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Abstract. This article describes txttool, a command that provides a set of

tools for managing free-form text. The command integrates several built-in Stata
functions with new text capabilities. These latter functions include a utility to
create a bag-of-words representation of text and an implementation of Porter’s
(1980, Program: Electronic library and information systems 14: 130-137) word-
stemming algorithm. Collectively, these utilities provide a text-processing suite
for text mining and other text-based applications in Stata.

Keywords: dm0077, txttool, text mining, Porter stemmer, bag of words, cleaning,
stop words, subwords

1 Introduction

Stata users recently introduced new commands for increasingly sophisticated manage-
ment of text data, in particular, screening and kountry (Belotti and Depalo 2010;
Raciborski 2008). As these authors note, while text data can be challenging to analyze,
they occur in many applications, including free-form electronic patient records, country
identifiers in international relations and economics datasets, and open-ended survey re-
sponses. In addition, text mining, or the quantitative analysis of unstructured text data,
has received increasing attention in the social sciences (Benoit, Laver, and Mikhaylov
2009; Lowe and Benoit 2013). These applications vary from categorizing and classifying
legislative speeches to evaluating Russian military discourse (Laver, Benoit, and Garry
2003; Grimmer and Stewart 2013).

Generally, Stata lacks the text-management utilities to prepare text data for these
kinds of applications. Although some steps in the data-preparation phase can be ac-
complished with built-in commands, using them can be tedious and can lead to errors.
For example, removing punctuation, extra white spaces, and special characters from
text could involve dozens of lines of code, and the code would need to be modified for
different situations. On the other hand, some steps in the data-preparation phase, such
as stemming words or representing instances of words as counts in numeric variables,
are not available in Stata at all.

The txttool command fills this gap by providing utilities for several text-prepara-
tion tasks:

1. Cleaning: removing punctuation, special characters, and extra white spaces from
text and converting it to lowercase.

© 2014 StataCorp LP dm0077



«. OLOPp-word removal: removing worads tilat occur too Irequently to dilscriiinate
outcomes or classes (that is, “the”, “of”, “and”, etc.) or user-specified words that
lead to better results in a particular context when removed.

3. Substitution: replacing large numbers of individual words to correct misspellings
or variations or to insert user-defined categories for words when analytically useful.

4. Stemming: an implementation of Porter’s (1980) stemming program that reduces
a word to a stem or a root. For example, the words “programs”, “programmed”,
and “programming” all reduce to the stem “program”. The stem is not always a
valid word, and it does not need to be. Rather, its purpose is to reduce the overall
word count by grouping closely related words into the same stem.

5. Bag of words: converting a string into both a list of the unique words found in the
string and a count of each unique word. This allows a variety of quantitative anal-
yses, including discriminate analysis, clustering, and the creation of dictionaries,
to represent different outcomes in other variables.

All of these features are described in more detail below. Afterward, extensions with
other programs and with Mata are discussed.

2 The txttool command

2.1 Syntax

txttool wvarname [if | [in], {generate(newvar) |replace} [stem
stopwords (filename) subwords (filename) bagwords prefix(string) noclean

nooutput ]

varname is the string variable containing the text to be processed.

2.2 Options

generate (newvar) creates a new variable, newvar, containing the processed text of
varname. The newvar will be a copy of varname that has been stemmed, has had
the stop words removed, has had words substituted, or has been cleaned, depending
on the other options specified. Either generate() or replace is required.

replace replaces the text in varname with text that has been stemmed, has had the
stop words removed, has had words substituted, or has been cleaned, depending on
the other options specified. Either generate() or replace is required.

stem calls the Porter stemmer implementation to stem all the words in varname.

stopwords (filename) indicates that the program should remove all instances of words
contained in filename. The filename is a list of words in a text file. Although a list of



Irequently used Engiisily words 15 suppliied witlh TXTTOoO0Ll, users Call use dllerent lists
of stop words in different applications by specifying different filenames. Stop-word
lists without punctuation are recommended.

subwords (filename) indicates that the program should substitute instances of words
in filename with another word in filename. The filename is a tab-delimited text
file, where the first column is the word to be replaced and the second column is
the substitute text. Users can use different lists of words to substitute in different
applications by specifying different filenames. Subword lists without punctuation
are recommended.

bagwords tells txttool to create a bag-of-words representation of the text in varname.
The bag-of-words representation consists of new variables, one for each unique word
in varname, with the count of the occurrences of each word. The new variables
are named with the convention prefiz_word, where prefir is optionally supplied by
the user, and word is the unique word in the text. The options generate() and
bagwords can be used together to represent the processed text as one column with
word counts.

prefix(string) supplies a prefix for the variables created in bagwords. The default
is prefix(w_). Supplying a prefix will automatically invoke the bagwords option.
Note that txttool does not know what variables will be created before processing
the text, so it cannot confirm the absence of variables already named with the
specified prefix. Errors will therefore result if the chosen prefix matches an existing
variable.

noclean specifies that the program should not remove punctuation, extra white spaces,
and special characters from varname. By default, txttool will clean and lowercase
varname. The noclean option is not allowed with bagwords. In addition, because
the Porter stemmer does not stem punctuation and because the stop-words and
subwords lists should not include punctuation, noclean should be used with caution.

nooutput suppresses the default output. By default, txttool reports the total number
of words and the count of unique words before and after processing, as well as the
time elapsed during processing. The nooutput option suppresses this output, which
can save some time with large processing tasks.

2.3 Remarks

The options are processed in the following order: noclean, subwords(), stopwords(),
stem, generate() or replace, and, finally, bagwords. Thus the noclean option is
examined first, and if it is not specified, punctuation and special characters are removed.
Then subwords are substituted and stop words removed; the remaining text is stemmed
or bagged. The Porter stemmer algorithm does not recognize punctuation or non-
English characters, and Stata does not allow variable names with punctuation and
non-English characters, so cleaning must precede stemming and bagging.



bHecause Cleaning comes I11rst, the user-aclined I11sts 10 subworas\) and stopworas\)
are most effective when they are themselves “cleaned”. Otherwise, they may reintro-
duce punctuation and other characters after cleaning. The noclean option allows users
to process subwords() and stopwords() without first cleaning the original text, if
this is required in a particular instance. However, a more effective approach is clean-
ing the stop-word and subword lists by reading the lists into Stata and processing the
lists with txttool stopwordlist, gen(stopwordlist2) and txttool subwordlist,
gen(subwordlist2) to obtain word lists that have had any punctuation and special
characters removed. These lists can then be exported as text files to use in later appli-
cations with txttool.

The program’s default behavior is to remove all characters except white space (Amer-
ican standard code for information interchange [ASCII] code 32), numerals (ASCII codes
48-57), and letters (ASCII codes 97-122 after lowercasing). Therefore, the default
behavior is to remove punctuation, non-English characters, and nonprinting charac-
ters. Removing these characters is assumed by the Porter stemmer, which was created
for English, and necessary for creating new variables of the unique words with the
bagwords option because Stata does not allow special characters in variable names.
While bagwords is not allowed with noclean, the txttool command allows the stem
option when noclean is specified, although the stemmer may not function as expected,
so users should examine the results carefully. Analysis of non-English text can still use
the stopwords (), subwords (), generate (), and replace options even if noclean must
be specified to accommodate the characters in a particular language.

3 Examples

3.1 Examples of options usage

Imagine we have text data in the form of open-ended answers to a survey on voter
attitudes.

. use example_text
. list

txtexample

[y

Unemployment is the major issue, but no one’s talking about it
I've been looking and looking but i still can’t find a job
3. I hear a lot of talk about the ecomony improving

N

It is best to show how to prepare the text for analysis step by step. First, cleaning
removes punctuation and any special characters and lowercases the text.

. txttool txtexample, gen(cleaned)
Input: 28 unique words, 33 total words
Output: 27 unique words, 33 total words
Total time: .453 seconds



1 1NE researcier may wisilt 1o us€ a preexisting coding scneime ald group terims such
as “unemployment” and “jobs” into one term such as “employment.” In addition, the
researcher may correct common misspellings in a particular context, for example, replac-
ing “ecomony” with “economy” in the third observation. Note also that the subword
option can substitute phrases for words so that, for example, contractions in the text can
be expanded. The researcher may define the subword list as the following tab-delimited
text file:

unemployment employment
job employment
ecomony economy

ive i have

Using this list of substitutions produces the following text:

. txttool txtexample, gen(subbed) subwords("subwordexample.txt")
(output omitted )
. list subbed

subbed

[y

employment is the major issue but no ones talking about it
i have been looking and looking but i still cant find a employment
3. i hear a lot of talk about the economy improving

N

The stopwords () option will remove user-defined words. The txttool program is
packaged with a list of common English words and contractions to be removed. Common
words such as “I”, “of”, etc., generally have little discriminating power but increase
memory requirements. Using the packaged list of stop words produces

. txttool txtexample, gen(stopped) subwords("subwordexample.txt")
> stopwords ("stopwordexample.txt")

(output omitted )
. list stopped

stopped
1. employment major issue talking
2. looking looking still find employment

3. hear lot talk economy improving




OLeIMmiIng tne text rurtier reauces tne words by removing all but tne wora steins.

. txttool txtexample, gen(stemmed) subwords("subwordexample.txt")
> stopwords ("stopwordexample.txt") stem

(output omitted )

. list stemmed

stemmed
1. employ major issu talk
2. look look still find employ
3. hear lot talk economi improv

Note that “talking” and “employment” are now reduced to “talk” and “employ”, re-
spectively. Finally, the text is “bagged”, and a variable with the prefix "w_" is produced
for each remaining word, along with the count of the word in each line of text.

. txttool txtexample, gen(bagged) subwords("subwordexample.txt")
> stopwords ("stopwordexample.txt") stem bagwords prefix(w_)

. list w_*

w_employ w_major w_issu w_talk w_look w_still w_find
1. 1 1 1 1 0 0 0
2. 1 0 0 0 2 1 1
3. 0 0 0 1 0

w_hear w_lot w_econ~i w_improv
1. 0 0 0 0
2. 0 0 0 0
3. 1 1 1 1

3.2 Creating a dictionary

One practical text-mining task is creating a dictionary for specific values of a variable. A
dictionary is a list of words, phrases, parts of speech, or other tokens that distinguish one
value of a variable from another. In a customer-relationship management application,
for example, a researcher may have data on products that customers returned as well as
customer descriptions of the products. Using the customer descriptions, the researcher
can find the words or phrases that distinguish returned and unreturned products. The
list of words can then be studied to see what aspects of product design or manufacture
lead to returns; it can also be used to “tag” future customer descriptions to track trends
or used in a predictive model to classify large numbers of descriptions of competitors’
products. Similar applications can be made to any text data with an associated outcome
of interest.
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we will use the International Monetary Fund’s monitoring of fund arrangements data
on loan terms. The data include the International Monetary Fund’s description of the
conditions that a borrowing government must meet to maintain funding as well as a
status variable that describes whether the country met the condition. We are specifically
interested in the kinds of loan conditions that borrowers have the most difficulty meeting,
which is a task for dictionary creation.! We set up the data as follows:

. import delimited using "Mona.csv", clear
(20 vars, 6549 obs)

. keep if status=="M" | status=="NM"
(2521 observations deleted)

. set seed 1234

. sample 500, count
(3528 observations deleted)

To begin, we assess how many unique words and total words are contained in the
description of the loan conditions, named descpt.

. txttool descpt, gen(testl)

Input: 2798 unique words, 9706 total words
Output: 2095 unique words, 9707 total words
Total time: .896 seconds

After cleaning, 2,095 unique words remain out of 9,707 total words in only 500
descriptions of loan conditions. This is obviously a large number of words to parse by
reading. We use the example list of packaged stop words with txttool to reduce the
word count.

. txttool descpt, gen(test2) stopword("stopwordexample.txt")
Input: 2798 unique words, 9706 total words

Output: 2021 unique words, 6188 total words

Total time: .996 seconds

Adding the stem option further reduces the word count.

. txttool descpt, gen(test3) stopword("stopwordexample.txt") stem
Input: 2798 unique words, 9706 total words

Output: 1552 unique words, 6188 total words

Total time: 1.35 seconds

Thus, of the original 2,798 unique words, 703, or 25%, were removed (or made
nonunique) through cleaning; another 74, or 3%, were removed with stop-word removal;
and another 469, or 17%, were removed through stemming. Though greatly reduced,
the new text description is still too large for manual parsing. By bagging the words,
we create 1,552 new variables, one for each unique word, and we can turn to numeric
methods.

. txttool descpt, gen(descpt2) stopword("stopwordexample.txt") stem bagwords
> prefix(w_)

(output omitted )

1. The data are available at http://www.imf.org/external /np/pdr/mona/index.aspx.
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were met (status=="M") from those that were not met (status=="NM"). Although
there are many ways to determine this, a simple approach is to use correlations between
each word and the status variable. A loop through the word counts can list the words
with particularly high or statistically significant correlations. Given the tabular nature
of the data, we use tau-b correlations. Also we want to select only words that occur
frequently enough that they can potentially describe more than one instance of meeting
or failing to meet a condition, so we choose words that occur in at least 5% of the total
words. The loop then outputs the words and the correlations.

. generate status_numeric = (status=="M")

. quietly foreach x of varlist w_* {
2. summarize “x°, meanonly

if r(mean) > .05 {

tab "x° status_numeric, all

if abs(r(taub)) >.05 {

noisily display " x"" r(taub)

oUW

}

Note that positive correlations are associated more often with met conditions, while
negative correlations distinguish the unmet conditions.

w_budget.08594184
w_plan.06356041
w_law.05894236
w_fund-.07997933
w_new-.06189476
w_account-.05247162
w_ministri.05705297
w_bank-.06719572
w_includ.06220605
w_implement-.07452835
w_adopt-.05802378

Some of the terms uncovered by the procedure, such as “budget”, “plan”, and “law”,
are especially associated with met rather than unmet conditions. We can understand
why by inspecting a few of the loan conditions with a particular word:

. list descpt if w_law>0

descpt
4. Revocation of amendments to Article 5(3) of the Anti-Money Laundering..
26. Fiscal impact assessments evaluating the budgetary impact of all new ..
28. Passage by Parliament of a new Law on Labor Relations

(output omitted )
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not met as often, especially those involving funding of programs (“fund”), accounting
(“account”), central banking (“bank”), and following through on new programs (“im-
plement”, “adopt”). In fact, creating anything “new” seems to be a hard condition to
meet, given the word’s relatively high correlation with NM status. The means show that
the word “new” appears almost twice as often in conditions that were not met versus
those that were met.

. summarize w_new if status=="M"

Variable Obs Mean Std. Dev. Min Max
w_new 419 .0692124 .2633645 0 2

. summarize w_new if status=="NM"
Variable Obs Mean Std. Dev. Min Max
w_new 81 .1111111 .3162278 0 1

While we investigate the findings provided through the dictionary, we need to de-
termine how well the dictionary distinguishes met and unmet conditions. To do so, we
can use a simple linear discriminant analysis.

. discrim lda w_budget w_plan w_law w_fund w_new w_account w_ministri w_bank

> w_includ w_implement w_adopt, group(status_numeric)

Linear discriminant analysis
Resubstitution classification summary

Key
Number
Percent
True Classified
status_numer
ic 0 1 Total
0 38 43 81
46.91 53.09 100.00
1 105 314 419
25.06 74.94 100.00
Total 143 357 500
28.60 71.40 100.00
Priors 0.5000 0.5000

The results show that the dictionary does a respectable job at discriminating the
outcomes, including finding 38 of the 81 cases of unmet conditions. In further research,
loan conditions can be tagged with the dictionary words to score their difficulty, and
they can be used in more comprehensive models of a borrower’s conformance that could

include economic conditions, political relations, and other factors.
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limits on the minimum mean, different thresholds for significance, different correlations,
and so on, will likely produce different results. Producing a workable dictionary requires
several trials using different methods and validations before a researcher can find the
best balance of discriminatory power, number of words, and insight. However, these
trials are made easier with tools that appropriately reduce and represent the text.

4 Extensions

4.1 Extension with screening

Two commands, kountry and screening (Belotti and Depalo 2010; Raciborski 2008),
offer powerful text data-management capabilities by performing the tagging operation
previously described; that is, they apply a coding scheme against text variables. The
articles describe examples of using this procedure to standardize country codes (in the
case of kountry) or to apply standardized medical codes to electronic patient records
(in the case of screening).

These commands are natural extensions of the dictionary-creation capabilities cre-
ated by txttool. The bagwords option can be used to apply a dictionary and create it
by simply counting the words in the dictionary found in the bagwords counts. However,
with large datasets, bagging the words can bring substantial computational overhead to
an otherwise straightforward problem of counting the occurrences of particular words.

The screening program provides a very convenient way to address the same problem
without the additional computational overhead. Returning to the example in section 3.2,
we identified a list of five words that were positively correlated with status (those that
identified loan conditions that were easier for countries to meet) and six words that were
negatively correlated with status (those conditions that were more difficult to meet).
First, we prepare the data:

. import delimited using "Mona.csv", clear
(20 vars, 6549 obs)

. keep if status=="M" | status=="NM"
(2521 observations deleted)

. generate status_numeric = (status=="M")
. txttool descpt, gen(descpt2) stopword("stopwordexample.txt") stem
(output omitted )

We can then quickly apply the dictionary from the previous example with the
screening command:

. screening, sources(descpt2) keys(fund new account bank implement adopt)
> cases(negcases)

. screening, sources(descpt2) keys(budget plan law ministri includ)
> cases(poscases)
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. egen totneg=rowtotal(negcasesx*)
. egen totpos=rowtotal(poscasesx*)

. summarize status_numeric if totpos>totneg

Variable Obs Mean Std. Dev. Min Max
status_num~c 926 .8650108 .3418967 0 1
. summarize status_numeric if totpos<totneg

Variable Obs Mean Std. Dev. Min Max
status_num-~c 1147 .81517 .3883289 0 1

The results indicate that our dictionary distinguishes met and unmet loan conditions
on the larger dataset. A logit model indicates that the counts of both positive and
negative words are statistically significant.

. logit status_numeric totneg totpos, nolog

Logistic regression Number of obs = 4028
LR chi2(2) = 9.14

Prob > chi2 = 0.0104

Log likelihood = -1785.4032 Pseudo R2 = 0.0026
status_nume~c Coef. Std. Err. z P>|z]| [95% Conf. Intervall
totneg -.1403654 .0575889 -2.44 0.015 -.2532375  -.0274932

totpos .1348363 .0675538 2.00 0.046 .0024333 .2672393

_cons 1.655704 .0602519 27.48  0.000 1.537613 1.773796

This example shows that screening can complement txttool by quickly applying
dictionaries and scoring text data. But txttool can also complement the screening
command, which can remove some special characters and matching keywords with vary-
ing numbers of letters (that is, not matching on the entirety of the keyword) to allow
for varying spellings and word endings. The cleaning routine in txttool, on the other
hand, is more comprehensive because it removes all special characters.

Furthermore, stemming can make screening’s matching keys more efficient by not
requiring fewer letters, thus matching the same words without introducing false posi-
tives with fewer letters. For example, to match the keyword “flag” with four letters,
screening will match instances of “flags” and “flagged” but will also introduce potential
false positives by matching instances of “flagpole”, “flagellate”, and “flagellum”. The
words “flag”, “flags”, and “flagged” all stem to the single stem “flag”, while “flagpole”,
“flagellate”, and “flagellum” do not. Therefore, using txttool to clean, stem, and
remove stop words from the text first can increase the accuracy and ease of matching.
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Before version 13, Stata’s limit on the size of text variables placed some restrictions on
the types of text data that could be analyzed. However, Mata has no such limits on the
size of text and is therefore much more suitable for analyzing larger text data, including
longer open-ended survey responses, comment data, or even entire documents.

The options of txttool are written in Mata and can be used interactively in Mata
to analyze larger text fields. The options are available in the following Mata routines:

Table 1. Mata commands

Option Mata command
clean cleantxt (tztfield)
stem stemcolumn (tztfield)

stopwords() stopwords (tztfield, filename)
subwords () subwords (tztfield, filename)
bagwords wordbag (tzifield, prefix, touse)

Where tztfield is a column vector of text data, filename is a string scalar indicat-
ing the filename of a stop-word or subword list; prefiz is a string scalar indicating
the prefix attached to the word count variables created by bagwords; and touse is
a selection vector designating which observations to write to. In addition, the routine
porterstem(siring) can be used to stem words interactively or in user-written routines.
The porterstem() function returns only the stem of the string used as an argument;
for example, porterstem(articles) returns articl.

5 Conclusion

This article introduced the txttool command, a text data-management suite that in-
tegrates native Stata functionality for removing characters and substituting words into
a simple command to clean text and remove or substitute unwanted words. txttool
also adds an implementation of Porter’s stemming algorithm to reduce words to more
useful stems and as an option for creating variables to represent the counts of indi-
vidual unique words. The command is a useful foundation for text-mining tasks such
as creating dictionaries and predictive models based on word frequencies. In addition,
the command extends, and is extended by, the functionality of other text-management
commands such as screening.
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