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Abstract. In this article, we discuss the implementation of Andrews’s (1988a,
Journal of Econometrics 37: 135–156; 1988b, Econometrica 56: 1419–1453) chi-
squared goodness-of-fit test as a postestimation command. The new command
chi2gof reports the test statistic, its degrees of freedom, and its p-value. chi2gof
can be used after the poisson, nbreg, zip, and zinb commands.

Keywords: st0360, chi2gof, Andrews’s chi-squared goodness-of-fit test, m-tests,
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1 Introduction

In empirical work, one often fits a model using alternative specifications and then con-
centrates on the coefficient estimates supported by a goodness-of-fit test (thus ignoring
estimates not supported by the test). This practice reflects the use of the goodness-of-fit
test to detect specification errors in a model. Goodness-of-fit tests can also be used in
model comparison and selection. As Cameron and Trivedi (2013, 225) explain, “compet-
ing models [. . .] are compared and evaluated using model diagnostics and goodness-of-fit
measures”.

One of these goodness-of-fit tests is the Pearson chi-squared test (see, for exam-
ple, Cameron and Trivedi [2005, 266] for details). This is implemented in Stata as the
postestimation command estat gof following use of the logit, logistic, probit, and
poisson commands.1 By typing estat gof after logit, logistic, probit, or poisson,
one obtains the χ2-statistic of the test and its p-value (as well as the number of observa-
tions and the number of covariate patterns). Alternatively, the group(#) option results
in analogous output for the related Hosmer–Lemeshow test (see Hosmer and Lemeshow
[1980]; and Hosmer, Lemeshow, and Sturdivant [2013]).

However, the Pearson and Hosmer–Lemeshow tests assume that the estimated coef-
ficients are known. To control for the potential estimation error, Cameron and Trivedi
(2010) suggest using the chi-squared diagnostic test developed by Andrews (1988a,b).
This chi-squared goodness-of-fit test generalizes Pearson’s chi-squared test by compar-
ing the sample relative frequencies of the dependent variable with the predicted fre-

1. Structural modeling (sem) and survey data (svy:) are other areas of application of this test that
are supported by Stata.

c© 2014 StataCorp LP st0360
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quencies from the model using a quadratic form and an estimate of the asymptotic
variance of the corresponding population moment condition. Unlike Pearson’s test (or
the Hosmer–Lemeshow test), the chi-squared goodness-of-fit test can be constructed
from any regular asymptotically normal estimator of the conditional expectation of the
dependent variable. However, this m-test is not yet available in Stata.2

In this article, we discuss the implementation of the chi-squared goodness-of-fit test
in count-data models as a postestimation command. chi2gof reports the test statistic,
its degrees of freedom, and its p-value when used after the poisson, nbreg, zip, and
zinb commands. As an option, the command produces a table with the cells, absolute
frequencies, relative frequencies, predicted frequencies, and absolute differences between
actual and predicted frequencies.

2 Statistical basis for the chi-squared goodness-of-fit test

2.1 The chi-squared goodness-of-fit test

Let’s consider a model given by fpy|w,θq, with the conditional density of the variable
of interest (y) given a set of covariates (w) and a vector of parameters (θ).3 We are
particularly interested in the conditional density of the Poisson, the negative binomial
(NB), the zero-inflated Poisson (ZIP), and the zero-inflated negative binomial (ZINB)
models. Thus w “ x in the Poisson and NB models and w “ px, zq in the inflated
versions (that is, z is the set of covariates used in the inflated part of the model). Also
let J be the number of (mutually exclusive) cells in which the range of the dependent
variable yi is partitioned (i “ 1, . . . , N). Finally, let dijpyiq “ 1pyi P jq be an indicator
variable that takes value 1 if observation i belongs to cell j and 0 otherwise.

If the model is correctly specified, then

Etdijpyiq ´ pijpwi,θqu “ 0 (1)

where pijpwi,θq is the probability that observation i falls in cell j according to fpy|w,θq.
In particular, stacking all J moments in vector notation, (1) becomes

Etdipyiq ´ pipwi,θqu “ 0

Given a sample analog

pmN

´
pθ
¯

“ 1

N

Nÿ

i“1

!
dipyiq ´ pi

´
wi, pθ

¯)

2. According to Cameron and Trivedi (2010, 266), “m-tests such as conditional moment tests are tests
of whether moment conditions imposed by a model are satisfied” and “are a general specification
testing procedure that encompasses many common specification tests”.

3. This subsection is largely based on Greene (1994) and Cameron and Trivedi (2005, 2013).
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the chi-squared goodness-of-fit test statistic of Andrews (1988a,b) is

N pm1
N

´
pθ
¯
pV´1 pmN

´
pθ
¯

(2)

where V is a variance–covariance matrix given by
?
N pmN ppθq Ñ Np0,Vq.

Under the null hypothesis that the moment condition (1) holds, the chi-squared
goodness-of-fit test statistic is asymptotically χ2 distributed with rankpVq degrees of
freedom. However, V may not be of full rank. The rank is usually J ´ 1 because
the sum of the probabilities over all J cells is 1. Moreover, the computation of this
variance–covariance matrix is often complicated.

This is why, when the maximum likelihood (ML) estimation is used, it is the outer
product of the gradient form of the test that is usually computed. This is N times the
(uncentered) R2 of the following auxiliary regression,

1 “ pmiδ ` psiγ ` ui

where 1 is a column vector of N , pmi includes dijpyiq ´ pijpwi, pθ
ML

q for j “ 1, . . . , J ´ 1
(the last column of di ´ pi has been dropped), and psi “ tB log fpyi|wi,θqu{pBθq|

θ“pθML

is the matrix of contributions to the score evaluated at the ML estimate of θ. It is easy
to see that the test statistic

N ˆ R2 “ 11HpH1Hq´1H11

whereHi “ r pmi,psis is the ith row of matrixH. This asymptotically equivalent version of
(2) is used in the chi2gof command. Under the null hypothesis of correct specification
of the model, this statistic asymptotically follows a χ2 distribution with J ´ 1 degrees
of freedom.

To conclude this section, we provide details of the computation of this test regarding
both the predicted probabilities (pij) and the scores (psi).

2.2 Predicted probabilities

Let µi “ exiβ be the conditional expectation of the Poisson model. This model predicts
that the probability that the variable of interest takes the value t is

Prpyi “ tq “ eµiµt
i

t!
“ PP ptq

Let Γp¨ q be the gamma function (see, for example, Cameron and Trivedi [2013, 505–
506] for details). The predicted probabilities of the NB model with conditional variance
µ ` αµ2 are

Prpyi “ tq “
Γ
`
t ` α´1

˘

Γ pt ` 1qΓ pα´1q

ˆ
1

1 ` µiα

˙α´1 ˆ
µiα

1 ` µiα

˙t

“ PNBptq
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Also let’s denote the distribution function used in the inflated versions of the Poisson
and NB models by ϕ. Stata currently supports two functions—the logit and the probit.
Thus

ϕi “ ϕpzi,γq “

$
’’&
’’%

Λpz1
iγq “ ez

1
i
γ

1`e
z

1
i
γ

in the logit case

Φpz1
iγq “

şz1
iγ

´8
1?
2π

e´ u2

2 du in the probit case

Finally, if we denote an indicator function that takes value 1 if the condition in
brackets is true and 0 otherwise by 1p¨ q, then the predicted probabilities of the ZIP and
NB regression models can be, respectively, expressed as follows:

Prpyi “ tq “ 1pt “ 0qϕi ` p1 ´ ϕiqPP ptq

and
Prpyi “ tq “ 1pt “ 0qϕi ` p1 ´ ϕiqPNBptq

2.3 Scores

The individual contribution to the likelihood function in the models considered is

f pyi|xi,θq “ g pyiq “

$
&
%

fpyi|xi,βq “ PP pyiq in the Poisson model

fpyi|xi,β, αq “ PNBpyiq in the NB model

and
fpyi|xi, zi,θq “ 1 pyi “ 0qϕi ` p1 ´ ϕiq g pyiq in the inflated versions

Thus the first derivative of the likelihood function in the Poisson model with respect
to the parameters of interest, θ “ β, is

si “ B log fpyi|xi,βq
Bβ “ xi pyi ´ µiq

whereas the first derivative of the likelihood function in the NB model with respect to
the parameters of interest, θ “ pβ, αq, is

si “

$
’&
’%

B log fpyi|xi,β,αq
Bβ

B log fpyi|xi,β,αq
Bα

,
/.
/-

“

»
———–

xi

´
yi´µi

1`αµi

¯

1
α2

"
logp1 ` µiαq ´

y´1ř
t“0

1
t`α´1

*
` yi´µi

αp1`µiαq

fi
ffiffiffifl
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In the inflated versions of these models, fpyi|xi, zi,θq “ fpyi|xi, zi,β,γq for the
Poisson and fpyi|xi, zi,θq “ fpyi|xi, zi,β,γ, αq for the NB. Therefore, the first deriva-
tive of the likelihood function with respect to the parameters of interest can be written
as

si “

$
’’’’’&
’’’’’%

B log fpyi|xi,zi,θq
Bβ

B log fpyi|xi,zi,θq
Bγ

B log fpyi|xi,zi,θq
Bα

,
/////.
/////-

“

$
’’’’’&
’’’’’%

p1´ϕiq
fpyi|xi,zi,θq

Bgpyiq
Bβ

1pyi“0qϕ1
i´ϕ1

igpyiq
fpyi|xi,zi,θq

p1´ϕiq
fpyi|xi,zi,θq

Bgpyiq
Bα

,
/////.
/////-

where

Bg pyiq
Bβ “

$
’&
’%

PP pyiqxi pyi ´ µiq in the ZIP model

PNB pyiqxi

´
yi´µi

1`αµi

¯
in the ZINB model

ϕ1
i “ Bϕi

Bγ “

$
’’’&
’’’%

zi
ez

1
i
γ

´
1`e

z
1
i
γ
¯
2 in the logit case

zi
1?
2π

e´ pz1
i
γq2
2 in the probit case

and, in the case of the ZINB model,

Bg pyiq
Bα “ PNB pyiq

«
1

α2

#
logp1 ` µiαq ´

y´1ÿ

t“0

1

t ` α´1

+
` yi ´ µi

αp1 ` µiαq

ff

(Notice that this derivative is not needed in the ZIP model because α “ 0.)

3 The chi2gof command

3.1 Syntax

chi2gof, cells(numlist)
“
prcount table

‰

3.2 Options

cells(numlist) specifies a set of ascending integers greater than or equal to zero that
determines the (mutually exclusive) cells in which the range of the dependent variable
is partitioned to compute the test. cells() is required.

In principle, any partition of the dependent variable can be used (Andrews 1988b).
For example, if 3 cells are chosen, the following partitions can be used: t0, 1, 2, 3u,
t4, 5u, and t6, 7, . . . ,8u; t0, 1u, t2, 3, 4, 5u, and t6, 7, . . . ,8u; t0, 1, 2, 3, 4, 5u, t6u, and
t7, 8, . . . ,8u; etc. Thus chi2gof allows partitions with both single-value elements
(except for the last cell) and multiple-value elements. In the first case, numlist is the
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number of cells chosen by the user; in the second case, numlist is a set of integers
that corresponds to the upper limits of the intervals considered.

• Choosing the number of cells involves using partitions like t0u and t1, 2, 3, . . . ,8u
when cells(2); t0u, t1u, and t2, 3, . . . ,8u when cells(3); t0u, t1u, t2u, and
t3, 4, . . . ,8u when cells(4); and so on. In general, for cells(J), the partition
that chi2gof uses is t0u, t1u, t2u, . . . , tJ ´ 2u, and tJ ´ 1, . . . ,8u.

• Choosing the upper limits of the intervals involves using partitions like r0, 1s,
r2, 5s, and r6,8q when cells(1 5); r0, 3s, r4, 4s, r5, 9s, and r10,8q when cells(3

4 9); and r0, 0s, r1, 1s, r2, 2s, r3, 3s, and r4,8q when cells(0 1 2 3). In gen-
eral, for cells(a0 a1 . . . aJ´2), the partition that chi2gof uses is r0, a0s, ra0 `
1, a1s, . . . , raJ´3 ` 1, aJ´2s, and raJ´2 ` 1,8q.

Notice that cells(0 1 2 . . . J ´ 2) is equivalent to cells(J). Notice also that to
construct the partition, one must select an integer 2 or more for the number of cells
J. However, the chosen number should prevent cell frequencies from getting too small
(Cameron and Trivedi 2005, 2013). Thus users should look at the distribution of the
dependent variable to ensure that cells do not have zero or very few observations.
Users should also try using alternative values around the number of cells initially
chosen.

prcount calculates the probability that according to the model, a particular value of
the dependent variable belongs to one of the defined cells. By default, the command
calculates these predicted probabilities (or predicted frequencies) using the definition
of the conditional density of the dependent variable (direct). These probabilities
can also be computed using the command prcounts of Long and Freese (2001).
Results are generally the same when using either command. However, differences
occur when the number of counts is high, particularly if the ZINB model is used.
In this case, an error message results stating “Missing values encountered when

prcount option is used (try direct option)”.4

table produces a table with the absolute and relative frequencies of each defined cells,
the mean fitted value of the relative frequencies (that is, the mean value of the pre-
dicted probabilities for each individual of each of the defined cell), and the absolute
differences between actual and predicted frequencies. This can be useful in assessing
the adequacy of the partition of the dependent variable being used. This may help
to detect cells with too few observations. Also the table may help identify the source
of misspecification. In the Poisson model, for example, big absolute differences in
the zero value may indicate overdispersion.

4. Notice also that the statistic may not be computed for the ZINB model if the α parameter is
too small. If it is, an error message states that a Problem with alpha prevents estimation of

predicted probabilities (alpha too small). In practice, this does not happen often because
of the use of the lngamma() function. Ultimately, both error messages occur because of the large
numbers that the lngamma() function generates (see section 2).
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Note that, as expression (2) shows, we can interpret the absolute differences between
actual and predicted frequencies as the approximate contribution of each cell to the chi-
squared goodness-of-fit test (the exact contribution being a quadratic form in V). Also
each cell contributes the absolute differences between actual and predicted frequencies
divided by the root of the predicted frequencies (the so-called Pearson residuals) to the
chi-squared goodness-of-fit test whenV is a diagonal matrix of the predicted frequencies.
In this case, the chi-squared goodness-of-fit test becomes Pearson’s chi-squared test.
However, this is not the case in the count-data models considered here, nor is it in most
regression applications (the multinomial logit model being an exception). This is why
Pearson’s residuals are generally not useful when analyzing the chi-squared goodness-
of-fit test.

3.3 Stored results

chi2gof stores the following in r():

Scalars
r(chi2gof) chi-squared test statistic
r(dof chi2gof) degrees of freedom
r(p chi2gof) p-value

4 Examples

In applications, the model should be suspected of being misspecified (that is, the model
moment conditions are not satisfied) if the resulting test is statistically significant.
Otherwise, there is no evidence of misspecification in the model. We illustrate this
using the four examples below, in which we show the use of the new command and the
interpretation of its output in different settings.

Given the illustrative purpose of this section, we closely follow the sources of the
examples (Cameron and Trivedi 2010, 2013) when describing the data and discussing
the possible misspecification of the proposed models. We contribute by merely analyzing
the results of the chi-squared goodness-of-fit test. We do not address the reasons behind
the possible misspecification of the models.

In the first example, we replicate results from chapter 5 of Cameron and Trivedi
(2013). In the second example, we replicate and extend results reported in chapter 6 of
Cameron and Trivedi (2013). In the third and fourth examples, we replicate and extend
results from chapter 17 of Cameron and Trivedi (2010). For all examples, we report the
output resulting from both the estimation command (poisson, nbreg, zip, or zinb)
and the new command (chi2gof). In the first and second examples, we also report
a table with the cells, absolute frequencies, relative frequencies, predicted frequencies,
and absolute differences between actual and predicted frequencies (option table).

Our results seem to confirm the original authors’ conclusions in respect to the poor
fit of the ZIP and the ZINB models in the second example. In the third example, the
NB2 model provides a similar fit (in terms of information criteria) to more complex
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models such as the NB2 hurdle and the NB2 with a finite mixture. However, the chi-
squared goodness-of-fit test suggests that the NB2 model is misspecified. In the fourth
example, our results seem to confirm the authors’ doubts about the NB2 model being
outperformed by its inflated version (ZINB).

4.1 Example 1

The first application we consider here is the analysis of the determinants of takeover bids
done by Cameron and Trivedi (2013), which uses a sample of 126 U.S. firms taken over
between 1978 and 1985. The dependent variable is the number of bids received by the
firm after the initial tender offer (numbids), while covariates include defensive actions
taken by the management of the firm (leglrest, realrest, finrest, and whtknght),
firm-specific characteristics (bidprem, insthold, size, and sizesq), and intervention
by federal regulators (regulatn). The relation between the dependent and explanatory
variables is fit using the Poisson regression model.

. infile docno weeks numbids takeover bidprem insthold size leglrest realrest
> finrest regulatn whtknght sizesq constant using
> http://cameron.econ.ucdavis.edu/racd/racd5.asc
(126 observations read)

. poisson numbids leglrest realrest finrest whtknght bidprem insthold size
> sizesq regulatn, nolog

Poisson regression Number of obs = 126
LR chi2(9) = 33.25
Prob > chi2 = 0.0001

Log likelihood = -184.94833 Pseudo R2 = 0.0825

numbids Coef. Std. Err. z P>|z| [95% Conf. Interval]

leglrest .2601464 .1509594 1.72 0.085 -.0357286 .5560213
realrest -.1956597 .1926309 -1.02 0.310 -.5732093 .1818899
finrest .0740301 .2165219 0.34 0.732 -.3503452 .4984053

whtknght .4813822 .1588698 3.03 0.002 .170003 .7927613
bidprem -.6776958 .3767372 -1.80 0.072 -1.416087 .0606956

insthold -.3619912 .4243292 -0.85 0.394 -1.193661 .4696788
size .1785026 .0600221 2.97 0.003 .0608614 .2961438

sizesq -.0075693 .0031217 -2.42 0.015 -.0136878 -.0014509
regulatn -.0294392 .1605682 -0.18 0.855 -.344147 .2852686

_cons .9860598 .5339201 1.85 0.065 -.0604044 2.032524
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. chi2gof, cells(6) table

Chi-square Goodness-of-Fit Test for Poisson Model:

Chi-square chi2(5) = 48.66
Prob>chi2 = 0.00

Fitted
Cells Abs. Freq. Rel. Freq. Rel. Freq. Abs. Dif.

0 9 .0714 .2132 .1418
1 63 .5 .2977 .2023
2 31 .246 .2327 .0134
3 12 .0952 .1367 .0414
4 6 .0476 .068 .0204

5 or more 4 .0397 .0517 .012

From these results, reported on pages 185 and 195–196 of their book, Cameron
and Trivedi (2013, 196) “[c]onclude that the Poisson is an inadequate fully parametric
model, due to its inability to model the relatively few zeros in the sample”. The table
with the absolute and relative frequencies of each defined cell, the mean fitted value
of the relative frequencies, and the absolute differences between actual and predicted
frequencies that we report using the option table clarifies this. It is also interesting to
note that “none of the earlier diagnostics [they performed], such as residual analysis,
detected this weakness of the Poisson estimates” (Cameron and Trivedi 2013, 196).

4.2 Example 2

The second application we consider is Cameron and Trivedi’s (2013) analysis of the
determinants of the number of recreational boating trips to Lake Somerville, Texas,
in 1980 (trips). Covariates include a subjective quality index of the facility (so), a
dummy variable to indicate the practice of water-skiing at the lake (ski), the household
income of the head of the group (i), a dummy variable to indicate whether the user
paid a fee (fc3), dollar expenditure when visiting Lake Conroe (c1), dollar expenditure
when visiting Lake Somerville (c3), and dollar expenditure when visiting Lake Houston
(c4). In this analysis, they discuss different models (including finite mixtures and hurdle
types of the Poisson and the NB models) and goodness-of-fit measures (the G2 statistic,
the pseudo-R2, etc.). However, here we limit the reported results to the Poisson, NB2,
ZIP, and ZINB estimates as well as to the chi-squared goodness-of-fit test.
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. infile trips so ski i fc3 c1 c3 c4 using
> http://cameron.econ.ucdavis.edu/racd/racd6d2.asc, clear
(659 observations read)

. poisson trips so ski i fc3 c1 c3 c4, nolog

Poisson regression Number of obs = 659
LR chi2(7) = 2543.90
Prob > chi2 = 0.0000

Log likelihood = -1529.4313 Pseudo R2 = 0.4540

trips Coef. Std. Err. z P>|z| [95% Conf. Interval]

so .4717259 .0170905 27.60 0.000 .4382291 .5052227
ski .4182137 .0571905 7.31 0.000 .3061224 .5303051

i -.1113232 .0195885 -5.68 0.000 -.1497159 -.0729304
fc3 .8981652 .0789854 11.37 0.000 .7433567 1.052974
c1 -.0034297 .0031178 -1.10 0.271 -.0095405 .0026811
c3 -.0425364 .0016703 -25.47 0.000 -.0458102 -.0392626
c4 .0361336 .0027096 13.34 0.000 .0308229 .0414444

_cons .2649934 .0937224 2.83 0.005 .0813009 .4486859

. chi2gof, cells(6) table

Chi-square Goodness-of-Fit Test for Poisson Model:

Chi-square chi2(5) = 252.57
Prob>chi2 = 0.00

Fitted
Cells Abs. Freq. Rel. Freq. Rel. Freq. Abs. Dif.

0 417 .6328 .4196 .2131
1 68 .1032 .2208 .1177
2 38 .0577 .1031 .0454
3 34 .0516 .0617 .0101
4 17 .0258 .0449 .0191

5 or more 72 .129 .1499 .0209

. nbreg trips so ski i fc3 c1 c3 c4, nolog

Negative binomial regression Number of obs = 659
LR chi2(7) = 478.33

Dispersion = mean Prob > chi2 = 0.0000
Log likelihood = -825.55758 Pseudo R2 = 0.2246

trips Coef. Std. Err. z P>|z| [95% Conf. Interval]

so .721999 .0453323 15.93 0.000 .6331493 .8108487
ski .6121388 .1504163 4.07 0.000 .3173282 .9069493

i -.0260589 .0452342 -0.58 0.565 -.1147163 .0625986
fc3 .6691677 .3614399 1.85 0.064 -.0392415 1.377577
c1 .0480086 .0159516 3.01 0.003 .016744 .0792732
c3 -.092691 .0082685 -11.21 0.000 -.1088969 -.0764851
c4 .0388357 .0117139 3.32 0.001 .0158769 .0617945

_cons -1.121936 .2208284 -5.08 0.000 -1.554752 -.6891205

/lnalpha .3157293 .1060209 .1079321 .5235264

alpha 1.371259 .1453821 1.113972 1.68797

Likelihood-ratio test of alpha=0: chibar2(01) = 1407.75 Prob>=chibar2 = 0.000
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. chi2gof, cells(6) table

Chi-square Goodness-of-Fit Test for NegBin Model:

Chi-square chi2(5) = 23.54
Prob>chi2 = 0.00

Fitted
Cells Abs. Freq. Rel. Freq. Rel. Freq. Abs. Dif.

0 417 .6328 .6419 .0091
1 68 .1032 .1224 .0192
2 38 .0577 .0503 .0074
3 34 .0516 .0303 .0213
4 17 .0258 .0215 .0043

5 or more 72 .129 .1336 .0046

. zip trips so ski i fc3 c1 c3 c4, inflate(so ski i fc3 c1 c3 c4) robust nolog

Zero-inflated Poisson regression Number of obs = 659
Nonzero obs = 242
Zero obs = 417

Inflation model = logit Wald chi2(7) = 75.75
Log pseudolikelihood = -1163.419 Prob > chi2 = 0.0000

Robust
trips Coef. Std. Err. z P>|z| [95% Conf. Interval]

trips
so .0396788 .0834161 0.48 0.634 -.1238138 .2031715
ski .4691185 .1763189 2.66 0.008 .1235398 .8146972

i -.0943536 .0477011 -1.98 0.048 -.1878461 -.0008612
fc3 .6050712 .2358399 2.57 0.010 .1428335 1.067309
c1 .0023539 .0144217 0.16 0.870 -.0259121 .0306199
c3 -.0364429 .0108506 -3.36 0.001 -.0577096 -.0151762
c4 .0235891 .0081585 2.89 0.004 .0075987 .0395795

_cons 2.113707 .5032877 4.20 0.000 1.127281 3.100133

inflate
so -1.651993 .2076671 -7.96 0.000 -2.059013 -1.244973
ski .0588168 .4614636 0.13 0.899 -.8456352 .9632688

i -.0719113 .1110972 -0.65 0.517 -.2896579 .1458352
fc3 -20.59898 .6327039 -32.56 0.000 -21.83905 -19.3589
c1 -.0058103 .0244693 -0.24 0.812 -.0537693 .0421486
c3 .0723226 .0208863 3.46 0.001 .0313861 .113259
c4 -.0753998 .0251974 -2.99 0.003 -.1247858 -.0260137

_cons 3.558284 .532032 6.69 0.000 2.51552 4.601047
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. chi2gof, cells(6) table

Chi-square Goodness-of-Fit Test for ZIP Model:

Chi-square chi2(5) = 112.39
Prob>chi2 = 0.00

Fitted
Cells Abs. Freq. Rel. Freq. Rel. Freq. Abs. Dif.

0 417 .6328 .6354 .0026
1 68 .1032 .033 .0701
2 38 .0577 .042 .0156
3 34 .0516 .0448 .0068
4 17 .0258 .0431 .0173

5 or more 72 .129 .2016 .0726

. zinb trips so ski i fc3 c1 c3 c4, inflate(so ski i fc3 c1 c3 c4) robust nolog

Zero-inflated negative binomial regression Number of obs = 659
Nonzero obs = 242
Zero obs = 417

Inflation model = logit Wald chi2(7) = 140.80
Log pseudolikelihood = -719.3693 Prob > chi2 = 0.0000

Robust
trips Coef. Std. Err. z P>|z| [95% Conf. Interval]

trips
so .170791 .0566653 3.01 0.003 .059729 .281853
ski .492453 .1459854 3.37 0.001 .2063268 .7785792

i -.0688226 .0414572 -1.66 0.097 -.1500773 .0124321
fc3 .547295 .2205721 2.48 0.013 .1149817 .9796083
c1 .0399582 .0184614 2.16 0.030 .0037745 .0761418
c3 -.0658707 .0104456 -6.31 0.000 -.0863437 -.0453977
c4 .0207245 .0113653 1.82 0.068 -.0015512 .0430001

_cons 1.091936 .2919291 3.74 0.000 .5197651 1.664106

inflate
so -38.63617 2.002604 -19.29 0.000 -42.5612 -34.71114
ski -16.06663 1.084321 -14.82 0.000 -18.19186 -13.9414

i -.2029069 .3395567 -0.60 0.550 -.8684258 .462612
fc3 -11.42997 2.420961 -4.72 0.000 -16.17496 -6.684971
c1 -.023586 .0152638 -1.55 0.122 -.0535026 .0063305
c3 .0775286 .0214598 3.61 0.000 .0354681 .1195891
c4 -.0628993 .0214707 -2.93 0.003 -.1049811 -.0208175

_cons 20.97537 2.85067 7.36 0.000 15.38816 26.56258

/lnalpha -.1832683 .1150975 -1.59 0.111 -.4088553 .0423186

alpha .8325447 .0958238 .6644104 1.043227
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. chi2gof, cells(6) table

Chi-square Goodness-of-Fit Test for ZINegBin Model:

Chi-square chi2(5) = 18.34
Prob>chi2 = 0.00

Fitted
Cells Abs. Freq. Rel. Freq. Rel. Freq. Abs. Dif.

0 417 .6328 .6564 .0237
1 68 .1032 .0719 .0313
2 38 .0577 .0536 .0041
3 34 .0516 .0403 .0113
4 17 .0258 .0308 .005

5 or more 72 .129 .1469 .0179

Cameron and Trivedi (2013) initially analyze results from the Poisson and NB2 mod-
els. In the Poisson model, they notice that “the chi-squared goodness-of-fit test based
on cells for 0, . . . , 4 and 5 or more trips [. . .] leads to a value of 252.6, much larger than
the χ2p5q critical value, [. . .] indicating a poor fit of the Poisson to the data”(Cameron
and Trivedi 2013, 248). In the NB2 model, “[t]he statistic [. . .] is 23.5. Although this
is a substantial improvement on the Poisson, the model is still rejected because the 5%
critical value for χ2p5q is 11.07”(Cameron and Trivedi 2013, 248–249). Thus none of
these models fit the data well, and other specifications should be considered.

They also state, “Plausible alternatives to the models considered above are hurdle
models, zero-inflated models, and finite-mixture models” (Cameron and Trivedi 2013,
250). However, because the chi2gof command does not cover either hurdle or finite-
mixture models, here we concentrate on zero-inflated models (ZIP and ZINB). In the ZIP

model, the chi-squared goodness-of-fit test shows a value much larger than that found
in the NB2 model. In the ZINB model, the test indicates a better fit than that of the
NB2, but it still rejects the null hypothesis of correct specification of the model.

We also report a table with the cells, absolute frequencies, relative frequencies, pre-
dicted frequencies, and absolute differences between actual and predicted frequencies.
This partially replicates results reported in table 6.14 in Cameron and Trivedi (2013).
We can see that the Poisson model performs poorly, underpredicting zeros and over-
predicting positive outcomes. Its inflated version, the ZIP model, does a better job in
predicting the zeros, and this substantially improves the fit (the statistic is 112.39).
However, it still performs worse than the NB2. Finally, the ZINB yields the lower
goodness-of-fit test (the statistic is 18.34) despite not predicting much better than the
NB2.

4.3 Example 3

Using data from the U.S. Medical Expenditure Panel Survey for 2003, Cameron and
Trivedi (2010) analyze the determinants of the annual number of doctor visits (docvis)
for a sample of the Medicare population aged 65 and higher. Covariates include having
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private insurance that supplements Medicare (private), having public Medicaid in-
surance for low-income individuals that supplements Medicare (medicaid), age (age),
squared age (age2), the years of education (educyr), the presence of an activity lim-
itation (actlim), and the number of chronic conditions (totchr). They estimate the
relationship between docvis and the covariates by using alternative estimators and
specifications. However, again we restrict the analysis to the results from Poisson and
NB2 models.

They first fit a Poisson regression model using the ML estimator, as follows:

. use http://www.stata-press.com/data/mus/mus17data, clear

. poisson docvis private medicaid age age2 educyr actlim totchr, nolog

Poisson regression Number of obs = 3677
LR chi2(7) = 4477.98
Prob > chi2 = 0.0000

Log likelihood = -15019.64 Pseudo R2 = 0.1297

docvis Coef. Std. Err. z P>|z| [95% Conf. Interval]

private .1422324 .0143311 9.92 0.000 .114144 .1703208
medicaid .0970005 .0189307 5.12 0.000 .0598969 .134104

age .2936722 .0259563 11.31 0.000 .2427988 .3445457
age2 -.0019311 .0001724 -11.20 0.000 -.0022691 -.0015931

educyr .0295562 .001882 15.70 0.000 .0258676 .0332449
actlim .1864213 .014566 12.80 0.000 .1578726 .2149701
totchr .2483898 .0046447 53.48 0.000 .2392864 .2574933
_cons -10.18221 .9720115 -10.48 0.000 -12.08732 -8.277101

. chi2gof, cells(5)

Chi-square Goodness-of-Fit Test for Poisson Model:

Chi-square chi2(4) = 1011.40
Prob>chi2 = 0.00

Results show that all the explanatory variables are statistically significant and have
the expected sign. In particular, “docvis is increasing in age, education, number of
chronic conditions, being limited in activity, and having either type of supplementary
health insurance”(Cameron and Trivedi 2010, 574). However, the likelihood-ratio test
reported after nbreg clearly shows that the parameter α is statistically significant. Thus
the null hypothesis of equidispersion that the Poisson model implies is rejected by the
data.5

5. Actually, Cameron and Trivedi (2010) use an auxiliary regression between tpy ´ pµq2 ´ yu{pµ and pµ
to test for equidispersion.
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. use http://www.stata-press.com/data/mus/mus17data

. nbreg docvis private medicaid age age2 educyr actlim totchr, nolog

Negative binomial regression Number of obs = 3677
LR chi2(7) = 773.44

Dispersion = mean Prob > chi2 = 0.0000
Log likelihood = -10589.339 Pseudo R2 = 0.0352

docvis Coef. Std. Err. z P>|z| [95% Conf. Interval]

private .1640928 .0332186 4.94 0.000 .0989856 .2292001
medicaid .100337 .0454209 2.21 0.027 .0113137 .1893603

age .2941294 .0601588 4.89 0.000 .1762203 .4120384
age2 -.0019282 .0004004 -4.82 0.000 -.0027129 -.0011434

educyr .0286947 .0042241 6.79 0.000 .0204157 .0369737
actlim .1895376 .0347601 5.45 0.000 .121409 .2576662
totchr .2776441 .0121463 22.86 0.000 .2538378 .3014505
_cons -10.29749 2.247436 -4.58 0.000 -14.70238 -5.892595

/lnalpha -.4452773 .0306758 -.5054007 -.3851539

alpha .6406466 .0196523 .6032638 .6803459

Likelihood-ratio test of alpha=0: chibar2(01) = 8860.60 Prob>=chibar2 = 0.000

. chi2gof, cells(5)

Chi-square Goodness-of-Fit Test for NegBin Model:

Chi-square chi2(4) = 39.72
Prob>chi2 = 0.00

Cameron and Trivedi (2010) then consider alternative models for handling the ob-
served overdispersion, including the NB model, the Poisson and NB hurdle models, and
the Poisson and NB finite-mixture models. They also compare their goodness of fit
using the Akaike and Bayes criteria. These analyses lead them to conclude “that the
NB2 hurdle model provides the best fitting and the most parsimonious specification”
(Cameron and Trivedi 2010, 598). Still, the differences in fit between the NB2 hurdle
model and the NB or the NB2 finite-mixture model are very small. On this basis, the NB2

model can be chosen to make inferences. The chi-squared goodness-of-fit test suggests,
however, that this model is misspecified.

4.4 Example 4

Using the same dataset as in the previous example, Cameron and Trivedi (2010, 600–
605) analyze the determinants of the number of emergency room visits by the survey
respondent (er). They state, “The full set of explanatory variables in the model was
initially the same as that used in the docvis example. However, after some preliminary
analysis, this list was reduced to just three health-status variables—age, actlim, and
totchr—that appeared to have some predictive power for er” (Cameron and Trivedi
2010, 600).
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They first fit a NB model, as follows:

. use http://www.stata-press.com/data/mus/mus17data_z

. nbreg er age actlim totchr, nolog

Negative binomial regression Number of obs = 3677
LR chi2(3) = 225.15

Dispersion = mean Prob > chi2 = 0.0000
Log likelihood = -2314.4927 Pseudo R2 = 0.0464

er Coef. Std. Err. z P>|z| [95% Conf. Interval]

age .0088528 .0061341 1.44 0.149 -.0031697 .0208754
actlim .6859572 .0848127 8.09 0.000 .5197274 .8521869
totchr .2514885 .0292559 8.60 0.000 .1941481 .308829
_cons -2.799848 .4593974 -6.09 0.000 -3.700251 -1.899446

/lnalpha .4464685 .1091535 .2325315 .6604055

alpha 1.562783 .1705834 1.26179 1.935577

Likelihood-ratio test of alpha=0: chibar2(01) = 237.98 Prob>=chibar2 = 0.000

. chi2gof, cells(5)

Chi-square Goodness-of-Fit Test for NegBin Model:

Chi-square chi2(4) = 1.84
Prob>chi2 = 0.76

Only age is not statistically significant in this model. However, because the pro-
portion of zeros is relatively high—“[t]he first four values [. . .] account for over 99% of
the probability mass of er”(Cameron and Trivedi 2010, 600)—they also consider the
inflated version of the NB2 model.
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. use http://www.stata-press.com/data/mus/mus17data_z

. zinb er age actlim totchr, inflate(age actlim totchr) vuong nolog

Zero-inflated negative binomial regression Number of obs = 3677
Nonzero obs = 710
Zero obs = 2967

Inflation model = logit LR chi2(3) = 34.29
Log likelihood = -2304.868 Prob > chi2 = 0.0000

er Coef. Std. Err. z P>|z| [95% Conf. Interval]

er
age .0035485 .0076344 0.46 0.642 -.0114146 .0185116

actlim .2743106 .1768941 1.55 0.121 -.0723954 .6210165
totchr .1963408 .0558635 3.51 0.000 .0868504 .3058313
_cons -1.822978 .6515914 -2.80 0.005 -3.100074 -.5458825

inflate
age -.0236763 .0284226 -0.83 0.405 -.0793835 .0320309

actlim -4.22705 18.91192 -0.22 0.823 -41.29372 32.83962
totchr -.3471091 .2052892 -1.69 0.091 -.7494686 .0552505
_cons 1.846526 2.071003 0.89 0.373 -2.212565 5.905618

/lnalpha .1602371 .235185 0.68 0.496 -.3007171 .6211913

alpha 1.173789 .2760576 .7402871 1.861144

Vuong test of zinb vs. standard negative binomial: z = 1.99 Pr>z = 0.0233

. chi2gof, cells(5)

Chi-square Goodness-of-Fit Test for ZINegBin Model:

Chi-square chi2(4) = 6.70
Prob>chi2 = 0.15

To compare both models, Cameron and Trivedi (2010) use penalized log-likelihood-
base statistics (the Akaike information criterion and Bayesian information criterion).
Interestingly, “[t]his example indicates that having many zeros in the dataset does not
automatically mean that a zero-inflated model is necessary. For these data, the ZINB

model is only a slight improvement on the NB2 model and is actually no improve-
ment at all if Bayesian information criterion is used as the model-selection criterion”
(Cameron and Trivedi 2010, 605). Results of the chi-squared goodness-of-fit test confirm
these conclusions because, although none of the models show signs of misspecification,
the NB model yields a smaller statistic.

5 Concluding remarks

In this article, we discuss the implementation of the chi-squared goodness-of-fit test of
Andrews (1988a,b) as a postestimation command. The new command chi2gof reports
the test statistic, its degrees of freedom, and its p-value. It also stores these scalars
as returned results in r(chi2gof), r(dof chi2gof), and r(p chi2gof), respectively.
As an option, the command produces a table with the actual, predicted, and absolute
differences between actual and predicted frequencies. chi2gof can be used after the
poisson, nbreg, zip, and zinb commands.
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This specification test compares the sample relative frequencies of the dependent
variable with the predicted frequencies of the model using a quadratic form and an
estimate of the asymptotic variance of the corresponding population moment condition.
Unlike Pearson’s test (or the Hosmer–Lemeshow test), the chi-squared goodness-of-
fit test can be constructed from any regular asymptotically normal estimator of the
conditional expectation of the range of the dependent variable. In particular, chi2gof
computes the test statistic using the outer product of the gradient form of the test (see
Cameron and Trivedi [2005, 2013]).

We illustrate the use of the test in four examples from Cameron and Trivedi (2010,
2013). Under the null hypothesis of correct specification of the model, this statistic
asymptotically follows a chi-squared distribution with J ´1 degrees of freedom, J being
the number of cells in which the dependent variable is partitioned. Thus, in applica-
tions, the model should be suspected of being misspecified (that is, the model moment
conditions are not satisfied) if the resulting test is statistically significant. Otherwise,
there is no evidence of misspecification in the model.
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