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Abstract. Clustered data arise in many settings, particularly within the social and
biomedical sciences. For example, multiple-source reports are commonly collected
in child and adolescent psychiatric epidemiologic studies where researchers use var-
ious informants (for instance, parents and adolescents) to provide a holistic view of
a subject’s symptoms. Fitzmaurice et al. (1995, American Journal of Epidemiol-

ogy 142: 1194–1203) have described estimation of multiple-source models using a
standard generalized estimating equation (GEE) framework. However, these stud-
ies often have missing data because additional stages of consent and assent are
required. The usual GEE is unbiased when data are missing completely at random
in the context of Little and Rubin (2002, Statistical Analysis with Missing Data

[Wiley]). This is a strong assumption that may not be tenable. Other options,
such as the weighted GEE, are computationally challenging when missingness is
nonmonotone. Multiple imputation is an attractive method to fit incomplete data
models while requiring only the less restrictive missing-at-random assumption.
Previously, estimation of partially observed clustered data was computationally
challenging. However, recent developments in Stata have facilitated using them in
practice. We demonstrate how to use multiple imputation in conjunction with a
GEE to investigate the prevalence of eating disorder symptoms in adolescents as
reported by parents and adolescents and to determine the factors associated with
concordance and prevalence. The methods are motivated by the Avon Longitudi-
nal Study of Parents and their Children, a cohort study that enrolled more than
14,000 pregnant mothers in 1991–92 and has followed the health and development
of their children at regular intervals. While point estimates for the missing-at-
random model were fairly similar to those for the GEE under missing completely
at random, the missing-at-random model had smaller standard errors and required
less stringent assumptions regarding missingness.
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1 Introduction

Clustered data arise in many settings, particularly within the social and medical sci-
ences, and they require sophisticated analytical methods. Standard-error estimates that
do not account for association within clusters will be inaccurate and inferences will be
invalid (Cannon et al. 2001).

For example, multiple-source reports are commonly collected in child and adolescent
psychiatric epidemiologic studies where researchers use various informants (for example,
parents and adolescents) to provide a holistic view of a subject’s symptoms. These
clustered reports also arise in other settings, such as geriatric studies, school settings,
and health services research (Caria et al. 2011).

Several articles have reviewed methods to integrate reports from multiple sources
(Fitzmaurice et al. 1995; Horton and Fitzmaurice 2004; Caria et al. 2011). Fitzmau-
rice et al. (1995) proposed methodology for simultaneously analyzing information from
multiple-source outcomes by applying a generalized estimating equation (GEE) approach
(Liang and Zeger 1986). GEEs account for the correlation between reports to model the
average response for observations sharing covariates.

A practical difficulty in analyzing multiple-source reports is that there is often a
substantial amount of missingness. In multiple-source studies, data may be missing
from a single source or multiple sources, because additional stages of consent and assent
are required. Analyzing data without appropriately accounting for missingness can
induce bias and loss of efficiency.

The usual GEE is unbiased whenever missingness is missing completely at random
(MCAR), which means that missingness does not depend on observed or unobserved
measurements (Little and Rubin 2002). The GEE permits a report to contribute to one
equation and not to the other, but using the available-case method may be biased if the
missing mechanism is not MCAR (Liang and Zeger 1986).

Xie and Paik (1997) proposed a weighted GEE that handles missingness when the
probability of missingness depends on the outcomes or observed covariates. This method
assumes the less restrictive missingness mechanism, which was named missing at ran-
dom (MAR) by Little and Rubin (2002). To fit the weighted GEE, one must estimate the
probability of subjects’ being observed, drop all the partially observed subjects, and fit
the reweighted model using only the complete cases. Horton et al. (2001) implemented
this with multiple-source reports but had to use an ad hoc procedure to account for
complex nonmonotone patterns of missingness. The monotone structure is rarely seen
in observational studies with many covariates and is absent in the motivating exam-
ple. Furthermore, accounting for a complex nonmonotone pattern is computationally
difficult (Li et al. 2011). Therefore, other approaches are needed.



An alternative approach to this problem implements multiple imputation (MI), a
flexible and principled method for fitting incomplete data regression models (Rubin
1987). After specifying an appropriate imputation model, the algorithm “fills in” the
missing data with plausible values that account for the uncertainty that comes with
using predicted values. The MI method does not require the missingness pattern to be
MCAR or monotone.

Simulation studies with longitudinal binary data and missing data have been imple-
mented to assess different analytical approaches, including the usual GEE, the weighted
GEE, and MI in conjunction with estimating equations (MI–GEE). Beunckens, Sotto, and
Molenberghs (2008) found that using the MI–GEE approach was more successful than
using the usual GEE and the weighted GEE approach. DeSouza, Legedza, and Sankoh
(2009), Yoo (2010), and Birhanu et al. (2011) expanded the simulation study, and each
concluded that MI–GEE outperformed the weighted GEE and is a valid analysis tool
for nonnormal and repeated binary responses. Frank Liu and Zhan (2011) undertook a
similar simulation study and found contrary evidence for MI–GEE but concluded that
the null finding may be due to the misspecification of the imputation model. The flex-
ibility of the MI–GEE allows the imputation model to be adjusted. Lloyd et al. (2013)
describe how to undertake estimation for longitudinal regression by using the ice and
uvis user-written commands in Stata 11.

Previously, estimation of partially observed clustered data was computationally chal-
lenging. However, recent developments in Stata have facilitated their use in practice.
This article demonstrates estimation of a GEE model with multiply imputed data by
using the mi system in Stata 13.

We first describe the motivating study, the Avon Longitudinal Study of Parents and
Children (ALSPAC), a long-running cohort study using parent and adolescent question-
naires to research the health and development of the adolescents. Then we describe how
GEE models can be used to fit generalized linear models using available case data. Next
we introduce MI and simultaneous estimation of GEE models using multiply imputed
data within Stata. Then we fit the GEE models to our motivating data by using both
available cases and the imputed data. We conclude by discussing the method, possible
extensions, and areas for future research.

2 Example: Multiple source reports of adolescent eating-

disorder behaviors

2.1 Study sample

These methods are motivated by data from the ALSPAC, a longitudinal, prospective
study of women and pregnancy (Golding et al. 2001; Boyd et al. 2013). All pregnant
women living in the area of Avon, UK, who were expected to deliver their babies between
1 April 1991 and 31 December 1992 were invited to take part in the study. Adolescents
from 14,541 pregnancies were enrolled. Of these, 12,388 singleton adolescents were alive



at age one and provided the study with complete information on each adolescent’s sex
and maternal age. Adolescents and their parents were followed to investigate a range
of psychological, physical, and social outcomes.

Parents and adolescents who were still enrolled in the study were sent questionnaires
when the adolescent was age 14 and again when age 16. The analytic sample consists
of 7,986 adolescents that had at least one adolescent or parent report at age 14 and 16,
and it includes fully observed family demographics.

Adolescents completed questions on eating disorder symptoms adapted from the
purging behavior assessments in the McKnight Risk Factor Survey and the Youth
Risk Behavior Surveillance System Questionnaires (Kann et al. 1996). Adolescents were
asked whether they had engaged in eating disorder behaviors in the past year, includ-
ing binge eating (overeating with loss of control; two questions), vomiting, laxative
use, and fasting. Parents completed a questionnaire version of the Eating Disorder
Developmental and Well-Being Assessment with no skip rules (Goodman et al. 2000;
Ford, Goodman, and Meltzer 2003). Parents were asked whether their teenager had
engaged in eating disorder behaviors in the past three months, including binge eating
(overeating with loss of control; one question), vomiting, laxative use, and fasting.

To demonstrate, this article will focus on predicting reports of vomiting behavior at
age 16. Analyses for other eating disorder symptoms at ages 14 and 16 are reported in
Swanson et al. (2014).

Ethical approval for the study was obtained from the ALSPAC Laws and Ethics
Committee, the Local Research Ethics Committees, and the Smith College and Amherst
College Institutional Review Boards.

2.2 Variables

The questionnaire sent to participants when the adolescents were age 16 asked the
parents, “Over the last 3 months, has your study teenager made herself/himself sick to
avoid putting on weight?” It also asked the adolescents, “During the past year, how often
did you make yourself throw up (vomit) to lose weight or avoid gaining weight?” Because
of inconsistency of possible answer options across informants, these two questions were
recoded into two dichotomous variables (vomit p16, vomit c16) as either any or no
endorsement.

For the GEE approach, we needed to reshape our dataset from wide form (one row
per subject) to long form (two rows per subject). We created a binary-source variable
(adolescent report versus parent report, child) and combined the outcome variables
into vomit 16.

The models also included three dichotomous covariates that measured maternal edu-
cation (A levels or above [college entrance] versus less than A levels, edua), adolescent’s
sex at birth (female versus male, female), and maternal parity at birth of the adolescent
under study (multiparae [any siblings] versus primiparae, multiparae).



Table 1. Prevalence for the covariates

Overall Male Female
(n “ 7968) (n “ 3834) (n “ 4134)

Maternal education 57.7% 57.5% 57.9%
(less than A levels) (4429/7679) (2135/3715) (2294/3964)
Parity 46.6% 47.0% 46.2%
(primiparae) (3594/7714) (1749/3724) (1845/3990)

Table 2. Prevalence for report of adolescent vomiting at age 16

Overall Male Female

Parent report 0.30% 0.19% 0.41%
(16/5252) (5/2578) (11/2674)

Adolescent report 4.93% 0.82% 7.78%
(236/4788) (16/1962) (220/2826)

3 Methods

3.1 Notation

Following the notation in Horton and Fitzmaurice (2004), we assume there are N inde-
pendent subjects, each with an outcome obtained from J sources. Let Yij represent the
dichotomous outcome obtained for the ith subject from the jth source (with i “ 1, . . . , N
and j “ 1, . . . , J). The study has two sources (J “ 2), where Yi1 is the first source re-
port (adolescent, child==1), and Yi2 is the second source report (parent, child==0).
In addition, let Xij be a p ˆ 1 vector of covariates associated with the outcome ob-
tained for the ith subject from the jth source (Xij contains both source information
and subject-specific information). We let Yi “ pYi1, . . . , YiJ q1 be the J ˆ 1 outcome
vector for the ith subject and Xi be the associated J ˆ p matrix of covariates.

3.2 Analytic approaches

GEE model for multiple sources

If we had only one source, there would be one observation per subject (no clustering),
and we could proceed to fit a logistic regression model for the dichotomous outcome
or another model from the generalized linear model family. However, the clustered
nature of multiple sources, where two reports from the same adolescent are likely to be
positively associated, requires a more sophisticated model.



GEEs were first described by Liang and Zeger (1986) and are an attractive method
to fit population-averaged regression models for clustered data. The GEE assumes a
“working” correlation matrix and uses an empirical variance estimator (also known as
a robust or Huber–White or “sandwich” variance) to obtain estimates for the logistic
regression model, which accounts for the clustering within subjects. Liang and Zeger
(1986) proved that the GEE yields consistent estimates of the regression parameters and
of their variances under mild assumptions about dependence and correct specification
of the mean model.

The general form for regression models for the mean of some function of Yi, condi-
tional on both source and risk factors (this setting includes adolescent gender, maternal
education, and parity), is given by

gtEpYij |Xijqu “ X
1

ijβ

where gp¨q is a known link function. For our setting with a binary outcome, we can
set gpyq “ logty{p1 ´ yqu “ logitpyq (for example, the logit function). The full model
applied to the motivating example would be the following:

logittEpYij |Xijqu “ β0 ` β1multiparae ` β2edua ` β3female ` β4child

` β5pchild ˆ femaleq ` β6pchild ˆ multiparaeq

` β7pchild ˆ eduaq

(1)

The coefficients are log odds-ratios, where β5, β6, and β7 represent the interaction of
the source effect with the three covariates.

Model (1) can be simplified if interactions were found to be nonsignificant. For
the predicted prevalence of the vomiting behavior model, we dropped the extraneous
interactions (those with p-values ě 0.05) and refit the model to obtain estimates for a
parsimonious model, which retained the gender by source interaction:

logittEpYij |Xijqu “ β0 ` β1multiparae ` β2edua ` β3female ` β4child

` β5(child ˆ female)
(2)

Without the parity by source interaction and maternal education by source interaction
in (2), exppβ1q and exppβ2q are interpreted as odds ratios for parity and maternal edu-
cation, respectively, within levels of source and gender. We can interpret the interaction
term by extracting the equation for parent reports [presented in (3)]; similarly, we can
obtain the equation for adolescent reports (4).

logittEpYij |Xij , child ““ 0qu “ β0 ` β1multiparae ` β2edua ` β3female (3)

logittEpYij |Xij , child ““ 1qu “ pβ0 ` β4q ` β1multiparae ` β2edua

` pβ3 ` β5qfemale (4)

Note that for the adolescent report (4), β4 is the log odds for additional prevalence
for adolescent reports, and β5 is the additional log odds for female adolescent reports.



3.3 Accounting for missing data

Missing data occur in almost all real-world investigations (Little and Rubin 2002). This
was also the case for the ALSPAC study, which is demonstrated using the miss option
for tabulate.

. by female: tabulate vomit_c16 vomit_p16, miss

-> female = 0

vomit_p16
vomit_c16 0 1 . Total

0 1,673 2 271 1,946
1 12 1 3 16
. 888 2 982 1,872

Total 2,573 5 1,256 3,834

-> female = 1

vomit_p16
vomit_c16 0 1 . Total

0 1,986 4 616 2,606
1 135 5 80 220
. 542 2 764 1,308

Total 2,663 11 1,460 4,134

From this output, we observe that 1,688 male adolescents returned completed ques-
tionnaires and that 2,130 female adolescents returned completed questionnaires out of
the total 7,968 sample subjects. By adding the miss option, we show that 4,150 (52%)
of the possible sample are missing adolescent, parent, or both reports, regardless of gen-
der. For instance, for male subjects, 7% tp271 ` 3q{3834u have adolescent reports but
are missing parent reports, 23% tp888 ` 2q{3834u have missing adolescent reports but
have parent reports, and 26% p982{3834q are missing both adolescent and parent reports
for the questionnaire from age 16. Accounting for the partially observed responses is
crucial for obtaining reliable results for future inferences.

There are three concerns that typically arise with missing data: 1) loss of efficiency;
2) complication in data handling and analysis; and 3) bias due to differences between
the observed and unobserved data. Next we introduce a nomenclature for missing data.

Missing-data nomenclature

For each of the N subjects, the outcome vector, Y, and the vector of predictors, X, are
either observed or missing. We denote Y

obs as the observed component of the outcome
and X

obs as the observed components of the predictors. Similarly, we denote Y
mis and

X
mis as the unobserved components of the outcome and predictors, respectively. In

addition, Zobs “ pYobs,Xobsq and Z
mis “ pYmis,Xmisq denote the vector of observed

variables and missing variables, respectively. We also use γ to denote the regression



parameters. Lastly, we define a set R of response indicators (that is, Ri “ 1 if the ith
element of Z is observed, and it equals 0 otherwise).

Little and Rubin (2002) defined classifications for the probability distribution gen-
erating the missing data. MCAR is characterized as

P pR|Z,γq “ P
`

R|Zobs,Zmis,γ
˘

“ P pR|γq

That is, the probability of being missing is the same for all cases. Heuristically, the
reasons for missingness are unrelated to the observed or unobserved data. MCAR is
simple but is unlikely to happen in practice.

The mechanism MAR assumes

P pR|Z,γq “ P
`

R|Zobs,γ
˘

That is, the probability of being missing is the same after conditioning on the ob-
served data. Heuristically, this states that missingness depends on only observed quan-
tities, including outcomes, predictors, and auxiliary variables. Most analyses start with
this assumption because it is more likely to happen than MCAR, particularly within
datasets containing many variables (Collins, Schafer, and Kam 2001). It is possible to
test the MCAR assumption against the alternative hypothesis that missingness is MAR

(Diggle and Kenward 1994).

Missing not at random (MNAR) concerns researchers and analysts the most because
MNAR means that the probability of data being missing varies for reasons that are
unknown to the researcher (missingness is related to the unobserved quantities). Sym-
bolically, P pR|Zq cannot be simplified, and it must be modeled as part of the likelihood.
Little and Rubin (2002) call this “nonignorable”. While MNAR missingness is important
when undertaking sensitivity analyses, we will not consider it further.

The pattern of missingness, monotone versus nonmonotone, can also influence how
we address missing data. A dataset is said to have a monotone-missing pattern when
the variables in the dataset can be arranged in a stair-step pattern (that is, nonin-
creasing or nondecreasing) when missingness on one implies missingness on the other
(Little and Rubin 2002). The monotone pattern is generally uncommon with observa-
tional studies, as with the motivating study, where we have some subjects missing a
parent report and others missing an adolescent report.

We can use misschk (Long and Freese 2014) to display the missingness pattern for
a subset of the variables used in our motivating example.



. misschk female edua multiparae vomit_c16 vomit_p16

Variables examined for missing values

# Variable # Missing % Missing
--------------------------------------------

1 female 0 0.0
2 edua 289 3.6
3 multiparae 254 3.2
4 vomit_c16 3180 39.9
5 vomit_p16 2716 34.1

Missing for
which

variables? Freq. Percent Cum.

_2345 32 0.40 0.40
_234_ 12 0.15 0.55
_23_5 18 0.23 0.78
_23__ 17 0.21 0.99
_2_45 79 0.99 1.98
_2_4_ 40 0.50 2.48
_2__5 50 0.63 3.11
_2___ 41 0.51 3.63
__345 57 0.72 4.34
__34_ 27 0.34 4.68
__3_5 23 0.29 4.97
__3__ 68 0.85 5.82
___45 1,578 19.80 25.63
___4_ 1,355 17.01 42.63
____5 879 11.03 53.66
_____ 3,692 46.34 100.00

Total 7,968 100.00

Missing for
how many

variables? Freq. Percent Cum.

0 3,692 46.34 46.34
1 2,343 29.41 75.74
2 1,735 21.77 97.52
3 166 2.08 99.60
4 32 0.40 100.00

Total 7,968 100.00

Note that the most common missing patterns include subjects missing both adoles-
cent and parent reports (20%, n “ 1578), subjects missing just the adolescent report
(17%, n “ 1355), and subjects missing just the parent report (11%, n “ 879). How-
ever, we do not have a monotone-missingness pattern, because for each of the covariates
(parity and maternal education), there are cases missing adolescent, parent, or both
reports.

Available-case method

The available-case method includes all cases where the variable of interest is present.
This method is more efficient than complete-case analyses, where any case with a missing
value is removed. In the motivating study, there were n “ 7968 available cases versus



n “ 3692 complete cases, as shown in the missing-patterns table above. The available-
case method is also unbiased when missingness is MCAR. However, complications can
arise because the analytic sample base changes from model to model and may lead to
problems of comparability.

Weighted estimating equations

Weighted estimating equations (Xie and Paik 1997; Horton et al. 2001; Li et al. 2011)
are an attractive approach if missingness is monotone. However, using them is not
feasible in this setting, even for modeling parent and adolescent reports for one age,
because some subjects have missing adolescent reports while others have missing parent
reports. However, weighted estimating equations are supported in Stata 13. For more
details, see help weight.

MI

MI is a principled method used to account for missing data (Rubin 1976). It involves
a three-step approach for fitting incomplete data regression models. First, it creates
plausible values for missing observations that reflect uncertainty about the nonresponse
model. These values are used to “fill in” or impute the missing values (generally under
a MAR assumption). This process is repeated, which results in the creation of several
“completed” datasets. Second, each of these datasets is analyzed using complete-data
methods. Finally, the results are combined, which allows the uncertainty regarding the
imputation to be considered (Little and Rubin 2002). Because increasing the number of
imputed datasets minimizes variability introduced into the results because of the impu-
tation process (Horton and Lipsitz 2001; White, Royston, and Wood 2011; van Buuren
2012), we recommend a set of 25 imputations, though more are computationally possi-
ble.

Specifying imputation model. MI requires the analyst to provide an appropriate speci-
fication of the imputation model. If this model is misspecified, there is potential for bias
(White, Royston, and Wood 2011). In general, the imputation model must be compat-
ible with the model used for the analysis, with all potential covariates and important
higher-order associations included (Little and Rubin 2002). For example, in model (2),
we want to assess the source by gender interaction with reported instances of vomit-
ing. Even though gender is fully observed, we need to include gender in the imputation
model because we include gender effects in the analysis model. Also, to preserve the
source by gender interaction, we have to account for the interaction term. We did this
by stratifying the imputation model by gender (Royston 2005), though this could also
have been accomplished by including the interaction when specifying custom prediction
equations (see help mi impute chained).

In addition to all the variables that can be used in the analysis model, any auxiliary
variables that may contain information about missing data should be included. For
our model, we included a measure for self-reported body mass index, the mother’s
age at delivery, and the adolescent’s age at the time of reporting. Furthermore, the



outcome variable should always be present in the imputation model to obtain valid
results (Moons et al. 2006). By including all the variables necessary for the model and
any auxiliary variables that may contain information about missing data, the MAR

assumption becomes more plausible, and the quality of the imputed values improves
(Collins, Schafer, and Kam 2001).

Specifying imputation method. The choice of imputation method depends on the pat-
tern of missing values. As opposed to having a monotone-missing pattern, our data have
an arbitrary missing pattern. When a pattern of missing values is arbitrary, iterative
methods are used to fill in missing values. To accommodate our arbitrary missing-value
patterns, we imputed the data using chained equations with a variable-by-variable ap-
proach. The imputation model is specified separately for each variable and involves the
other variables as predictors. At each stage of the algorithm, an imputation is gener-
ated for all the missing values in a given variable, and this imputed variable is used to
impute the next variable. This process repeatedly imputes missing values by using a
Gibbs sampling procedure until the process reaches convergence. For this example, we
used 25 iterations.

Combining complete-case results. The last step of the imputation method uses “Ru-
bin’s rules” to combine the repeated-imputation results, where the total variance stems
from the following three sources (Little and Rubin 2002):

1. The variance is a result of taking a sample rather than observing the entire pop-
ulation. This is the conventional statistical measure of variability.

2. The extra variance is caused by missing values in the sample.

3. The extra simulation variance is a result of the estimate being estimated for a
finite number of imputations.

4 Application in Stata

MI can be used in combination with the estimation of a wide variety of models, including
the GEE model, using the mi system in Stata 13.

To use the mi system, we begin by reading in the dataset and creating the analytic
set. We include additional variables from the cohort study in the imputation model to
make the MAR assumption more plausible (Collins, Schafer, and Kam 2001).

. use alspac_informant, clear

. keep vomit_c14 vomit_p14 vomit_c16 vomit_p16
> lax_c14 lax_p14 lax_c16 lax_p16
> fast_c14 fast_p14 fast_c16 fast_p16
> binge_c14 binge_p14 binge_c16 binge_p16
> anyedsx_c14 anyedsx_p14 anyedsx_c16 anyedsx_p16
> thin_c14 thin_p14
> edua multiparae m_age_at_delivery female weightkg heightm c_age_at_report
> bmi cid_153a



4.1 Registering variables

Next we need to set how Stata should add additional imputations. We chose to use
the marginal long (mlong) data structure because it uses slightly less memory than the
wide (wide) data structure. However, the wide format is slightly faster.

. mi set mlong

Then we register each of the variables within the dataset as either variables to impute
or variables to not impute.

The variables that must be imputed require registration:

. mi register imputed vomit_c14 vomit_p14 vomit_c16 vomit_p16 lax_c14 lax_p14
> lax_c16 lax_p16 fast_c14 fast_p14 fast_c16 fast_p16
> thin_c14 thin_p14 binge_c14 binge_p14 binge_c16 binge_p16
> anyedsx_c14 anyedsx_p14 anyedsx_c16 anyedsx_p16
> edua multiparae weightkg heightm c_age_at_report bmi
(6009 m=0 obs. now marked as incomplete)

The variables that do not require imputation but will be used in the imputation
model are registered as regular variables.

. mi register regular m_age_at_delivery female

With the added covariates, we redisplay the table from misschk listing missingness
for different numbers of variables.

Missing for
how many

variables? Freq. Percent Cum.

0 1,959 24.59 24.59
1 345 4.33 28.92
2 106 1.33 30.25

(output omitted )

26 7 0.09 99.94
27 5 0.06 100.00

Total 7,968 100.00

Note that with these 31 variables, there are only 1,959 complete cases. Three variables
are completely observed: the ID, the gender, and the age of mother at the time of
delivery.

4.2 Imputation model specification

We then create the imputed datasets in Stata by using mi impute. This requires us
to specify the imputation model. We must first select the imputation method. For
univariate imputation, where the pattern of missingness is monotone, we can choose
from a variety of imputation models based on the type of variable. For example, mi



impute regress will fit a linear regression model for a continuous variable or mi impute

poisson for a count variable.

For multivariate imputation with different types of variables (that is, a mixture of
continuous and discrete), the situation is more complicated. If the pattern of missingness
is monotone, we can use mi impute monotone to assign an imputation method to each
variable. If there is an arbitrary missing pattern (as in the present analysis), we can
use mi imputed mvn for multivariate normal variables or mi impute chained for the
chained-equation method. Table 3 lists these options and other options that can be
selected as the imputation method.

Table 3. MI methods available within Stata 13

Method Description

Univariate
regress Linear regression
pmm Predictive mean matching
truncreg Truncated regression
intreg Interval regression
logit Logistic regression
ologit Ordered logistic regression
mlogit Multinomial logistic regression
poisson Poisson regression
nbreg Negative binomial regression

Multivariate
monotone Sequential imputation using a monotone missing pattern
chained Sequential imputation using chained equations
mvn Multivariate normal regression

Because our data setting did not feature monotone missingness and the study vari-
ables were not normally distributed, we adopted the chained-equation approach (Raghu-
nathan et al. 2001; White, Royston, and Wood 2011; van Buuren 2012). Using 25 chains
for 25 iterations, we fit a linear regression model regress for the incomplete continuous
variables and used predicted mean matching (pmm) for the binary variables. Predicted
mean matching is similar to the regression method except that for each missing value,
it imputes a value randomly drawn from a set of observed values whose predicted values
are closest to the predicted value for the missing value from the simulated regression
model. Generally, predicted mean matching is used for continuous variables. However,
predictive mean matching proves to be unbiased for dichotomous variables, it ensures
that imputed values are plausible, and it may be more appropriate if the normality
assumption is violated (Horton, Lipsitz, and Parzen 2003).

Both sets of models included all symptoms from both sources at each age and other
covariates stratified by gender to account for the interaction (StataCorp 2013).



mi impute chained (regress) weightkg heightm c_age_at_report bmi ///
(pmm) vomit_c14 vomit_p14 vomit_c16 vomit_p16 ///

lax_c14 lax_p14 lax_c16 lax_p16 ///
fast_c14 fast_p14 fast_c16 fast_p16 ///
thin_c14 thin_p14 ///
binge_c14 binge_p14 binge_c16 binge_p16 ///
anyedsx_c14 anyedsx_p14 anyedsx_c16 anyedsx_p16 ///
edua multiparae = m_age_at_delivery, ///
dots noisily add(25) by(female) augment

This model was implemented on an Intel R© CoreTM2 Duo Processor and took ap-
proximately two hours.

4.3 GEE with imputed datasets

With the imputed datasets, complete-case methods can be used to estimate models using
mi estimate. Stata supports estimation of many regression models with imputed data,
including linear regression models, binary-response regression models, count-response
regression models, ordinal-response regression models, categorical-response regression
models, quantile regression models, survival regression models, panel-data models, and
survey regression models. The present study uses mi estimate xtgee to fit the GEE

models because of the clustering within subjects.

To preserve associations between the parent and adolescent reports, we imputed the
data in wide form (one row per subject). However, to fit the model, we need to reshape
our datasets from wide form to long form (two rows per subject). This is easy to do
using the post mi data manipulation commands. To clarify the process, we will display
the data for the first five subjects. We can select the original dataset with mi xeq 0.

. mi xeq 0: list id female edua multiparae vomit_c16 vomit_p16 if id < 6

m=0 data:
-> list id female edua multiparae vomit_c16 vomit_p16 if id < 6

id female edua multip~e vomi~c16 vomi~p16

1. 1 0 0 . . .
2. 2 0 0 1 . 0
3. 3 0 0 0 . 0
4. 4 0 1 1 0 0
5. 5 0 0 1 0 0

Then we rename the outcome variables for the reshape command so that j “ 1
indicates an adolescent report and j “ 0 indicates a parent report.

. mi rename vomit_c16 vomit_161

. mi rename vomit_p16 vomit_160



. mi reshape long vomit_16, i(cid_153a) j(child)

reshaping m=0 data ...
(note: j = 0 1)

Data wide -> long

Number of obs. 7968 -> 15936
Number of variables 35 -> 35
j variable (2 values) -> child
xij variables:

vomit_160 vomit_161 -> vomit_16

Now we have doubled the number of rows (15,936) in the long format. We then display
the same first five subjects in the long format.

. mi xeq 0: sort id; list id female edua multiparae vomit_16 if id <6

m=0 data:
-> sort id
-> list id female edua multiparae child vomit_16 if id <6

id female edua multip~e child vomit_16

1. 1 0 0 . 1 .
2. 1 0 0 . 0 .
3. 2 0 0 1 0 0
4. 2 0 0 1 1 .
5. 3 0 0 0 1 .

6. 3 0 0 0 0 0
7. 4 0 1 1 1 0
8. 4 0 1 1 0 0
9. 5 0 0 1 0 0
10. 5 0 0 1 1 0

Recall that (2) includes the gender by source interaction. We recode a new variable
using imputed data by implementing mi passive. We named the interaction variable
femchild.

. mi passive: generate femchild = female*child

Before fitting the model, we must declare the type of complex data (for example,
mi stset for survival data or mi svyset for survey data). For panel data, we use the
xtset command. Note that we are paneling on the adolescent ID variable.

. mi xtset cid_153a
panel variable: cid_153a (balanced)



Then we proceed to fit (2).

. mi estimate: xtgee vomit_16 multiparae edua female child femchild,
> family(binomial) link(logit) corr(inde)

Multiple-imputation estimates Imputations = 25
GEE population-averaged model Number of obs = 15936

Group variable: cid_153a Number of groups = 7968
Link: logit Obs per group: min = 2
Family: binomial avg = 2.0
Correlation: independent max = 2
Scale parameter: 1

Average RVI = 0.6721
Largest FMI = 0.4821

DF adjustment: Large sample DF: min = 107.46
avg = 143.06
max = 208.34

Model F test: Equal FMI F( 5, 642.9) = 46.50
Within VCE type: Conventional Prob > F = 0.0000

vomit_16 Coef. Std. Err. t P>|t| [95% Conf. Interval]

multiparae .2721927 .1302315 2.09 0.038 .0153082 .5290773
edua .1300673 .1272539 1.02 0.308 -.120803 .3809375

female .2884962 .5023234 0.57 0.567 -.7072522 1.284245
child .9982947 .4376222 2.28 0.024 .1322118 1.864378

femchild 1.975446 .5530279 3.57 0.001 .8798404 3.071051
_cons -5.883525 .3970033 -14.82 0.000 -6.67001 -5.09704

The model indicates that when we control for other factors, the odds for exhibiting
vomiting behavior for an adolescent with siblings is 1.31 [95% confidence interval (CI)
1.02–1.70] times the odds for an only-child adolescent exhibiting vomiting behavior.
Maternal education was found to not be significantly associated with vomiting behavior
(odds ratio 1.14; [95% CI 0.89–1.46]) after we controlled for other factors.

To interpret the gender by source interaction, we calculated the four predicted prob-
abilities using (3) and (4) with the other covariates set to 0 and the inverse logit function
(invlogitpβq “ exppβq{t1 ` exppβqu). We calculated the predicted probability for the
male adolescent report (invlogitpβ0 `β4q, 0.8%, [95% CI 0.4%–1.1%]); the male’s par-
ent report (invlogitpβ0q, 0.3%, [95 % CI 0.08%–0.5%]); the female adolescent report
(invlogitpβ0`β3`β4`β5q, 6.8%, [95% CI 5.3%–8.3%]); and the female’s parent report
(invlogitpβ0 ` β3q, 0.4%, [95% CI 0.1%–0.6%]).

From these, we can determine important distinct patterns. First, estimates for
vomiting are higher when vomiting is reported by the adolescent instead of his or her
parent for both male and female adolescents. In addition, for adolescent reporting, there
is a significant difference between females and males reporting endorsement of vomiting
behaviors. However, there is not a significant gender difference for parent reporting.
This result has implications for our understanding of the diagnosis and the prevalence
of reported symptoms, as discussed in more detail by Swanson et al. (2014).

To compare these results with an available case model, we can fit the model to only
the original dataset by using mi xeq 0.



. mi xeq 0: xtgee vomit_16 multiparae edua female child femchild,
> family(binomial) link(logit) corr(inde)

m=0 data:
-> xtgee vomit_16 multiparae edua female child femchild,

family(binomial) link(logit) corr(inde)

Iteration 1: tolerance = 7.568e-07

GEE population-averaged model Number of obs = 9618
Group variable: cid_153a Number of groups = 5926
Link: logit Obs per group: min = 1
Family: binomial avg = 1.6
Correlation: independent max = 2

Wald chi2(5) = 224.44
Scale parameter: 1 Prob > chi2 = 0.0000

Pearson chi2(9618): 9668.38 Deviance = 1835.64
Dispersion (Pearson): 1.005238 Dispersion = .1908548

vomit_16 Coef. Std. Err. z P>|z| [95% Conf. Interval]

multiparae .3196914 .1369466 2.33 0.020 .051281 .5881019
edua .3216119 .1349857 2.38 0.017 .0570449 .5861789

female .7626511 .5401381 1.41 0.158 -.2960001 1.821302
child 1.375299 .517371 2.66 0.008 .3612708 2.389328

femchild 1.59392 .6035489 2.64 0.008 .410986 2.776854
_cons -6.550324 .4617182 -14.19 0.000 -7.455275 -5.645373

When the two methods are compared, the estimates are similar, and the standard errors
from the MI model assuming MAR are consistently smaller than the standard errors for
the MCAR model.

5 Discussion

Clustered data with partially observed responses and predictors arise in many situations.
In this article, we have detailed how to account for clustering when MI is used to account
for missingness.

Multiple-source data often occur when one analyzes studies with complex survey
designs. Along with clustering, stratification and sampling weights must be consid-
ered in the analysis. This can be done in Stata by using the survey design tools
(Horton and Fitzmaurice 2004).

Many analytic approaches rely on the accuracy of the assumptions associated with
the proposed method. Negligence or inaccurate analysis of the collected data can in-
troduce bias. Assumptions that missingness is MAR are inherently unverifiable without
auxiliary information. When one uses methods that incorporate other variables asso-
ciated with missingness and responses, the possibility of bias is reduced, and the data
are represented more accurately.

The GEE model is attractive because it can account for clustering or repeated mea-
sures induced by longitudinal data. However, the assumption of MCAR is very restric-



tive because reasons for missingness are generally more complex than just being due to
chance.

The weighted GEE loosens the often implausible MCAR missingness assumption. If
a weighted model were feasible, it could be incorporated using survey weights, as de-
scribed by Horton and Fitzmaurice (2004). However, the requirement that the patterns
of missing be monotone is a major limitation. The use of MI is attractive because it
can incorporate auxiliary variables to make MAR more tenable, and it does not require
monotone missingness. One disadvantage of using MI is that it requires additional work
to specify the imputation model. Further research could make it easier for users to
specify imputation models.

While our estimates from the multiply imputed data were similar to those found us-
ing the GEE under MCAR, the MAR model had smaller standard errors and less restrictive
assumptions regarding missingness. The ability to fit clustered data models within MI

provides great flexibility for analysts. This principled analytic method was once limited
by computational access, but, as we demonstrated, it is now readily available within
general-purpose statistical software.
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