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Abstract. The dhreg command implements maximum likelihood estimation of
the double-hurdle model for continuously distributed outcomes. The command
includes the option to fit a p-tobit model, that is, a model that estimates only an
intercept for the hurdle equation. The bootdhreg command (the bootstrap version
of dhreg) may be convenient if the data-generating process is more complicated
or if heteroskedasticity is suspected. The xtdhreg command is a random-effects
version of dhreg applicable to panel data. However, this estimator differs from
standard random-effects estimators in the sense that the outcome of the first hurdle
applies to the complete set of observations for a given subject instead of applying
at the level of individual observations. Command options include estimation of a
correlation parameter capturing dependence between the two hurdles.

Keywords: st0359, dhreg, xtdhreg, bootdhreg, hurdle model, double-hurdle model,
random-effects double-hurdle model, tobit, p-tobit, inverse Mills ratio, bootstrap-
ping

1 Introduction

The double-hurdle model, introduced by Cragg (1971), embodies the idea that an in-
dividual’s decision on the extent of participation in an activity is the result of two
processes: the first hurdle, determining whether the individual is a zero type, and the
second hurdle, determining the extent of participation given that the individual is not
a zero type. A key feature of the model is that there are two types of zero observations:
an individual can be a zero type, and the outcome will always be zero whatever his or
her circumstances at the time of the decision; alternatively, the individual might not
be a zero type, but his or her current circumstances might dictate that the outcome is
zero—this sort of zero is usually classified as a censored zero after (Tobin 1958).

In addition to naturally incorporating the zero type, the double-hurdle model allows
estimation of the proportion of the population that is of the zero type. Better still,
it allows the probability of a subject’s being zero type to depend on the subject’s
characteristics.

c© 2014 StataCorp LP st0359
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The double-hurdle model has previously been applied in a variety of contexts. Jones
(1989) applied it to cigarette consumption by individuals, with the justification that
a proportion of the population would never smoke whatever circumstances they found
themselves in. Burton, Tomlinson, and Young (1994) applied the model to meat con-
sumption by single-adult households, with the justification that a proportion of the
population of single adults must be vegetarian and therefore destined to record zero
consumption of meat. The model has also been applied in models of loan default
(Dionne, Art́ıs, and Guillén 1996; Moffatt 2005), where it is assumed that a proportion
of borrowers would, out of principle, never default on a loan.

The practice of fitting hurdle models is well developed in the context of count-
data outcomes. See, for example, the user-written Stata commands ztpnm and hnbclg.
McDowell (2003) has provided advice from the Stata help desk on the required program-
ming. The practice is less developed in the context of continuous outcomes, the case of
interest here. After our paper was accepted for publication, the dblhurdle command
and the accompanying article by Garcia (2013) became available. Unlike our commands,
the dblhurdle command offers weighted estimation. By contrast, our dhreg command
allows the capture of possible correlation of the error terms between the hurdle equation
and the equation for choices that pass the hurdle by using the inverse Mills’s ratio.

We also extend the hurdle framework to panel data (again going beyond dblhurdle).
The panel-hurdle model has been applied to household milk consumption by Dong
and Kaiser (2008). From that starting point, we extend the panel-hurdle model in an
important way: we assume a nonzero correlation between the individual-specific error
terms in the two hurdles. Hence, we achieve superior efficiency by fitting the panel-
hurdle model with dependence. In a double-hurdle model with just one observation
per subject, there are problems identifying this correlation (Smith 2003). In contrast,
with panel data, we shall see that the parameter can be estimated with reasonably high
precision.

The panel-hurdle model is potentially important in experimental economics, in which
there are several natural applications, including public goods experiments and dictator
games. Sometimes, each subject engages in only one task; however, it is more com-
mon for each subject to engage in a sequence of tasks throughout an experiment. The
extension of the model to panel data requires care because the outcome of the first
hurdle—that is, the determination of whether a respondent is of the zero type—must
apply to that respondent for every period. Switching in and out of the zero type is ruled
out. In contrast, the outcome of the second hurdle—that is, the amount consumed or
contributed in any period—is determined at the level of individual observations. In
principle, respondents classified as nonparticipants must necessarily consume or con-
tribute zero in every period. We also offer a bootstrap version of the estimator, again
going beyond the dblhurdle command. Bootstrapping can, for instance, be helpful if
choices are nested in individuals who are, in turn, nested in higher-level units.
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In section 2, we cover theoretical aspects of the double-hurdle model, specifying the
likelihood function for each model. In section 3, we do the same for the panel-hurdle
model. We then introduce the user-written Stata commands and syntax in section 4.
We demonstrate the commands using a simulated dataset in section 5.

2 Double-hurdle and related models

When referring to examples in the description of models, we will use the term “con-
tribution” to represent the outcome variable; the term “consumption” could also be
used.

2.1 Tobit

A natural starting point is the tobit model (Tobin 1958) because the hurdle model is an
extension of it. Tobit-type models, or censored regression models, are required when the
dependent variable is censored, that is, when there is an accumulation of observations at
the limits of the range of the variable. The lower limit of the range is usually zero, and
censoring is usually zero censoring, although sometimes, we are required to deal with
upper censoring, where there is an accumulation of observations at the maximum. In
other contexts, there is censoring from below but at a cutoff point different from zero.
The software handles all of these. Yet when introducing the theory, we shall focus on
lower censoring at zero.

We start with a linear equation in which the dependent variable is a latent (unob-
served) variable, y˚

i , representing the desired contribution of subject i:

y˚
i “ x1

iβ ` εi

εi „ Np0, σ2q

The desired contribution is assumed to be a linear function of the observed subject
characteristics and treatment variables contained in the vector xi, plus a normally
distributed random error. The important feature of y˚

i is that it can be negative:
subjects are permitted to desire to contribute a negative amount. Of course, if a subject
does desire to contribute a negative amount, most experimental designs would constrain
the subject to contribute zero;1 if the subject desires to contribute any positive amount,
this amount will be his or her actual observed contribution. This amounts to what is
known as a censoring rule:

yi “ y˚
i if y˚

i ą 0

yi “ 0 if y˚
i ď 0 (1)

yi is the observed contribution of subject i. Therefore, the censoring rule shows the
relationship between desired and actual contributions.

1. An interesting new development is the emergence of take games, dictator games in which some
treatments allow dictators to take money away from the recipient, that is, to give less than zero
(see List [2007]; Bardsley [2008]).
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In the situation where we have lower censoring at zero, there are two regimes of be-
havior: zero observations and positive observations. The sample log-likelihood function
is constructed by combining contributions for each regime as follows:

LogL “
nÿ

i“1

„
Iyi“0 ln

"
Φ

ˆ
´x1

iβ

σ

˙*
` Iyią0 ln

"
1

σ
φ

ˆ
yi ´ x1

iβ

σ

˙*
(2)

I is the indicator function, taking the value one if the subscripted expression is true,
and zero otherwise. LogL is maximized with respect to the parameters contained in the
vector β and the standard deviation parameter σ.

2.2 p-tobit

The overrestrictive feature of the tobit model described in section 2.1 is that it allows
only one type of zero observation, and the implicit assumption is that zeros arise because
of subject circumstances and treatments. The obvious way to relax this is to assume
the existence of an additional class of subjects who would never contribute under any
circumstances.

In the first instance, let us assume that the proportion of the population who are
potential contributors is p, so that the proportion of the population who would never
contribute is 1 ´ p. For the former group, the tobit model applies, while for the latter
group, the contribution is automatically zero.

This assumption leads to the p-tobit model, originally proposed by Deaton and Irish
(1984) in the context of household consumption decisions, where they were essentially
allowing for a class of abstinent consumers for each good modeled. The log-likelihood
function for the p-tobit model is2

LogL “
ÿ

0

ln

"
1 ´ pΦ

ˆ
x1
iβ

σ

˙*
`
ÿ

`
ln

"
p
1

σ
φ

ˆ
yi ´ x1

iβ

σ

˙*
(3)

Maximizing (3) returns an estimate of the parameter p, in addition to those of β
and σ obtained under tobit.

2.3 Double hurdle

Because the class of subjects who would never contribute may be the focus of the
analysis, it is desirable to investigate which types of subjects are most likely to appear
in this class. With this in mind, we assume that the probability of a subject’s being
in the said class depends on a set of subject characteristics. In other words, we shall
generalize the p-tobit model of section 2.2 by allowing the parameter p to vary according
to subject characteristics. This generalization leads us to the double-hurdle model.

2. For readers unfamiliar with the structure of log likelihoods such as (2) and (3), a useful basic
principle is that because of the symmetry of the normal distribution, Φp´zq “ 1 ´ Φpzq.



782 Commands to implement double-hurdle regression

As the model name suggests, subjects must cross two hurdles to contribute. The
first hurdle needs to be crossed to be a potential contributor. Given that the subject is a
potential contributor, his or her current circumstances and treatment in the experiment
dictate whether he or she contributes—this is the second hurdle.

The double-hurdle model contains two equations and can be given the interpretation
of a combined probit and tobit estimator. We write

d˚
i “ z1

iα ` ε1,i

y˚˚
i “ x1

iβ ` ε2,iˆ
ε1,i
ε2,i

˙
„ N

„ˆ
0
0

˙
,

ˆ
1 0
0 σ2

˙
(4)

The variance of ε1,i is normalized to 1, as required for identification, because the
outcome of the first hurdle is binary. The diagonality of the covariance matrix implies
that the two error terms are assumed to be independently distributed.

The first hurdle is represented by

di “ 1 if d˚
i ą 0

di “ 0 if d˚
i ď 0 (5)

The first hurdle is thus assumed to be defined by the latent variable d˚
i . The second

hurdle closely resembles the tobit model (1):

y˚
i “ maxpy˚˚

i , 0q (6)

Finally, the observed variable, yi, is determined as

yi “ diy
˚
i (7)

The log-likelihood function for the double-hurdle model is

LogL “
ÿ

0

ln

"
1 ´ Φpz1

iαqΦ
ˆ
x1
iβ

σ

˙*
`
ÿ

`
ln

"
Φpz1

iαq 1
σ
φ

ˆ
yi ´ x1

iβ

σ

˙*
(8)

When the lower hurdle is ymin ‰ 0, the first term in (8) changes to
ř

min lnr1 ´ Φpz1
iαq

Φtpx1
iβ ´ yminq{σus. When the hurdle is an upper hurdle, ymax, the first term becomesř

max lnr1 ´ Φpz1
iαqΦtpymax ´ x1

iβq{σus.
Figure 1 is useful for understanding the model defined in (4)–(7). The concen-

tric ellipses are contours of the joint distribution of the latent variables d˚ and y˚˚.
These ellipses are centered on the point (z1

iα,x1
iβ) so that the whole distribution moves

around with changes in the values taken by the explanatory variables. The likelihood
component associated with noncontribution [that is, the first term in curly braces in
(8)] is represented by the probability mass under the L-shaped region comprising the
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northwest, southwest, and southeast quadrants of the graph; the likelihood component
associated with a contribution [the second term in curly braces in (8)] is represented by
a thin strip of the probability mass within the northeast quadrant at the value of the
observed contribution (one such value is depicted in the diagram).

y**

d*

y = 0
potentially
contribute

y = y**
actually

contribute

0

y = 0
never

contribute

(z ’ x ’i ia, b)

y = y **k k

Figure 1. The relationship between latent (d˚ and y˚˚) and observed (y) variables in
the double-hurdle model

Finally, consider a double-hurdle model in which there are no explanatory variables
in the first-hurdle equation. There is only an intercept, α0. The likelihood function
becomes

LogL “
ÿ

0

ln

"
1 ´ Φpα0qΦ

ˆ
x1
iβ

σ

˙*
`
ÿ

`
ln

"
Φpα0q 1

σ
φ

ˆ
yi ´ x1

iβ

σ

˙*

Φpα0q is now a scalar. If we rename this scalar as p, we have the p-tobit model defined
in (3).

This gives us a way of fitting the p-tobit model. We fit the double-hurdle model
with no explanatory variables in the first hurdle. We then transform the estimate of the
intercept parameter in the first hurdle, α0, using

p “ Φpα0q

This gives the estimate of the parameter p in the p-tobit model. The delta method
is required to obtain a standard error for this estimate.
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2.4 The single-hurdle model

The single-hurdle model is a model that has the property of first-hurdle dominance
(Jones 1989). This essentially requires that any individual who passes the first hurdle
necessarily has a positive outcome. Hence, there is only one source of zeros, the zero
type; censored zeros are ruled out.

The formal definition of the single-hurdle model is similar to that of the double-
hurdle model given in section 2.3; the only difference is that (6) changes from a rule
embodying zero censoring to one embodying zero truncation:

y˚
i “ y˚˚

i if y˚˚
i ą 0

y˚
i unobserved if y˚˚

i ď 0

As will be mentioned in the next section, logical problems arise when we try to
extend the single-hurdle model to the panel-data setting. For this reason, we do not
pay close attention to this model.

3 Extension to panel data

3.1 The basic panel-hurdle model

Until this point in the article, we have been concerned with estimation with one cross-
section of data. We now progress to panel data. The panel-hurdle model was developed
by Dong and Kaiser (2008), who applied the model to household milk consumption.
Here we assume that we have n subjects, each of whom participated in T tasks. We
denote yit as the decision (that is, the contribution) of subject i in task t. The two
hurdles are defined as follows:

First hurdle

d˚
i “ z1

iα ` ε1,i

di “ 1 if d˚
i ą 0; di “ 0 otherwise

ε1,i „ Np0, 1q

Second hurdle

y˚˚
it “ x1

itβ ` ui ` ε2,it

y˚
it “ maxpy˚˚

it , 0q
¨
˝

ε1,i
ui

ε2,it

˛
‚„ N

»
–
¨
˝
0
0
0

˛
‚,

¨
˝

1 ρσu 0
ρσu σ2

u 0
0 0 σ2

˛
‚
fi
fl
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Observed

yit “ diy
˚
it

The central feature of the panel-hurdle model is that the first hurdle has only one
outcome per subject, and that outcome applies to all observations for that subject. For
example, if subject i falls at the first hurdle (di “ 0), then all observations on y for
subject i must be 0 (yit “ 0, t “ 1, . . . , T ). This feature is essential to capture the
concept of the zero type. If a subject is a zero type, then the subject will necessarily
contribute zero on every occasion on which he or she is observed.

Note that the second hurdle contains a subject-specific random-effects term (ui)
that allows between-subject heterogeneity and thereby within-subject dependence. In
the specification of the joint distribution of the three stochastic terms, we have assumed
that the correlation between ε1,i and ui is ρ. In this section, we are considering the model
with independence between the two hurdles, so we assume that ρ “ 0. In section 3.4
(panel-hurdle model with dependence), we will allow ρ to be nonzero and consider the
strategy for estimating this parameter.

3.2 The panel single-hurdle model

We introduced the single-hurdle model in section 2.4. This is a model satisfying first-
hurdle dominance: passing the first hurdle necessarily implies a positive outcome. In
the panel setting, first-hurdle dominance gives rise to a logical problem. If an individual
passes the first hurdle, his or her outcomes would need to be positive in every period.
We already know that if the individual falls at the first hurdle, the outcome is zero every
time. Hence, first-hurdle dominance rules out a mixture of zero and positive outcomes
for a given individual. This is clearly a serious problem because most panel-data sets
would be expected to contain such mixtures. For this reason, we shall restrict attention
to the framework of the panel double-hurdle model introduced in section 3.1, in which
the zero censoring assumed in the second hurdle allows mixtures of zeros and positive
observations for a given individual.

3.3 Construction of likelihood function

Conditional on di “ 1 (and also on the heterogeneity term ui), we obtain something
very similar to the random-effects tobit likelihood:

pLi|di “ 1, uiq “
Tź

t“1

"
1 ´ Φ

ˆ
x1
itβ ` ui

σ

˙*Ipyit“0q "
1

σ
φ

ˆ
yit ´ x1

itβ ´ ui

σ

˙*Ipyitą0q

(9)
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Conditional on di “ 0, the likelihood is trivial and depends on whether all observa-
tions are zero for subject i:

pLi|di “ 0q “ 0 if
Tÿ

t“1

yit ą 0

“ 1 if
Tÿ

t“1

yit “ 0 (10)

The likelihood (conditional on ui) for subject i is then obtained as a weighted average
of (9) and (10), with weights given by the probabilities P pdi “ 1q and P pdi “ 0q, which
are obtained from the first-hurdle equation.

pLi|uiq “ Φpz1
iαqpLi|di “ 1, uiq ` t1 ´ Φpz1

iαqupLi|di “ 0q (11)

Finally, the marginal likelihood for subject i is obtained by integrating (11) over u,

Li “
8ż

´8

pLi|uqfpuqdu

where fpuq is the normal (0, σ2
u) density function for u.

The sample log-likelihood function is then given by

LogL “
nÿ

i“1

lnLi

3.4 Panel-hurdle model with dependence

The model developed above assumes that there is no correlation between the error terms
in the two hurdles. In this section, this assumption is relaxed.

Subject i’s idiosyncratic propensity to pass the first hurdle is represented by the
error term ε1,i; i’s idiosyncratic propensity to contribute, conditional on passing the
first hurdle, is represented by ui. It is between these two terms that we introduce a
correlation:

corrpε1, uq “ ρ

How is the correlation parameter ρ incorporated in estimation? Let us return to the
first hurdle:

d˚
i “ z1

iα ` ε1,i

di “ 1 if d˚
i ą 0; di “ 0 otherwise

ε1,i „ Np0, 1q
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Because corrpε1, uq “ ρ, we can represent ε1 as

ε1 “ ρ
u

σu

`
a
1 ´ ρ2ξ

where ξ „ Np0, 1q and ξ K u. The requirement for passing the first hurdle becomes

di “ 1 if ξ ą ´
z1
iα ` ρ

u

σua
1 ´ ρ2

from which the probability of passing the first hurdle becomes

Φ

¨
˚̋z1

iα ` ρ
u

σua
1 ´ ρ2

˛
‹‚ (12)

In estimation, the Halton draws used to represent realizations of u in the second
hurdle also appear in the probability of passing the first hurdle in accordance with (12).

In the standard double-hurdle model with dependence (one observation per subject),
there can be problems identifying the correlation coefficient ρ (Smith 2003). However,
with panel data and use of the estimation approach outlined in this section, the param-
eter can be estimated precisely.

3.5 Two-step estimation of the dependence model

Heckman (1979) developed a procedure that treats correlation as an omitted variable
problem. If the error terms are indeed correlated, the inverse Mills ratio from the first
component must have explanatory power for the second component. Specifically, the
coefficient of this additional regressor is precisely the covariance of the two error terms.
Using this approach, we have a tractable way of fitting a double-hurdle model if the
error terms for the d˚

i and the y˚˚
i are possibly correlated:

• Estimate the double-hurdle model assuming covariance to be zero.

• Generate the inverse Mills ratio from the first component. If the first component
is estimated with probit, it is given by

φpz1
iαq

Φpz1
iαq

• Refit the double-hurdle model with the first component as before, but with the
second component (the y˚˚

i equation) estimated with the inverse Mills ratio as an
additional explanatory variable. If the additional regressor turns out significant,
this suggests that the two processes are indeed correlated.

If the problem at hand invites exclusion restrictions for the first hurdle, these re-
strictions identify the effect of the outer hurdle. Otherwise, as in a standard Heckman
model, identification is through functional form only.
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3.6 Bootstrap version of the model

The panel version of the double-hurdle model assumes a specific, randomly distributed
error, uncorrelated with observables. Because there is no acknowledged fixed-effects
version of the panel tobit model, a fortiori there is no reliable fixed-effects estimator for
double-hurdle regression, which builds on tobit. As a safeguard, we offer a nonpara-
metric version using bootstrapping, the bootdhreg estimator, which is the bootstrap
version of the dhreg estimator. Users can match the panel structure of their data-
generating process by sampling from participants as clusters. This command may also
be convenient if there are reasons to doubt the normality assumption on which the
maximum likelihood procedure of dhreg is based or if there are higher-level clusters.
An illustration in the framework of the smoking example would be two samples taken
from different subpopulations, say, the pupils of two different schools. Of course, the
bootstrap clusters are less efficient than the random-effects model because they do not
make any assumptions about covariance terms.

3.7 Estimation

Estimation of the panel-hurdle model is performed using the method of maximum sim-
ulated likelihood (Train 2009). This requires the use of Halton draws, which, when
converted to normality, represent simulated realizations of the random-effects term u.
In the model with dependence, in accordance with (12), the simulated values also appear
in the probability of passing the first hurdle. Maximization of the simulated likelihood
function is performed using the ml routine in Stata.

4 The dhreg, xtdhreg, and bootdhreg commands

4.1 Syntax

dhreg depvar indepvars
“
if
‰ “

in
‰ “

, up ptobit hd(varlist) millr
‰

xtdhreg depvar indepvars
“
if
‰ “

in
‰ “

, up ptobit hd(varlist) uncorr trace

difficult constraints(numlist)
‰

bootdhreg depvar indepvars
“
if
‰ “

in
‰ “

, up ptobit hd(varlist) millr

margins(string) seed(integer) reps(integer) strata(varlist) cluster(varlist)

capt maxiter(integer)
‰



C. Engel and P. G. Moffatt 789

4.2 Options for dhreg

up specifies that the upper, not the lower, limit of the support of the dependent variable
be treated as the hurdle.

ptobit estimates the equation for the outer hurdle with just the intercept.

hd(varlist) allows a set of explanatory variables for the outer hurdle that differs from
the explanatory variables for the inner hurdle and those realizations of the dependent
variable that surmount the hurdle.

millr estimates a second version of the model with the inverse Mills ratio controlling
for potential correlation of the error terms.

4.3 Options for xtdhreg

up specifies that the upper, not the lower, limit of the support of the dependent variable
be treated as the hurdle.

ptobit estimates the equation for the outer hurdle with just the intercept.

hd(varlist) allows a set of explanatory variables for the outer hurdle that differs from
the explanatory variables for the inner hurdle and those realizations of the dependent
variable that surmount the hurdle.

uncorr assumes that the error terms of the hurdle equation and of the main equation
are uncorrelated.

trace displays coefficients from each iteration.

difficult uses an alternative, more calculation-intense algorithm for approximation
(which may help if the model does not converge).

constraints(numlist) makes it possible for users to constrain the model.

4.4 Options for bootdhreg

up specifies that the upper, not the lower, limit of the support of the dependent variable
be treated as the hurdle.

ptobit estimates the equation for the outer hurdle with just the intercept.

hd(varlist) allows a set of explanatory variables for the outer hurdle that differs from
the explanatory variables for the inner hurdle and those realizations of the dependent
variable that surmount the hurdle.

millr estimates a second version of the model with the inverse Mills ratio controlling
for potential correlation of the error terms.

margins(string) calls for bootstrap estimates of marginal effects.
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seed(integer) fixes a seed for the randomization (as a default, one seed is implemented
so that results can be replicated).

reps(integer) defines the number of bootstrap repetitions. The default is reps(50).

strata(varlist) orders the bootstrap to be stratified.

cluster(varlist) defines higher-order aggregates from which samples are drawn.

capt ignores repetitions that do not converge. It may be useful if, for instance, the
program does not converge for some samples because of clustering. The bootstrap
results are then taken from the remaining draws.

maxiter(integer) limits the number of iterations. maxiter() is also useful if the maxi-
mum likelihood routine has a hard time converging. maxiter() should be combined
with capt. The default is maxiter(50).

5 Examples

Here is a stylized example for using the dhreg command. It works with simulated data
with the following data-generating process:

d˚
i “

"
1 if ´ 2 ` 4 ˆ zi ` εi1 ą 0
0 otherwise

y˚˚
i “ 0.5 ` 0.3 ˆ xi ` εi2

y˚
i “

"
y˚˚
i if y˚˚

i ą 0
0 otherwise

yi “ d˚
i ˆ y˚

i

εi1 “ 0.5 ˆ εi2 `
a

p1 ´ 0.52q ˆ ηi

εi2, ηi „ Np0, 1q
corrpεi1, εi2q “ 0.5

zi, xi „ Up0, 1q

In these data, the latent process defined by the first equation generates the first
hurdle, which is determined by a constant, the (uniformly distributed) exogenous vari-
able z, and the error term for this process, εi1. This error term has a correlation of
0.5 with the error term of the second process, εi2; these correlated errors are simulated
by a separate normal variate, ηi. The latent process defined by the second equation
generates the magnitude of those observations that pass both hurdles. This second pro-
cess is determined by (uniformly distributed) exogenous variable x and the (normally
distributed) error term, εi2. Through the final equation (yi “ d˚

i ˆ y˚
i ), the observed

dependent variable, yi, is zero if either the first or the second hurdle is not passed and
otherwise has the magnitude of the second latent variable, y˚˚

i . Figure 2 shows the
resulting data. Nearly half fall at the first hurdle. A sizable portion falls at the second
hurdle.
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Figure 2. Data-generating process cross-section example

In the first step, we show that tobit is not appropriate for this data-generating
process. The model does not pick up the effect of x. The coefficient is insignificant and
about half as large as the actual effect.

. tobit y x, ll(0)

Tobit regression Number of obs = 1000
LR chi2(1) = 0.70
Prob > chi2 = 0.4015

Log likelihood = -1127.5531 Pseudo R2 = 0.0003

y Coef. Std. Err. t P>|t| [95% Conf. Interval]

x .1549814 .1846556 0.84 0.402 -.2073759 .5173388
_cons -.3249669 .1145513 -2.84 0.005 -.5497557 -.100178

/sigma 1.490576 .0589589 1.374879 1.606274

Obs. summary: 580 left-censored observations at y<=0
420 uncensored observations

0 right-censored observations

In the next step, we present output from the double-hurdle model but still (wrongly,
given our simulation) assume that error terms are uncorrelated. For expositional rea-
sons, we had the effect of x designed to be small. It is now properly estimated, as is
the effect of z and the estimate of the standard error. However, all coefficients are still
slightly biased.
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. dhreg y x, hd(z)

(output omitted )

maximum likelihood estimates of double hurdle model

N = 1000
log likelihood = -947.24225
chi square hurdle equation = 81.817097
p hurdle equation = 1.493e-19
chi square above equation = 4.7952012
p above equation = .02853912
chi square overall = 90.440744
p overall = 2.296e-20

coef se z p lower CI upper CI

hurdle
z 3.877918 .4287228 9.04528 0 3.037636 4.718199

_cons -1.852446 .152426 -12.15308 5.52e-34 -2.151195 -1.553696
above

x .3673263 .1677446 2.189795 .0285391 .0385529 .6960997
_cons .6856148 .113751 6.027331 1.67e-09 .462667 .9085626

sigma
_cons .9423028 .0564864 16.68193 0 .8315915 1.053014

In the final step, we estimate the correlation using the inverse Mills ratio. The model
rightly suggests that error terms are correlated (the coefficient of the inverse Mills ratio is
highly significant). Coefficients are now almost in line with the data-generating process.
Comparing the Wald tests, we see that the model has a considerably better fit.

. dhreg y x, hd(z) millr

(output omitted )

second stage results

N = 1000
log likelihood = -937.13325
chi square hurdle equation = 121.026
p hurdle equation = 3.772e-28
chi square above equation = 29.057293
p above equation = 4.901e-07
chi square overall = 127.67061
p overall = 1.891e-28

coef se z p lower CI upper CI

hurdle
z 4.049705 .3681154 11.00118 0 3.328212 4.771198

_cons -2.002341 .1479133 -13.53727 9.42e-42 -2.292246 -1.712437
above

x .3243295 .1560948 2.077773 .0377303 .0183894 .6302696
_mill .5337018 .1108932 4.812754 1.49e-06 .3163551 .7510485
_cons .5127246 .1099401 4.663672 3.11e-06 .2972459 .7282032

sigma
_cons .8811395 .0446539 19.73263 0 .7936194 .9686596
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Our second example is also from simulated data, meant to illustrate the random
effects and bootstrap estimators. The data-generating process is as follows:

d˚
i “

"
1 if ´ 2 ` 4 ˆ zi ` εi1 ą 0
0 otherwise

y˚˚
it “ 0.5 ` 0.3 ˆ xit ` ui ` εit2

y˚
it “

"
y˚˚
it if y˚˚

it ą 0
0 otherwise

yit “ d˚
i ˆ y˚

it

εi1 “ 0.9 ˆ ui `
a

p1 ´ 0.92q ˆ ηiˆ
εit2
ui

˙
„ N

„ˆ
0
0

˙
,

ˆ
1 0
0 σ2

˙

ηi „ Np0, σ2q

This dataset is a panel. Individuals i are observed at multiple points in time t. Their
choices are determined by the first hurdle, d˚

i , which is assumed to be time invariant,
and by the second hurdle, y˚

it “ 0, which is allowed to differ by individual and period.
In the latent-variable defining choices, provided the first hurdle is passed, there is a
random effect ui. The correlation of error terms involves this random effect and not the
residual error εit2.
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The output shows that the estimator finds the effects of both explanatory variables,
including the very small effect of xit, and the correlation of the error terms.

. xtdhreg y x, hd(z)

(output omitted )

Number of obs = 10000
Wald chi2(1) = 43.39

Log likelihood = -6197.9509 Prob > chi2 = 0.0000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

hurdle
z 4.736641 .719114 6.59 0.000 3.327203 6.146079

_cons -2.443042 .45771 -5.34 0.000 -3.340137 -1.545946

above
x .2585995 .0530704 4.87 0.000 .1545835 .3626156

_cons .986435 .0538315 18.32 0.000 .8809273 1.091943

sigma_u
_cons 1.114397 .0493999 22.56 0.000 1.017575 1.211219

sigma_e
_cons 1.00247 .0121348 82.61 0.000 .9786863 1.026254

transformed~o
_cons .7980986 .5459896 1.46 0.144 -.2720214 1.868219

generate estimate of correlation in error terms, with confidence interval

rho: tanh([transformed_rho]_cons)

Coef. Std. Err. z P>|z| [95% Conf. Interval]

rho .6629725 .3060095 2.17 0.030 .0632049 1.26274

separate Wald tests for joint significance of all explanatory variables

note

if you use factor variables, i.e. the i., c., # and ## notation, you must run
the Wald test by hand. For detail see help file

estimates of joint significance

chi square hurdle equation = 43.385582
p hurdle equation = 4.495e-11
chi square above equation = 23.743844
p above equation = 1.100e-06
chi square overall = 67.117399
p overall = 2.665e-15

In this case, we know this estimator to be appropriate. All normality assumptions are
met, and the data are not nested. Therefore, there is no reason to resort to bootstrap-
ping. Yet in real applications, it may be less obvious that the assumptions underlying
a random-effects model are justified. If users instead or additionally run a bootstrap,
the output looks as follows:
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. bootdhreg y x, hd(z) cluster(i) capt

(output omitted )

maximum likelihood estimates of double hurdle model

N = 10000
log likelihood = -9860.9387
chi square hurdle equation = 9.3724107
p hurdle equation = .00220276
chi square main equation = 9.3724107
p main equation = .00220276
chi square overall = 570.78004
p overall = 1.14e-124
bootstrap results

coef se p lowciz upciz lowcip

hurdle
z 4.218375 3.43218 .1095236 -2.508698 10.94545 2.856766

_cons -2.180051 1.124344 .0262535 -4.383766 .0236639 -6.814596
main

x .243663 .0644732 .0000786 .1172956 .3700305 .1066285
_cons .851831 .3136393 .0033042 .2370979 1.466564 .0889678

sigma
_cons 1.370452 .1429195 0 1.09033 1.650574 1.147232

upcip

hurdle
z 16.95187

_cons -1.541749
main

x .39398
_cons 1.338123

sigma
_cons 1.699634

Bootstrap standard errors are larger than standard errors from the random-effects
model. This is as expected. The bootstrap assumes less structure (there is no ran-
dom effect), and it coarsens the data by the sampling process. The bootstrap routine
resamples with replacement. Because the cluster(i) option is used, entire sets of ob-
servations per individual are sampled. With our seed (which users are free to change
with the seed() option), some bootstrap samples do not converge, which is why the
capt option is used. It confines the calculation of the bootstrap standard errors to
those (multiple) instances that converge. As is standard in bootstrapping, coefficients
are taken from using dhreg on the original data, but standard errors are taken from the
bootstrap. The reported bootstrap standard error is the standard deviation of coeffi-
cients from all bootstrap instances. The resulting p-value and the lowciz and upciz

confidence intervals assume that these results are normally distributed. The two final
columns report a distribution-free estimate of the confidence interval. It results from
the lower and the upper 2.5% of the empirical distribution of coefficients. If users want
to rely on these estimates, they should check whether zero lies outside this interval. If
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users wish to allow for correlation of the error terms, they can combine bootdhreg with
the millr option.

Additionally, coefficients from all bootstrap repetitions of the statistical model are
stored in variables res. These data are useful if the user wants to run additional tests,
such as a Wald-like test for a net effect. This can be done by generating a new variable
that sums up the main effect and the interaction effect. With the summarize command,
one generates the mean and the standard error of this new variable. min((1-normal(
r(mean)/r(sd))), (normal(r(mean)/r(sd)))) generates the p-value.

We have enabled all estimators to take factor variables. Users can therefore rely
on the i.a##c.b or on the c.b##c.b notation to generate interaction terms and other
multiplicative terms, and they can use the margins command to derive model pre-
dictions, as we show in the example below.3 With the margins command, users can
also calculate average marginal effects with the dydx() option. Yet for recovering the
average marginal change in probability, which tends to be more interesting, the follow-
ing, somewhat unintuitive, command must be used. It transforms the (average of the)
linear marginal effect into a probability (because we use a probit specification for the
second equation). In the example, a one-unit change in variable z (which would be a
change from one extreme to the other, given the variable has range 0–1) increases the
probability of the first hurdle being passed by almost 97%.

. margins, dydx(z) expression(normal(xb(hurdle)))

Average marginal effects Number of obs = 1000
Model VCE : OIM

Expression : normal(xb(hurdle))
dy/dx w.r.t. : z

Delta-method
dy/dx Std. Err. z P>|z| [95% Conf. Interval]

z .9675177 .0294781 32.82 0.000 .9097416 1.025294

6 References
Bardsley, N. 2008. Dictator game giving: Altruism or artefact? Experimental Economics

11: 122–133.

Burton, M., M. Tomlinson, and T. Young. 1994. Consumers’ decisions whether or not
to purchase meat: A double hurdle analysis of single adult households. Journal of
Agricultural Economics 45: 202–212.

3. Because there is more than one equation in our model, through predict(equation(eqname)), users
must specify the equation to which the coefficient in question refers. The hurdle equation is
always denoted hurdle, while the equation estimating the dependent variable conditional on the
first hurdle being passed is denoted above if a lower hurdle is estimated and below if an upper
hurdle is estimated.



C. Engel and P. G. Moffatt 797

Cragg, J. G. 1971. Some statistical models for limited dependent variables with appli-
cation to the demand for durable goods. Econometrica 39: 829–844.

Deaton, A., and M. Irish. 1984. Statistical models for zero expenditures in household
budgets. Journal of Public Economics 23: 59–80.

Dionne, G., M. Art́ıs, and M. Guillén. 1996. Count data models for a credit scoring
system. Journal of Empirical Finance 3: 303–325.

Dong, D., and H. M. Kaiser. 2008. Studying household purchasing and nonpurchasing
behaviour for a frequently consumed commodity: Two models. Applied Economics
40: 1941–1951.

Garcia, B. 2013. Implementation of a double-hurdle model. Stata Journal 13: 776–794.

Heckman, J. J. 1979. Sample selection bias as a specification error. Econometrica 47:
153–161.

Jones, A. M. 1989. A double-hurdle model of cigarette consumption. Journal of Applied
Econometrics 4: 23–39.

List, J. A. 2007. On the interpretation of giving in dictator games. Journal of Political
Economy 115: 482–493.

McDowell, A. 2003. From the help desk: Hurdle models. Stata Journal 3: 178–184.

Moffatt, P. G. 2005. Hurdle models of loan default. Journal of the Operational Research
Society 56: 1063–1071.

Smith, M. D. 2003. On dependency in double-hurdle models. Statistical Papers 44:
581–595.

Tobin, J. 1958. Estimation of relationships for limited dependent variables. Economet-
rica 26: 24–36.

Train, K. E. 2009. Discrete Choice Methods with Simulation. 2nd ed. Cambridge:
Cambridge University Press.

About the authors

Christoph Engel is a director of the Max Planck Institute for Research on Collective Goods,
Bonn, Germany.

Peter Moffatt is a professor of econometrics in the School of Economics at the University of
East Anglia, Norwich, UK.




