covariance is relevant, one
should choose vce (bootstrap). Instead of specifying vce (bootstrap), one can use
the prefix command bootstrap, which allows for numerous additional options. Yet
leebounds’s internal bootstrapping routine is much faster than the prefix command,
allows for sampling weights by performing a weighted bootstrap, and makes the
option cieffect use bootstrapped standard errors.

level (#) sets confidence level. One can change the reported confidence level by retyp-
ing leebounds without arguments and specifying only the option level (#). This
affects the confidence interval for the bounds, but it does not affect the confidence
interval requested with cieffect.

3.3 Stored results

leebounds stores the following in e():

Scalars
e(N) number of observations
e(Nsel) number of selected observations

e(cilower)
e(ciupper)

lower bound of treatment-effect confidence interval (if cieffect was specified)
upper bound of treatment-effect confidence interval
(if option cieffect was specified)

e(covariates)
e(trimmed)
e(vce)
e(vcetype)
e(properties)

e(trim) (overall) trimming proportion

e(level) confidence level

e(cells) number of cells (if option tight () was specified)

e(N_reps) number of bootstrap repetitions (if option vce(bootstrap) was specified)
Macros

e(cmd) leebounds

e(cmdline) command as typed

e(title) title in estimation output

e(depvar) name of dependent variable

e(treatment)  binary treatment indicator

e(wtype) weight type

e (wexp) weight expression

e(select) varname (if option select() was specified)

e(cellsel) cell-specific selection pattern, homo or hetero (if option tight() was specified)

varlist (if option tight () was specified)
treatment or control

vcetype specified in vce ()

title used to label Std. Err.

bV
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Matrices
e(b) vector of estimated treatment-effect bounds
e (V) variance—covariance matrix of the estimates (covariance set to zero for
vce(analytic))
Functions
e(sample) marks estimation sample

4 Examples

We use cancer.dta, which is shipped with Stata, for a simple illustrative applica-
tion; for serious applications of Lee’s bounds estimator besides that in Lee (2009), see
Augurzky et al. (2012) or Cawley and Price (2013). We analyze how being treated with
an active ingredient (drug == 2 | drug == 3) versus being treated with a placebo
(drug == 1) affects survival time (studytime). We treat the data as if information
on survival time were available for only those who died during the study (died == 1).
This is not entirely correct for those who did not die (died == 0), because we know
that they survived at least for the rest of the study period. Yet, in our illustration, we
regard them as attriters without any (valid) information on the outcome studytime.

. sysuse cancer.dta, clear
(Patient Survival in Drug Trial)

. generate activedrug = (drug == 2 | drug == 3)
. leebounds studytime activedrug, select(died)
Lee (2009) treatment effect bounds

Number of obs. = 48
Number of selected obs. = 31
Trimming porportion = 0.5489
studytime Coef. Std. Err. z P>|z| [95% Conf. Intervall
activedrug
lower 2.866667 3.909154 0.73 0.463 -4.795134 10.52847
upper 14.3 3.163771 4.52 0.000 8.099123 20.50088

The output displays that 48 individuals participated in the trial. Out of these,
31 died during the study and 17 survived. The latter are regarded as not selected
because we have no precise information about survival time. The trimming proportion
corresponds to ¢; see (1). The value 0.5489 indicates that the control group is trimmed
by more than half, because the survival rate is much higher among individuals who were
treated with an active drug. Correspondingly, the estimated treatment-effect bounds
are pretty wide, ranging from a 2.87- to a 14.30-month gain in survival time. Taking
standard errors into account, the lower bound does not significantly deviate from zero.
To obtain a confidence interval for the treatment effect (see section 2.3), one can choose
the cieffect option.
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. leebounds studytime activedrug, select(died) cieffect
Lee (2009) treatment effect bounds
Number of obs. = 48

Number of selected obs. = 31
Trimming porportion = 0.5489
Effect 95% conf. interval : [-3.5633 19.5039]
studytime Coef.  Std. Err. z P>|z| [95% Conf. Intervall
activedrug
lower 2.866667  3.909154 0.73 0.463 -4.795134 10.52847
upper 14.3 3.163771 4.52  0.000 8.099123 20.50088

This interval is narrower than the combined confidence intervals for the bounds. One
can allow for a less strict level of confidence by specifying level (90). To illustrate the
vce () option, we opt for bootstrapped rather than analytic standard errors.

. set seed 13052007
. leebounds studytime activedrug, sel(died) cie level(90) vce(boot, reps(250))

.................................................. 50
.................................................. 100
.................................................. 150
.................................................. 200
.................................................. 250
Lee (2009) treatment effect bounds
Number of obs. = 48
Number of selected obs. = 31
Trimming porportion = 0.5489
Effect 907% conf. interval : [-1.9390 18.1498]
Observed Bootstrap Normal-based
studytime Coef.  Std. Err. z P>|z| [90% Conf. Intervall

activedrug

lower 2.866667  3.749864 0.76  0.445 -3.301311 9.034644

upper 14.3 3.00403 4.76  0.000 9.358811 19.24119

Bootstrapped standard errors are similar to their analytical counterparts. Even the
90% confidence interval for the treatment effect overlaps the value of zero. Finally, we
try to tighten the bounds by using a covariate. The only one available is age, which we
have to transform into a categorical variable. Here we choose three age categories, with
each category having roughly the same number of observations.

. _pctile age, percentiles(33 66 99)

. generate agecat = recode(age,r(rl),r(r2),r(r3))

. leebounds studytime activedrug, select(died) cieffect tight(agecat)
Tightened Lee (2009) treatment effect bounds

Number of obs. = 48
Number of selected obs. = 31
Number of cells = 3
Overall trimming porportion = 0.5489

Effect 95/ conf. interval : [ 0.1028 19.6897]
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studytime Coef.  Std. Err. z P>|z| [95% Conf. Intervall
activedrug
lower 7 4.155293 1.68 0.092 -1.144225 15.14423
upper 12.55556 4.29805 2.92 0.003 4.131531 20.97958

Tightening yields much narrower bounds for the treatment effect. Indeed, with the
tight () option specified, the 95% treatment-effect confidence interval does not include
the value zero.

. heckman studytime activedrug i.agecat, select(died = activedrug i.agecat)
Iteration O log likelihood = -125.92466
Iteration 1: log likelihood = -125.57366
Iteration 2: log likelihood = -125.47902
Iteration 3 log likelihood = -125.47786
Iteration 4: log likelihood = -125.47786
Heckman selection model Number of obs = 48
(regression model with sample selection) Censored obs = 17
Uncensored obs = 31
Wald chi2(3) = 7.86
Log likelihood = -125.4779 Prob > chi2 = 0.0489
Coef. Std. Err. z P>|z| [95% Conf. Intervall
studytime
activedrug 9.84113  4.180875 2.35 0.019 1.646767 18.03549
agecat
58 -3.662228 3.57097 -1.03 0.305 -10.6612 3.336745
67 -6.869451  3.478465 -1.97 0.048 -13.68712  -.0517839
_cons 12.1558  2.635776 4.61 0.000 6.989771 17.32182
died
activedrug -1.945951 .542586 -3.59  0.000 -3.0094 -.8825016
agecat
58 .9610446 .5307829 1.81 0.070 -.0792707 2.00136
67 .8677531 .5754751 1.51  0.132 -.2601574 1.995664
_cons 1.1392 .5072488 2.25  0.025 .1450108 2.13339
/athrho .0328594 .5928681 0.06 0.956 -1.129141 1.19486
/1lnsigma 1.948617 .1272405 15.31  0.000 1.69923 2.198004
rho .0328476 .5922284 -.810725 .8320799
sigma 7.018972 .8930975 5.469734 9.007014
lambda .2306562  4.158752 -7.920448 8.381561
LR test of indep. egqns. (rho = 0): chi2(1) = 0.00 Prob > chi2 = 0.9555

Finally, to compare leebounds with fitting a conventional sample selection model,
we run Stata’s heckman command using the same data. Here the variable agecat enters
both equations of the Heckman model as a control. heckman yields a point estimate
centered between the lower and the upper bound estimated by leebounds with agecat
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used for tightening. However, the result from heckman is imprecise. The estimated
confidence interval for the treatment effect is almost as wide as its counterpart from
leebounds. Hence, in this particular example, the restrictive assumptions inherent to
the Heckman selection model do not pay off in terms of substantially reduced uncertainty
about the size of the treatment effect. One reason for this may be that the data lack
variables that explain selection into the estimation sample while not being directly linked
to the outcome variable studytime.

5 Conclusion

In this article, I introduced the new command leebounds, which implements Lee’s
(2009) treatment-effect bounds for data with random assignment of treatment that suf-
fer from nonrandom sample selection. In addition to calculating point estimates for
the bounds, the command accommodates the calculation of confidence intervals for the
treatment effect and tightened bounds on the basis of covariates. leebounds comple-
ments the contributions of Beresteanu and Manski (2000) and Palmer et al. (2011), who
have made other bounds estimators available to Stata users that, unlike Lee’s estimator,
deal with selection into treatment and imperfect compliance with a randomly assigned
treatment.
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