%‘““‘“\N Ag Econ sxes
/‘ RESEARCH IN AGRICUITURAL & APPLIED ECONOMICS

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their
employer(s) is intended or implied.

https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/

Editors

H. Josepn NEWTON
Department of Statistics
Texas A&M University
College Station, Texas
editors@stata-journal.com

Associate Editors

CHRISTOPHER F. BAUM, Boston College

NATHANIEL BECK, New York University

RiNO BELLOCCO, Karolinska Institutet, Sweden, and
University of Milano-Bicocca, Italy

MAARTEN L. Buis, University of Konstanz, Germany

A. CoLIN CAMERON, University of California—Davis

MARIO A. CLEVES, University of Arkansas for
Medical Sciences

‘WIiLLIAM D. DUPONT, Vanderbilt University

PHILIP ENDER, University of California—Los Angeles

Davib EPSTEIN, Columbia University

ALLAN GREGORY, Queen’s University

JAMES HARDIN, University of South Carolina

BEN JANN, University of Bern, Switzerland

STEPHEN JENKINS, London School of Economics and
Political Science

ULRICH KOHLER, University of Potsdam, Germany

Stata Press Editorial Manager
Lisa GILMORE

Nicnoras J. Cox
Department of Geography
Durham University
Durham, UK
editors@stata-journal.com

FRAUKE KREUTER, Univ. of Maryland—College Park

PETER A. LACHENBRUCH, Oregon State University

JENS LAURITSEN, Odense University Hospital

STANLEY LEMESHOW, Ohio State University

J. ScorT LONG, Indiana University

ROGER NEWSON, Imperial College, London

AusTIN NicHoLs, Urban Institute, Washington DC

MARCELLO PAGANO, Harvard School of Public Health

SopHIA RABE-HESKETH, Univ. of California—Berkeley

J. PATRICK ROYSTON, MRC Clinical Trials Unit,
London

PuiLP RYAN, University of Adelaide

MARK E. SCHAFFER, Heriot-Watt Univ., Edinburgh

JEROEN WEESIE, Utrecht University

IaN WHITE, MRC Biostatistics Unit, Cambridge

NicHOLAS J. G. WINTER, University of Virginia

JEFFREY WOOLDRIDGE, Michigan State University

Stata Press Copy Editors
DaviD CULWELL, SHELBI SEINER, and DEIRDRE SKAGGS

The Stata Journal publishes reviewed papers together with shorter notes or comments, regular columns, book
reviews, and other material of interest to Stata users. Examples of the types of papers include 1) expository
papers that link the use of Stata commands or programs to associated principles, such as those that will serve
as tutorials for users first encountering a new field of statistics or a major new technique; 2) papers that go
“beyond the Stata manual” in explaining key features or uses of Stata that are of interest to intermediate
or advanced users of Stata; 3) papers that discuss new commands or Stata programs of interest either to
a wide spectrum of users (e.g., in data management or graphics) or to some large segment of Stata users
(e.g., in survey statistics, survival analysis, panel analysis, or limited dependent variable modeling); 4) papers
analyzing the statistical properties of new or existing estimators and tests in Stata; 5) papers that could
be of interest or usefulness to researchers, especially in fields that are of practical importance but are not
often included in texts or other journals, such as the use of Stata in managing datasets, especially large
datasets, with advice from hard-won experience; and 6) papers of interest to those who teach, including Stata
with topics such as extended examples of techniques and interpretation of results, simulations of statistical
concepts, and overviews of subject areas.

The Stata Journal is indexed and abstracted by CompuMath Citation Index, Current Contents/Social and Behav-
ioral Sciences, RePEc: Research Papers in Economics, Science Citation Index Expanded (also known as SciSearch),
Scopus, and Social Sciences Citation Index.

For more information on the Stata Journal, including information for authors, see the webpage

http://www.stata-journal.com

B A A S e

Subscription rates listed below include both a printed and an electronic copy unless otherwise mentioned.

U.S. and Canada Elsewhere

Printed & electronic Printed & electronic

1-year subscription $115 1-year subscription $145
2-year subscription $210 2-year subscription $270
3-year subscription $285 3-year subscription $375
1-year student subscription $ 85 1-year student subscription $115
1-year institutional subscription $345 1-year institutional subscription $375
2-year institutional subscription $625 2-year institutional subscription $685
3-year institutional subscription $875 3-year institutional subscription $965
Electronic only Electronic only

1-year subscription $ 85 1-year subscription $ 85
2-year subscription $155 2-year subscription $155
3-year subscription $215 3-year subscription $215
1-year student subscription $ 55 1-year student subscription $ 55

Back issues of the Stata Journal may be ordered online at

http://www.stata.com/bookstore/sjj.html

Individual articles three or more years old may be accessed online without charge. More recent articles may
be ordered online.

http://www.stata-journal.com/archives.html

The Stata Journal is published quarterly by the Stata Press, College Station, Texas, USA.

Address changes should be sent to the Stata Journal, StataCorp, 4905 Lakeway Drive, College Station, TX
77845, USA, or emailed to sj@stata.com.

e~ | aTa
%?ﬁ& —/gfr';]SrS- Copyright © 2014 by StataCorp LP

Copyright Statement: The Stata Journal and the contents of the supporting files (programs, datasets, and
help files) are copyright © by StataCorp LP. The contents of the supporting files (programs, datasets, and
help files) may be copied or reproduced by any means whatsoever, in whole or in part, as long as any copy
or reproduction includes attribution to both (1) the author and (2) the Stata Journal.

The articles appearing in the Stata Journal may be copied or reproduced as printed copies, in whole or in part,
as long as any copy or reproduction includes attribution to both (1) the author and (2) the Stata Journal.

Written permission must be obtained from StataCorp if you wish to make electronic copies of the insertions.
This precludes placing electronic copies of the Stata Journal, in whole or in part, on publicly accessible websites,
fileservers, or other locations where the copy may be accessed by anyone other than the subscriber.

Users of any of the software, ideas, data, or other materials published in the Stata Journal or the supporting
files understand that such use is made without warranty of any kind, by either the Stata Journal, the author,
or StataCorp. In particular, there is no warranty of fitness of purpose or merchantability, nor for special,
incidental, or consequential damages such as loss of profits. The purpose of the Stata Journal is to promote
free communication among Stata users.

The Stata Journal (ISSN 1536-867X) is a publication of Stata Press. Stata, STATQ, Stata Press, Mata, Mara,
and NetCourse are registered trademarks of StataCorp LP.

LALLUUL. ULIITILICO TUI' LCAL alldlyoio 1l didia

Unislawa Williams Sean P. Williams
Spelman College SunTrust Bank
Atlanta, GA Atlanta, GA
uwilliams@spelman.edu sean.williams.1000@gmail.com
Abstract. This article describes txttool, a command that provides a set of

tools for managing free-form text. The command integrates several built-in Stata
functions with new text capabilities. These latter functions include a utility to
create a bag-of-words representation of text and an implementation of Porter’s
(1980, Program: Electronic library and information systems 14: 130-137) word-
stemming algorithm. Collectively, these utilities provide a text-processing suite
for text mining and other text-based applications in Stata.

Keywords: dm0077, txttool, text mining, Porter stemmer, bag of words, cleaning,
stop words, subwords

1 Introduction

Stata users recently introduced new commands for increasingly sophisticated manage-
ment of text data, in particular, screening and kountry (Belotti and Depalo 2010;
Raciborski 2008). As these authors note, while text data can be challenging to analyze,
they occur in many applications, including free-form electronic patient records, country
identifiers in international relations and economics datasets, and open-ended survey re-
sponses. In addition, text mining, or the quantitative analysis of unstructured text data,
has received increasing attention in the social sciences (Benoit, Laver, and Mikhaylov
2009; Lowe and Benoit 2013). These applications vary from categorizing and classifying
legislative speeches to evaluating Russian military discourse (Laver, Benoit, and Garry
2003; Grimmer and Stewart 2013).

Generally, Stata lacks the text-management utilities to prepare text data for these
kinds of applications. Although some steps in the data-preparation phase can be ac-
complished with built-in commands, using them can be tedious and can lead to errors.
For example, removing punctuation, extra white spaces, and special characters from
text could involve dozens of lines of code, and the code would need to be modified for
different situations. On the other hand, some steps in the data-preparation phase, such
as stemming words or representing instances of words as counts in numeric variables,
are not available in Stata at all.

The txttool command fills this gap by providing utilities for several text-prepara-
tion tasks:

1. Cleaning: removing punctuation, special characters, and extra white spaces from
text and converting it to lowercase.

© 2014 StataCorp LP dm0077

«. OLOPp-word removal: removing worads tilat occur too Irequently to dilscriiinate
outcomes or classes (that is, “the”, “of”, “and”, etc.) or user-specified words that
lead to better results in a particular context when removed.

3. Substitution: replacing large numbers of individual words to correct misspellings
or variations or to insert user-defined categories for words when analytically useful.

4. Stemming: an implementation of Porter’s (1980) stemming program that reduces
a word to a stem or a root. For example, the words “programs”, “programmed”,
and “programming” all reduce to the stem “program”. The stem is not always a
valid word, and it does not need to be. Rather, its purpose is to reduce the overall
word count by grouping closely related words into the same stem.

5. Bag of words: converting a string into both a list of the unique words found in the
string and a count of each unique word. This allows a variety of quantitative anal-
yses, including discriminate analysis, clustering, and the creation of dictionaries,
to represent different outcomes in other variables.

All of these features are described in more detail below. Afterward, extensions with
other programs and with Mata are discussed.

2 The txttool command

2.1 Syntax

txttool wvarname [if | [in], {generate(newvar) |replace} [stem
stopwords (filename) subwords (filename) bagwords prefix(string) noclean

nooutput]

varname is the string variable containing the text to be processed.

2.2 Options

generate (newvar) creates a new variable, newvar, containing the processed text of
varname. The newvar will be a copy of varname that has been stemmed, has had
the stop words removed, has had words substituted, or has been cleaned, depending
on the other options specified. Either generate() or replace is required.

replace replaces the text in varname with text that has been stemmed, has had the
stop words removed, has had words substituted, or has been cleaned, depending on
the other options specified. Either generate() or replace is required.

stem calls the Porter stemmer implementation to stem all the words in varname.

stopwords (filename) indicates that the program should remove all instances of words
contained in filename. The filename is a list of words in a text file. Although a list of

Irequently used Engiisily words 15 suppliied witlh TXTTOoO0Ll, users Call use dllerent lists
of stop words in different applications by specifying different filenames. Stop-word
lists without punctuation are recommended.

subwords (filename) indicates that the program should substitute instances of words
in filename with another word in filename. The filename is a tab-delimited text
file, where the first column is the word to be replaced and the second column is
the substitute text. Users can use different lists of words to substitute in different
applications by specifying different filenames. Subword lists without punctuation
are recommended.

bagwords tells txttool to create a bag-of-words representation of the text in varname.
The bag-of-words representation consists of new variables, one for each unique word
in varname, with the count of the occurrences of each word. The new variables
are named with the convention prefiz_word, where prefir is optionally supplied by
the user, and word is the unique word in the text. The options generate() and
bagwords can be used together to represent the processed text as one column with
word counts.

prefix(string) supplies a prefix for the variables created in bagwords. The default
is prefix(w_). Supplying a prefix will automatically invoke the bagwords option.
Note that txttool does not know what variables will be created before processing
the text, so it cannot confirm the absence of variables already named with the
specified prefix. Errors will therefore result if the chosen prefix matches an existing
variable.

noclean specifies that the program should not remove punctuation, extra white spaces,
and special characters from varname. By default, txttool will clean and lowercase
varname. The noclean option is not allowed with bagwords. In addition, because
the Porter stemmer does not stem punctuation and because the stop-words and
subwords lists should not include punctuation, noclean should be used with caution.

nooutput suppresses the default output. By default, txttool reports the total number
of words and the count of unique words before and after processing, as well as the
time elapsed during processing. The nooutput option suppresses this output, which
can save some time with large processing tasks.

2.3 Remarks

The options are processed in the following order: noclean, subwords(), stopwords(),
stem, generate() or replace, and, finally, bagwords. Thus the noclean option is
examined first, and if it is not specified, punctuation and special characters are removed.
Then subwords are substituted and stop words removed; the remaining text is stemmed
or bagged. The Porter stemmer algorithm does not recognize punctuation or non-
English characters, and Stata does not allow variable names with punctuation and
non-English characters, so cleaning must precede stemming and bagging.

bHecause Cleaning comes I11rst, the user-aclined I11sts 10 subworas\) and stopworas\)
are most effective when they are themselves “cleaned”. Otherwise, they may reintro-
duce punctuation and other characters after cleaning. The noclean option allows users
to process subwords() and stopwords() without first cleaning the original text, if
this is required in a particular instance. However, a more effective approach is clean-
ing the stop-word and subword lists by reading the lists into Stata and processing the
lists with txttool stopwordlist, gen(stopwordlist2) and txttool subwordlist,
gen(subwordlist2) to obtain word lists that have had any punctuation and special
characters removed. These lists can then be exported as text files to use in later appli-
cations with txttool.

The program’s default behavior is to remove all characters except white space (Amer-
ican standard code for information interchange [ASCII] code 32), numerals (ASCII codes
48-57), and letters (ASCII codes 97-122 after lowercasing). Therefore, the default
behavior is to remove punctuation, non-English characters, and nonprinting charac-
ters. Removing these characters is assumed by the Porter stemmer, which was created
for English, and necessary for creating new variables of the unique words with the
bagwords option because Stata does not allow special characters in variable names.
While bagwords is not allowed with noclean, the txttool command allows the stem
option when noclean is specified, although the stemmer may not function as expected,
so users should examine the results carefully. Analysis of non-English text can still use
the stopwords (), subwords (), generate (), and replace options even if noclean must
be specified to accommodate the characters in a particular language.

3 Examples

3.1 Examples of options usage

Imagine we have text data in the form of open-ended answers to a survey on voter
attitudes.

. use example_text
. list

txtexample

[y

Unemployment is the major issue, but no one’s talking about it
I've been looking and looking but i still can’t find a job
3. I hear a lot of talk about the ecomony improving

N

It is best to show how to prepare the text for analysis step by step. First, cleaning
removes punctuation and any special characters and lowercases the text.

. txttool txtexample, gen(cleaned)
Input: 28 unique words, 33 total words
Output: 27 unique words, 33 total words
Total time: .453 seconds

1 1NE researcier may wisilt 1o us€ a preexisting coding scneime ald group terims such
as “unemployment” and “jobs” into one term such as “employment.” In addition, the
researcher may correct common misspellings in a particular context, for example, replac-
ing “ecomony” with “economy” in the third observation. Note also that the subword
option can substitute phrases for words so that, for example, contractions in the text can
be expanded. The researcher may define the subword list as the following tab-delimited
text file:

unemployment employment
job employment
ecomony economy

ive i have

Using this list of substitutions produces the following text:

. txttool txtexample, gen(subbed) subwords("subwordexample.txt")
(output omitted)
. list subbed

subbed

[y

employment is the major issue but no ones talking about it
i have been looking and looking but i still cant find a employment
3. i hear a lot of talk about the economy improving

N

The stopwords () option will remove user-defined words. The txttool program is
packaged with a list of common English words and contractions to be removed. Common
words such as “I”, “of”, etc., generally have little discriminating power but increase
memory requirements. Using the packaged list of stop words produces

. txttool txtexample, gen(stopped) subwords("subwordexample.txt")
> stopwords ("stopwordexample.txt")

(output omitted)
. list stopped

stopped
1. employment major issue talking
2. looking looking still find employment

3. hear lot talk economy improving

OLeIMmiIng tne text rurtier reauces tne words by removing all but tne wora steins.

. txttool txtexample, gen(stemmed) subwords("subwordexample.txt")
> stopwords ("stopwordexample.txt") stem

(output omitted)

. list stemmed

stemmed
1. employ major issu talk
2. look look still find employ
3. hear lot talk economi improv

Note that “talking” and “employment” are now reduced to “talk” and “employ”, re-
spectively. Finally, the text is “bagged”, and a variable with the prefix "w_" is produced
for each remaining word, along with the count of the word in each line of text.

. txttool txtexample, gen(bagged) subwords("subwordexample.txt")
> stopwords ("stopwordexample.txt") stem bagwords prefix(w_)

. list w_*

w_employ w_major w_issu w_talk w_look w_still w_find
1. 1 1 1 1 0 0 0
2. 1 0 0 0 2 1 1
3. 0 0 0 1 0

w_hear w_lot w_econ~i w_improv
1. 0 0 0 0
2. 0 0 0 0
3. 1 1 1 1

3.2 Creating a dictionary

One practical text-mining task is creating a dictionary for specific values of a variable. A
dictionary is a list of words, phrases, parts of speech, or other tokens that distinguish one
value of a variable from another. In a customer-relationship management application,
for example, a researcher may have data on products that customers returned as well as
customer descriptions of the products. Using the customer descriptions, the researcher
can find the words or phrases that distinguish returned and unreturned products. The
list of words can then be studied to see what aspects of product design or manufacture
lead to returns; it can also be used to “tag” future customer descriptions to track trends
or used in a predictive model to classify large numbers of descriptions of competitors’
products. Similar applications can be made to any text data with an associated outcome
of interest.

11e Dagworas OpPUIOIl INakKes 1L €asSy L0 Créaltc diCtlionaries Ol tills Kind. 10 1lustrate,
we will use the International Monetary Fund’s monitoring of fund arrangements data
on loan terms. The data include the International Monetary Fund’s description of the
conditions that a borrowing government must meet to maintain funding as well as a
status variable that describes whether the country met the condition. We are specifically
interested in the kinds of loan conditions that borrowers have the most difficulty meeting,
which is a task for dictionary creation.! We set up the data as follows:

. import delimited using "Mona.csv", clear
(20 vars, 6549 obs)

. keep if status=="M" | status=="NM"
(2521 observations deleted)

. set seed 1234

. sample 500, count
(3528 observations deleted)

To begin, we assess how many unique words and total words are contained in the
description of the loan conditions, named descpt.

. txttool descpt, gen(testl)

Input: 2798 unique words, 9706 total words
Output: 2095 unique words, 9707 total words
Total time: .896 seconds

After cleaning, 2,095 unique words remain out of 9,707 total words in only 500
descriptions of loan conditions. This is obviously a large number of words to parse by
reading. We use the example list of packaged stop words with txttool to reduce the
word count.

. txttool descpt, gen(test2) stopword("stopwordexample.txt")
Input: 2798 unique words, 9706 total words

Output: 2021 unique words, 6188 total words

Total time: .996 seconds

Adding the stem option further reduces the word count.

. txttool descpt, gen(test3) stopword("stopwordexample.txt") stem
Input: 2798 unique words, 9706 total words

Output: 1552 unique words, 6188 total words

Total time: 1.35 seconds

Thus, of the original 2,798 unique words, 703, or 25%, were removed (or made
nonunique) through cleaning; another 74, or 3%, were removed with stop-word removal;
and another 469, or 17%, were removed through stemming. Though greatly reduced,
the new text description is still too large for manual parsing. By bagging the words,
we create 1,552 new variables, one for each unique word, and we can turn to numeric
methods.

. txttool descpt, gen(descpt2) stopword("stopwordexample.txt") stem bagwords
> prefix(w_)

(output omitted)

1. The data are available at http://www.imf.org/external /np/pdr/mona/index.aspx.

11e Next step 15 deterinining wiliCcl ol tnese words DEst dIstingulsil COIdltlons tllat
were met (status=="M") from those that were not met (status=="NM"). Although
there are many ways to determine this, a simple approach is to use correlations between
each word and the status variable. A loop through the word counts can list the words
with particularly high or statistically significant correlations. Given the tabular nature
of the data, we use tau-b correlations. Also we want to select only words that occur
frequently enough that they can potentially describe more than one instance of meeting
or failing to meet a condition, so we choose words that occur in at least 5% of the total
words. The loop then outputs the words and the correlations.

. generate status_numeric = (status=="M")

. quietly foreach x of varlist w_* {
2. summarize “x°, meanonly

if r(mean) > .05 {

tab "x° status_numeric, all

if abs(r(taub)) >.05 {

noisily display " x"" r(taub)

oUW

}

Note that positive correlations are associated more often with met conditions, while
negative correlations distinguish the unmet conditions.

w_budget.08594184
w_plan.06356041
w_law.05894236
w_fund-.07997933
w_new-.06189476
w_account-.05247162
w_ministri.05705297
w_bank-.06719572
w_includ.06220605
w_implement-.07452835
w_adopt-.05802378

Some of the terms uncovered by the procedure, such as “budget”, “plan”, and “law”,
are especially associated with met rather than unmet conditions. We can understand
why by inspecting a few of the loan conditions with a particular word:

. list descpt if w_law>0

descpt
4. Revocation of amendments to Article 5(3) of the Anti-Money Laundering..
26. Fiscal impact assessments evaluating the budgetary impact of all new ..
28. Passage by Parliament of a new Law on Labor Relations

(output omitted)

un the otner nand, several Leris stald out 10 dIstingulsiing COoNdltlons tlat are
not met as often, especially those involving funding of programs (“fund”), accounting
(“account”), central banking (“bank”), and following through on new programs (“im-
plement”, “adopt”). In fact, creating anything “new” seems to be a hard condition to
meet, given the word’s relatively high correlation with NM status. The means show that
the word “new” appears almost twice as often in conditions that were not met versus
those that were met.

. summarize w_new if status=="M"

Variable Obs Mean Std. Dev. Min Max
w_new 419 .0692124 .2633645 0 2

. summarize w_new if status=="NM"
Variable Obs Mean Std. Dev. Min Max
w_new 81 .1111111 .3162278 0 1

While we investigate the findings provided through the dictionary, we need to de-
termine how well the dictionary distinguishes met and unmet conditions. To do so, we
can use a simple linear discriminant analysis.

. discrim lda w_budget w_plan w_law w_fund w_new w_account w_ministri w_bank

> w_includ w_implement w_adopt, group(status_numeric)

Linear discriminant analysis
Resubstitution classification summary

Key
Number
Percent
True Classified
status_numer
ic 0 1 Total
0 38 43 81
46.91 53.09 100.00
1 105 314 419
25.06 74.94 100.00
Total 143 357 500
28.60 71.40 100.00
Priors 0.5000 0.5000

The results show that the dictionary does a respectable job at discriminating the
outcomes, including finding 38 of the 81 cases of unmet conditions. In further research,
loan conditions can be tagged with the dictionary words to score their difficulty, and
they can be used in more comprehensive models of a borrower’s conformance that could

include economic conditions, political relations, and other factors.

villrerent metnods Ol 1d€ntilylng poteitially dlstlnguisning words, sucCll as dllereint
limits on the minimum mean, different thresholds for significance, different correlations,
and so on, will likely produce different results. Producing a workable dictionary requires
several trials using different methods and validations before a researcher can find the
best balance of discriminatory power, number of words, and insight. However, these
trials are made easier with tools that appropriately reduce and represent the text.

4 Extensions

4.1 Extension with screening

Two commands, kountry and screening (Belotti and Depalo 2010; Raciborski 2008),
offer powerful text data-management capabilities by performing the tagging operation
previously described; that is, they apply a coding scheme against text variables. The
articles describe examples of using this procedure to standardize country codes (in the
case of kountry) or to apply standardized medical codes to electronic patient records
(in the case of screening).

These commands are natural extensions of the dictionary-creation capabilities cre-
ated by txttool. The bagwords option can be used to apply a dictionary and create it
by simply counting the words in the dictionary found in the bagwords counts. However,
with large datasets, bagging the words can bring substantial computational overhead to
an otherwise straightforward problem of counting the occurrences of particular words.

The screening program provides a very convenient way to address the same problem
without the additional computational overhead. Returning to the example in section 3.2,
we identified a list of five words that were positively correlated with status (those that
identified loan conditions that were easier for countries to meet) and six words that were
negatively correlated with status (those conditions that were more difficult to meet).
First, we prepare the data:

. import delimited using "Mona.csv", clear
(20 vars, 6549 obs)

. keep if status=="M" | status=="NM"
(2521 observations deleted)

. generate status_numeric = (status=="M")
. txttool descpt, gen(descpt2) stopword("stopwordexample.txt") stem
(output omitted)

We can then quickly apply the dictionary from the previous example with the
screening command:

. screening, sources(descpt2) keys(fund new account bank implement adopt)
> cases(negcases)

. screening, sources(descpt2) keys(budget plan law ministri includ)
> cases(poscases)

yve tiien sCore tne 1oan desCriptions 11 tne data and tabulate tile results.

. egen totneg=rowtotal(negcasesx*)
. egen totpos=rowtotal(poscasesx*)

. summarize status_numeric if totpos>totneg

Variable Obs Mean Std. Dev. Min Max
status_num~c 926 .8650108 .3418967 0 1
. summarize status_numeric if totpos<totneg

Variable Obs Mean Std. Dev. Min Max
status_num-~c 1147 .81517 .3883289 0 1

The results indicate that our dictionary distinguishes met and unmet loan conditions
on the larger dataset. A logit model indicates that the counts of both positive and
negative words are statistically significant.

. logit status_numeric totneg totpos, nolog

Logistic regression Number of obs = 4028
LR chi2(2) = 9.14

Prob > chi2 = 0.0104

Log likelihood = -1785.4032 Pseudo R2 = 0.0026
status_nume~c Coef. Std. Err. z P>|z]| [95% Conf. Intervall
totneg -.1403654 .0575889 -2.44 0.015 -.2532375 -.0274932

totpos .1348363 .0675538 2.00 0.046 .0024333 .2672393

_cons 1.655704 .0602519 27.48 0.000 1.537613 1.773796

This example shows that screening can complement txttool by quickly applying
dictionaries and scoring text data. But txttool can also complement the screening
command, which can remove some special characters and matching keywords with vary-
ing numbers of letters (that is, not matching on the entirety of the keyword) to allow
for varying spellings and word endings. The cleaning routine in txttool, on the other
hand, is more comprehensive because it removes all special characters.

Furthermore, stemming can make screening’s matching keys more efficient by not
requiring fewer letters, thus matching the same words without introducing false posi-
tives with fewer letters. For example, to match the keyword “flag” with four letters,
screening will match instances of “flags” and “flagged” but will also introduce potential
false positives by matching instances of “flagpole”, “flagellate”, and “flagellum”. The
words “flag”, “flags”, and “flagged” all stem to the single stem “flag”, while “flagpole”,
“flagellate”, and “flagellum” do not. Therefore, using txttool to clean, stem, and
remove stop words from the text first can increase the accuracy and ease of matching.

.4 LALCIIDIUN LU Wiatld

Before version 13, Stata’s limit on the size of text variables placed some restrictions on
the types of text data that could be analyzed. However, Mata has no such limits on the
size of text and is therefore much more suitable for analyzing larger text data, including
longer open-ended survey responses, comment data, or even entire documents.

The options of txttool are written in Mata and can be used interactively in Mata
to analyze larger text fields. The options are available in the following Mata routines:

Table 1. Mata commands

Option Mata command
clean cleantxt (tztfield)
stem stemcolumn (tztfield)

stopwords() stopwords (tztfield, filename)
subwords () subwords (tztfield, filename)
bagwords wordbag (tzifield, prefix, touse)

Where tztfield is a column vector of text data, filename is a string scalar indicat-
ing the filename of a stop-word or subword list; prefiz is a string scalar indicating
the prefix attached to the word count variables created by bagwords; and touse is
a selection vector designating which observations to write to. In addition, the routine
porterstem(siring) can be used to stem words interactively or in user-written routines.
The porterstem() function returns only the stem of the string used as an argument;
for example, porterstem(articles) returns articl.

5 Conclusion

This article introduced the txttool command, a text data-management suite that in-
tegrates native Stata functionality for removing characters and substituting words into
a simple command to clean text and remove or substitute unwanted words. txttool
also adds an implementation of Porter’s stemming algorithm to reduce words to more
useful stems and as an option for creating variables to represent the counts of indi-
vidual unique words. The command is a useful foundation for text-mining tasks such
as creating dictionaries and predictive models based on word frequencies. In addition,
the command extends, and is extended by, the functionality of other text-management
commands such as screening.

v INCTICTICIILCO

Belotti, F., and D. Depalo. 2010. Translation from narrative text to standard codes
variables with Stata. Stata Journal 10: 458-481.

Benoit, K., M. Laver, and S. Mikhaylov. 2009. Treating words as data with error:
Uncertainty in text statements of policy positions. American Journal of Political
Science 53: 495-513.

Grimmer, J., and B. M. Stewart. 2013. Text as data: The promise and pitfalls of
automatic content analysis methods for political texts. Political Analysis 21: 267—
297.

Laver, M., K. Benoit, and J. Garry. 2003. Extracting policy positions from political
texts using words as data. American Political Science Review 97: 311-331.

Lowe, W., and K. Benoit. 2013. Validating estimates of latent traits from textual data
using human judgment as a benchmark. Political Analysis 21: 298-313.

Porter, M. F. 1980. An algorithm for suffix stripping. Program: Electronic library and
information systems 14: 130-137.

Raciborski, R. 2008. kountry: A Stata utility for merging cross-country data from
multiple sources. Stata Journal 8: 390-400.

About the authors

Unislawa Williams is an assistant professor of political science at Spelman College, Atlanta,
GA. Her research interests include international relations and forecasting.

Sean P. Williams is senior vice president at SunTrust Bank.

