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Abstract. Multilevel multiprocess hazard models are routinely used by demog-
raphers to control for endogeneity and selection effects. These models consist of
multilevel proportional hazards equations, and possibly probit equations, with cor-
related random effects. Although Stata currently lacks a specialized command for
fitting systems of multilevel proportional hazards models, systems of seemingly
unrelated lognormal survival models can be fit with the user-written cmp com-
mand (Roodman 2011, Stata Journal 11: 159–206). In this article, we describe
multiprocess survival models and demonstrate theoretical and practical aspects of
estimation. We also illustrate the application of the cmp command using examples
related to demographic research. The examples use a dataset shipped with the
statistical software aML.

Keywords: st0358, survival analysis, multilevel analysis, multilevel multiprocess
hazard model, simultaneous equations, SUR estimation, cmp

1 Introduction

Multilevel multiprocess hazard models are routinely used by demographers to adjust re-
gression estimates for endogeneity and selection effects. Originally, multilevel multipro-
cess models were developed as systems of proportional hazards models with correlated
individual-level random effects (Lillard 1993). The multilevel multiequation modeling
framework also accommodates the joint estimation of hazard and probit equations to
account for the endogeneity of dummy explanatory variables that appear in the hazard
equation of primary interest (Lillard, Brien, and Waite 1995; Impicciatore and Billari
2012). The joint estimation accounts for the correlation of the random effects and
allows researchers to control for the effects of unobserved personality traits.

To date, no official Stata commands are devoted to estimating systems of sur-
vival models. Therefore, it is not surprising that multiprocess hazard models are fit
using other statistical packages, including aML (Lillard and Panis 2003) and MLwiN
(Rasbash et al. [2012]; see also Leckie and Charlton [2013]). With the recently intro-
duced gsem command, Stata can now fit systems of survival models with correlated
random effects. In this article, we demonstrate how Stata users can fit multiprocess
models with the user-written cmp command (Roodman 2011). cmp is a flexible tool to
estimate systems of equations with various link functions and with normally distributed

c© 2014 StataCorp LP st0358



T. Bartus and D. Roodman 757

and correlated errors. Although most of the bivariate models fit in the article could
also be fit with gsem, cmp offers two advantages over gsem for survival modeling. First,
cmp is structured to allow cross-equation correlations in modeling errors, even when
equations have probit, interval, or other kinds of censoring. Doing the same with gsem

is cumbersome because it requires a user to create latent variables, impose constraints
upon them, and mathematically transform the results for intuitive interpretation. Sec-
ond, cmp naturally deals with the truncated outcomes, which is necessary when using
multispell survival data.

In this article, we explain how cmp can be used to fit systems of lognormal survival
models or systems that may also include probit models. We also show how recent
additions to the cmp package enable researchers to fit systems of multilevel models
with random effects. This article is organized as follows. In section 2, we describe
multiprocess hazard models, as developed by Lillard (1993). In section 3, we describe
the cmp compatible models that we label multiprocess survival models. We give the
syntax for estimation in section 4. We then present examples in section 5 using a
dataset shipped with aML, and we conclude in section 6.

2 Multiprocess hazard models

2.1 Motivation

Multiprocess modeling was motivated by the insight that explanatory variables are of-
ten endogenous because of selection mechanisms. Suppose a researcher examines the
impact of children on marital stability. Estimates of ordinary survival models of the
hazard of divorce are likely to be biased because of the presence of two forms of en-
dogeneity (Lillard and Waite 1993). First, having children is the outcome of a process
of timing of births. Second, the latter process may depend on the latent propensity to
end the marriage: if couples expect their marriage to be short-lived, they may post-
pone the first (or higher-order) births. Therefore, the latent expectation of marriage
dissolution creates a spurious negative relationship between the number of children and
the hazard of marital dissolution. If children negatively affect the hazard of separation,
the relationship between children and marital dissolution might be both positive and
negative.

The classic method of eliminating the endogeneity bias is to estimate systems of
equations with joint normally distributed disturbances (Heckman 1978). Let y˚

1 and
y˚
2 denote the endogenous latent variables under study; for instance, the former might
denote the hazard of conception, and the latter might denote the hazard of marital
dissolution. The dependence of each latent variable on the other, as well as on other
explanatory variables, is described with the following structural equations

y˚
1 “ α1

1X1 ` λ1y
˚
2 ` ε1

y˚
2 “ α1

2X2 ` λ2y
˚
1 ` ε2
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where X1 and X2 are vectors of observed variables, and α1 and α2 are vectors of
coefficients. Observed realizations of the latent variables, like marital status or the
number of children, may be included in the explanatory variables.

Endogeneity arises from the presence of latent variables on the right-hand side of the
structural equations. Hence, one should estimate the system of reduced-form equations.
Estimation must consider that the residuals in the reduced-form equations are probably
correlated, even when the disturbances in the structural equations are independent of
each other. If the latter error terms were normally distributed, the following system,
supplemented with appropriate link functions, must be estimated:

y˚
1 “ β1

11X1 ` β1
12X2 ` v1

y˚
2 “ β1

21X1 ` β1
22X2 ` v2„

v1
v2


„ N

ˆ
0,

„
σ2
1 σ12

σ12 σ2
2

˙

The estimation of the variance–covariance matrix of the residuals also makes it easier to
interpret the results and separate the causal and selection effects (Heckman 1978). The
reduced-form coefficients depend on the corresponding structural parameters and the
selection parameters λ1 and λ2. The estimation of the covariance matrix of the reduced-
form residuals enables one to estimate the selection effect, because the elements of this
matrix depend on the selection parameters and not on the structural parameters. One
can then use the available estimates of the selection effects to identify the structural
parameters. For instance, suppose that λ2 were constrained to be 0 and the variable xj

appears in both X1 and X2. Here β21 “ α2 and β22 “ 0, which implies that β2j “ α2j .
Hence, the reduced-form coefficient of xj in the first equation, β1j “ α1j ` λ1β2j , and
the estimated covariance of the residuals is λ1σ

2
2 . Therefore, the structural coefficient

can be recovered as
α1j “ β1j ´ λβ2j “ β1j ´ σ12

σ2
2

β2j (1)

2.2 Multilevel multiprocess hazard models

The estimation strategy outlined above cannot be applied to survival analysis without
further modifications or extensions. In the popular proportional hazards models, the log
of the hazard rate equals the linear combination of variables and coefficients. This model
can be restated as a latent-variable model in which the random component of the latent
variable follows an exponential distribution. Without a widely accepted multivariate
exponential distribution, the correlation of the underlying residuals cannot be modeled,
and the seemingly unrelated estimation strategy seems to be infeasible.

To solve this problem, Lillard (1993) suggested the joint estimation of hazard models
including normally distributed and possibly correlated random effects. Including jointly
normally distributed random effects allows one to adjust estimates for the correlation
of the total underlying residuals, and it allows one to estimate the covariance matrix of
residuals and, hence, the selection effects. Note that the assumption of joint normality
applies only to the random effects. Note also that identifying the random effects requires
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repeated occurrences of outcomes. This data requirement is fortunately easy to meet
because demographic events such as marriage, divorce, and giving birth are recurrent.

The resulting model, often labeled as a multilevel multiprocess model, can be stated
as follows

y˚
1j “ β1

1X1j ` u1 ` v1j

y˚
2j “ β1

2X2j ` u2 ` v2j„
u1

u2


„ N

ˆ
0,

„
σ2
1.2 σ12.2

σ12.2 σ2
2.2

˙
(2)

where j indexes the recurrent observations, and for simplicity, X1j and X2j encompass
all explanatory variables in the equations. The subscript j expresses that the latent
outcomes as well as the explanatory variables may change over time, in general, and
over spells, in particular. All variances and covariances are indexed by 2, indicating
that the matrix expresses these covariances among level-2 residuals.

The model must be supplemented with appropriate link functions to reflect the in-
complete observability of y˚

1j and y˚
2j . In addition to the link function of proportional

hazards models, other link functions can be accommodated. For instance, the multilevel
hazard model of marital dissolution, which includes premarital cohabitation as an ex-
planatory variable, may be fit jointly with a probit model of premarital cohabitation to
control for a possible selection effect that arises because individuals who are less willing
or less able to live in marriages may choose cohabitation or are at an above-average risk
of divorce upon marriage (Lillard, Brien, and Waite 1995).

2.3 Fitting multilevel multiprocess models with gsem

To date, no official Stata command is explicitly devoted to estimating systems of hazard
equations with correlated random effects. The official gsem command, however, could
potentially fit such models. Because the focus of our article is not gsem, we just outline
the procedure. The starting point is the equivalence of exponential hazard models and
Poisson models (Holford 1980): if survival time t follows an exponential distribution
with parameter h, then the expected number of failures follows a Poisson distribution
with parameter ht. Relying on this result, Skrondal and Rabe-Hesketh (2004) show
that exponential hazard models can be restated as Poisson regression models, in which
the dependent variable is the failure-indicator variable and the explanatory variables
include the natural log of the duration of the current spell. These results suggest that
a user can use gsem to estimate (2) when the user specifies the Poisson family. The
user should also include correlated latent variables in the equations to represent the
correlation of the random effects (the u’s) across the equations.
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3 Multiprocess modeling with cmp

3.1 The multiprocess lognormal survival model

In this article, we argue that the user-written cmp command (Roodman 2011) allows
one to fit systems of lognormal survival models with jointly normally distributed error
terms. The cmp command supports interval regression models, even ones with truncated
dependent variables. Note that the lognormal survival model is just an interval-censored
regression of log failure-times. Note also that the lognormal model is formulated exclu-
sively in the accelerated failure-time metric, so it cannot be formulated in the propor-
tional hazards metric (Cleves et al. 2010). In short, multiprocess modeling boils down
to fitting lognormal survival models jointly with other lognormal survival models or
with probit models for endogenous regressors.

The seemingly unrelated system of log failure-times for P interdependent survival
processes (that is, the multiprocess lognormal survival model) can be defined as

log T1 “ β1
1X1j ` ε1j

. . .

log TP “ β1
PXPj ` εPj

ε „ N

¨
˚̋
0,

»
—–

σ2
1 . . . σ1P

...
. . .

...
σ1P . . . σ2

P

fi
ffifl

˛
‹‚ (3)

Subscript j expresses that the explanatory variables and the residuals change over time
and over the observation periods indexed by j. The process-specific equations are seem-
ingly unrelated because the process-specific error terms can be correlated.

Unlike the classic multilevel multiprocess models, the current model does not include
individual-specific random effects. Once the process-specific errors are assumed to be
normal, they can easily be modeled as intercorrelated (the normal distribution easily
generalizes to multiple dimensions). Therefore, it also becomes less essential to introduce
individual-level random effects when we want cross-equation correlation. Nevertheless,
we can add higher-level residuals to the structural equations, which are also assumed
to be jointly normally distributed.
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log T1j “ β1
1X1j ` u1 ` ε1j

. . .

log TPj “ β1
PXPj ` uP ` εPj

ε „ N p0,Σ1q
u „ N p0,Σ2q

Σ1 “

»
—–

σ2
1.1 . . . σ1P.1

...
. . .

...
σ1P.1 . . . σ2

P.1

fi
ffifl

Σ2 “

»
—–

σ2
1.2 . . . σ1P.2

...
. . .

...
σ1P.2 . . . σ2

P.2

fi
ffifl (4)

3.2 Maximum likelihood estimation

We can estimate the parameters of (2) and (3) using maximum likelihood. We must
write the formula for the likelihood, which we do at the individual level because the
random effects are correlated (identical) across the observations that constitute each
individual’s history.

We consider multispell data. Multiprocess modeling often requires multispell data
because qualitatively different events rarely happen simultaneously. That is, the ex-
ogenous or endogenous events throughout individual i’s life divide it into J episodes
or spells. (For simplicity, subscript i is omitted.) For each process p, the outcome of
the process in episode j is characterized by two variables: the time variable tpj and the
failure-indicator variable ypj . The former measures the time to the occurrence of the
event (or censoring). Termination of the process p in episode j is indicated by ypj “ 1;
censoring is indicated by 0 values.

We begin with the log likelihood for a process with no random effect. We can
construct the log-likelihood contribution of any individual as follows. Log time to event
is either observed or censored. With the exception of the first spell, log time to event is
left-truncated because waiting times in spell j must be larger than the time elapsed until
the beginning of that spell. The linear combination of the explanatory variables and
the parameters is denoted by θj “ β1Xj . Explanatory variables might change over time
but are assumed to be constant within each spell j. The log likelihood for individual i
is given by

logL “
Jÿ

j“1

 
yj log fj ` p1 ´ yjq logSj ´ logS0

j

(
(5)
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where

fj “ φ plog tj ´ θj ;σq

Sj “ Φ

ˆ
θj ´ log tj

σ

˙

S0
j “ Φ

ˆ
θj ´ log tj´1

σ

˙

where φp¨q and Φp¨q are the normal probability density and cumulative density functions
and t0 “ 0. (See, for instance, Klein and Moeschberger [2003].) Following Roodman
(2011), (4) can be rewritten as

logLi “
Jÿ

j“1

log

şBj

Aj
fpεqdε

ş8
Cj

fpεqdε

where

fpεq “ φpε;σq
Aj “ log tj ´ θj

Bj “ yjplog tj ´ θjq ` p1 ´ yjq8
Cj “ log tj´1 ´ θj

The interpretation of the first integrand requires the conventions that
şa
a
fpεqdε “ fpεq,

and 08 “ 0.

The generalization of the log-likelihood expression to multiprocess models is straight-
forward. For simplicity, we consider only two simultaneous processes. The log-likelihood
expression involves the two-dimensional integral

logLi “
Jÿ

j“1

log

şB1j

A1j

şB2j

A2j
fpε1j , ε2jqdε2jdε1j

ş8
C1j

ş8
C2j

fpε1j , ε2jqdε2jdε1j
where

Apj “ log tpj ´ θpj

Bpj “ ypjplog tpj ´ θpjq ` p1 ´ ypjq8
Cpj “ log tppj´1q ´ θpj

The log-likelihood formula extends to P processes analogously with order-P inte-
grals. Adding an equation to model a dummy endogenous variable introduces further
complications, though the principles remain the same. Users can refer to Roodman
(2011) for more details on formulation and practical computation of the integrals.
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To add a random effect to the two-process model, as an example, we redefine θpj “
βp

1
j
Xpj ` up, where u is the random effect defined earlier. Because u is unobserved, to

compute the individual-level likelihood, we must integrate it out.

logLi “
ż 8

´8

ż 8

´8

$
&
%

Jÿ

j“1

log

şB1j

A1j

şB2j

A2j
fpε1j , ε2jqdε2jdε1j

ş8
C1j

ş8
C2j

fpε1j , ε2jqdε2jdε1j

,
.
-φtpu1, u2q1;Σ2udu2du1

In general, the outer integrals can only be computed using numerical methods.
The dominant methods are adaptive quadrature and simulation. Roughly speaking,
adaptive quadrature computes the integrand at 6–24 points and averages the results
with special weights (Rabe-Hesketh, Skrondal, and Pickles 2002). Simulation computes
the integrand at 50, 100, or 500 points and takes the simple average of the results
(Haan and Uhlendorff 2006; Train 2009). The cmp command offers both methods as
part of a multilevel modeling extension that was added following Roodman (2011).

4 Syntax

The description of the syntax is restricted to components of the cmp command that are
specific to multiprocess survival modeling. For the full syntax of cmp, consult Roodman
(2011) and the help file for cmp.

4.1 Single-equation survival models

We begin with the syntax for ordinary (or single-process single-level) lognormal sur-
vival models. Lognormal survival models are interval-censored regression models of log
failure-times. We can fit interval-censored regression models with cmp as follows. Like
the official intreg command, cmp expects two dependent variables that indicate the
lower and upper bounds of failure-time. For observed failures (or uncensored observa-
tions), these limits are the same and are equal to the observed log failure-time. For
censored durations, the lower limit is the log time of the interview and the upper limit
is infinity, meaning that the event will occur somewhere in the future. We let lo and hi
denote the lower- and upper-limit variables, respectively. An interval regression model
of log failure-times is estimated with cmp using the following syntax

cmp (
“
label:

‰
lo hi = indepvars,

“
noconstant

‰
)
“
if
‰ “

in
‰ “

weight
‰
,

indicators(7)
“
options

‰

where label is used instead of lo in the output, the mandatory indicators(7) tells cmp
that the equation to be estimated is an interval-censored regression, and options is just
shorthand for any other options incorporated in cmp. The indicators(7) option can
be replaced by indicators($cmp intreg) if the cmp setup command is issued at the
beginning of the session.
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When using multispell data, researchers should account for the left-truncation of
the outcome as well as the interdependence of residuals within individuals. Suppose the
variable id identifies the individuals. Let durvar be the variable that records the log of
entry time, which is the log duration of a state measured at the beginning of the spell.
To account for the truncation of survival time as well as the dependence of residuals
within individuals, the basic syntax is extended as follows:

cmp (
“
label:

‰
lo hi = indepvars, truncpoints(durvar .)

“
noconstant

‰
)
“
if
‰

“
in

‰ “
weight

‰
, indicators(7) vce(cluster id)

“
options

‰

Another way to account for the correlation of residuals within individuals’ histories
is to use a multilevel survival model. To accommodate the individual-level random
effect, the basic syntax is modified as follows:

cmp (
“
label:

‰
lo hi = indepvars,

“
noconstant

‰
|| id:)

“
if
‰ “

in
‰ “

weight
‰
,

indicators(7)
“
options

‰

4.2 Syntax for multiprocess models

Next, we will fit systems of lognormal survival models. For simplicity, the exposition
considers two processes. We let lo 1 and hi 1 denote the respective lower and upper
limits for the first process, and we let lo 2 and hi 2 denote the respective lower and
upper limits for the second process. Multiprocess modeling requires multispell data;
we denote the respective entry times for the processes by durvar 1 and durvar 2. The
syntax is

cmp (
“
label 1:

‰
lo 1 hi 1 = indepvars 1, truncpoints(durvar 1 .)

“
noconstant

‰
) (

“
label 2:

‰
lo 2 hi 2 = indepvars 2, truncpoints(durvar 2 .)

“
noconstant

‰
)
“
if
‰ “

in
‰ “

weight
‰
, indicators(7 7) vce(cluster id)

“
options

‰

Note that the indicators() option now has two arguments, one for each equation.
indicators(7 7) means that both equations are interval-censored. For clarity, you
may instead type indicators($cmp intreg $cmp intreg), provided that you issued
the cmp setup command at the beginning of the session.

cmp also allows users to fit lognormal survival models jointly with probit models.
This is useful if the survival models of primary interest include endogenous dummy
variables. For simplicity, we consider one survival process and one probit equation. We
let lo and hi denote the respective lower and upper limits for the survival process. The
endogenous dummy variable is denoted by dvar. The syntax is
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cmp (
“
label:

‰
lo hi = dvar indepvars 1, truncpoints(durvar .)

“
noconstant

‰
)

(dvar = indepvars 2,
“
noconstant

‰
)
“
if
‰ “

in
‰ “

weight
‰
, indicators(7 4)

vce(cluster id)
“
options

‰

The 4 (alternatively, $cmp probit) requests a probit model for the second equation.

Heckman-type modeling to control for sample selection bias is also possible. Sup-
pose that the survival model applies to a subsample that is identified by the indicator
variable sample. Survival estimates can be adjusted for sample selection bias by using
the following syntax:

cmp (
“
label:

‰
lo hi = indepvars 1, truncpoints(durvar .)

“
noconstant

‰
)

(sample = indepvars 2,
“
noconstant

‰
)
“
if
‰ “

in
‰ “

weight
‰
,

indicators("sample*7" 4) vce(cluster id)
“
options

‰

The second probit equation applies to the sample defined by the optional if, in, and
weight syntax elements. The survival model, however, is fit using observations where
sample equals 1.

5 Examples

5.1 Introduction: The research problem and the dataset

Our examples consider the relationship between education and the timing of births.
Evidence suggests that highly educated women who postpone the transition to moth-
erhood space the first and the second births closer together. We use a sample dataset
that comes with the statistical software aML (Lillard and Panis 2003). The dataset con-
tains information on marital births and marriage durations for American women. The
slightly modified and Stata-compatible version is obtained as follows:

. use http://web.uni-corvinus.hu/bartus/stata/divorce.dta
(Data on marriages (source: divorce4.raw, shipped with aML))

The data have a multilevel structure; conception episodes are nested within mar-
riages, and marriages are nested within individuals. Marriages within individuals are
identified with the variable marnum, and conception episodes within marriages are iden-
tified with the variable numkids, which measures the number of kids at the beginning
of conception episodes. Each row records the duration of a conception episode; the
duration is the difference between two variables, time and mardur. mardur measures
the duration of the marriage at the beginning of each conception episode, and time

measures the date of separation (or interview date).
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We use data on only the first two conception episodes within the first marriages.
For convenience, we recode the numkids variable to indicate parity or birth order. The
Stata commands are as follows:

. keep if marnum==1 & numkids<2
(4210 observations deleted)

. replace numkids = numkids+1
(5446 real changes made)

Next, we generate the limit variables lo and hi. For observed failures (or uncensored
observations), these limits are the same and are equal to the observed log failure-time.
For censored durations, the lower limit is the log time of the interview and the upper
limit is infinity, meaning that the event will occur in the future. In our example, failure
time is the time to conception, which is the difference between time and mardur. The
Stata commands are as follows:

. generate lo = ln(time-mardur)

. generate hi = cond(birth==1, lo, .)
(1857 missing values generated)

We want to know the effect of education on the spacing of second births. To find
our answer, we regress the log of waiting time to the second birth on education and
other control variables in the sample of mothers of one child. We use the key explana-
tory variable hereduc, which is a categorical variable with three categories: primary,
secondary, and higher education. (Actually, these variables are computed from years of
schooling.) We then use secondary education as a reference category. We do this with
the help of the factor-variable notation ib2.hereduc, which forces Stata to treat the
second category as a reference. For simplicity, we use only the age at the beginning of
the conception spell (that is, the age when the first child was born) and its square as
control variables. We centered the age around 30 to minimize the correlation between
age and age-squared. After centering the age variable manually, the age-squared vari-
able is created with the help of the factor-variable notation. Note that the numkids==2
condition identifies mothers of one child.
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. replace age = age + mardur - 30
(5446 real changes made)

. cmp (birth2 : lo hi = ib2.hereduc c.age##c.age) if numkids==2, indicators(7)

(output omitted )

Mixed-process regression Number of obs = 2121
LR chi2(4) = 84.05

Log likelihood = -2745.3068 Prob > chi2 = 0.0000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

birth2
hereduc

<12 years -.025006 .0566602 -0.44 0.659 -.1360579 .0860459
16+ years -.2767705 .0861557 -3.21 0.001 -.4456325 -.1079085

age .041695 .0056703 7.35 0.000 .0305815 .0528086

c.age#c.age -.0012928 .0004843 -2.67 0.008 -.0022421 -.0003436

_cons 1.782701 .0491509 36.27 0.000 1.686367 1.879035

/lnsig_1 .101572 .0193556 5.25 0.000 .0636357 .1395082

sig_1 1.10691 .0214249 1.065704 1.149708

The third level of the hereduc variable has a negative and significant coefficient.
This suggests that the duration of the second conception episode is shorter among
highly educated women than among women with lower education. In other words,
highly educated women appear to space the first and second births closer together than
women with secondary education.

Next, we control for several forms of endogeneity and sample selection to check
whether the estimate of ´0.277 is robust.

5.2 Multilevel modeling of recurrent events

Our first concern with the previous outcome is that it might result from the following
selection effect: education negatively affects the transition to first birth, hence, educa-
tion is positively correlated with unobserved causes of fertility in samples of mothers
(Kravdal 2007). Therefore, the comparison of the fertility outcomes across educational
categories measures not only the true effect of education but also the effect of unob-
served preferences or personality traits (Kravdal 2001). We can control for this selection
effect by modeling the parity-specific transitions jointly.

One way to model the parity-specific transitions jointly is multilevel modeling. We
consider the waiting times to only the first two births. Note that the origin for the
second birth is set when the first birth happens. For simplicity, we consider the first
and second transitions. The dataset is already in long format and ready for multilevel
analysis: episodes within the same person appear in different records. The unobserved
person-specific characteristics that affect the transition to births are captured with a
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random effect at the level of individuals. The fixed part of the model is extended so that
the effects of education and age will be conditional on the number of children previously
born.

The new syntax element || id: specifies the random intercepts at the level of
individuals. By default, cmp uses adaptive quadrature with 12 integration points when
fitting the model. One can change the default behavior to simulation by using the
redraws() option; see the cmp help file for details. To easily compare this model with
the previous model, we use the second birth as the reference category so that the main
effects of education and age are indeed effects conditional on already having a child.

. cmp (birth: lo hi = ib2.numkids##(ib2.hereduc c.age##c.age) || id:),
> indicators(7)

(output omitted )

Mixed-process multilevel regression Number of obs = 5446
LR chi2(9) = 374.78

Log likelihood = -8025.5353 Prob > chi2 = 0.0000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

birth
1.numkids -.080781 .1041972 -0.78 0.438 -.2850038 .1234418

hereduc
<12 years .0857769 .0915342 0.94 0.349 -.0936268 .2651807
16+ years -.2325627 .1386793 -1.68 0.094 -.5043692 .0392439

age .0321114 .0093012 3.45 0.001 .0138814 .0503413

c.age#c.age -.0010855 .0008032 -1.35 0.177 -.0026597 .0004887

numkids#
hereduc

1#<12 years .3124741 .114095 2.74 0.006 .088852 .5360961
1#16+ years .494463 .1744228 2.83 0.005 .1526007 .8363253

numkids#c.age
1 .0890989 .014383 6.19 0.000 .0609089 .117289

numkids#
c.age#c.age

1 .003612 .0012324 2.93 0.003 .0011965 .0060274

_cons 2.061027 .0791532 26.04 0.000 1.90589 2.216165

/lnsig_1_1 -.1440281 .058177 -2.48 0.013 -.2580528 -.0300033
/lnsig_1 .2537051 .0222605 11.40 0.000 .2100753 .2973349

Random-effects Parameters Estimate Std. Err. [95% Conf. Interal]

Level: id
Standard deviations

_cons .8658635 .0503733 .7725544 .9704424

Level: Residuals
Standard deviation 1.288792 .0286892 1.233771 1.346266
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The standard deviation of the individual-level random effect is about two-thirds of
the standard deviation of the residual. Thus the interclass correlation is about 0.31.
The timing of second births is, therefore, not interdependent of the timing of first births.
The estimated effect of higher education is negative and has a similar magnitude as in
the previous example, but it lacks statistical significance. Now we have no evidence
to conclude that higher-educated women would space the first and second births closer
together.

5.3 Simultaneous equations for recurrent events

An alternative modeling strategy is to fit the two survival models jointly as seemingly
unrelated equations. Estimation requires a wide data structure. After reloading the
data and selecting the relevant cases, we drop the unnecessary variables and transform
the data into wide format. Then, we place educational levels and age at the beginning
of the conception episode in parity-specific global macros. The commands are

. use http://web.uni-corvinus.hu/bartus/stata/divorce, clear
(Data on marriages (source: divorce4.raw, shipped with aML))

. keep if marnum==1 & numkids<2
(4210 observations deleted)

. replace numkids = numkids+1
(5446 real changes made)

. generate lo = ln(time-mardur)

. generate hi = cond(birth==1, lo, .)
(1857 missing values generated)

. replace age = age + mardur - 30
(5446 real changes made)

. drop mardur time sep

. reshape wide birth age lo hi, i(id) j(numkids)

(output omitted )
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Two survival models are fit jointly as follows. The command lists two equations,
labeled birth2 and birth1. The mandatory indicators(7 7) option tells cmp that
both equations are interval-censored regression models.

. cmp (birth2: lo2 hi2 = ib2.hereduc c.age2##c.age2)
> (birth1: lo1 hi1 = ib2.hereduc c.age1##c.age1), indicators(7 7)

(output omitted )

Mixed-process regression Number of obs = 3325
LR chi2(8) = 299.69

Log likelihood = -7874.9256 Prob > chi2 = 0.0000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

birth2
hereduc

<12 years .0093223 .0577222 0.16 0.872 -.1038111 .1224557
16+ years -.2500341 .0867196 -2.88 0.004 -.4200015 -.0800668

age2 .0378136 .0058145 6.50 0.000 .0264175 .0492098

c.age2#c.age2 -.0012528 .0004896 -2.56 0.011 -.0022124 -.0002932

_cons 1.82599 .0510606 35.76 0.000 1.725913 1.926067

birth1
hereduc

<12 years .4280959 .0722 5.93 0.000 .2865864 .5696053
16+ years .2532307 .1111068 2.28 0.023 .0354653 .4709962

age1 .13542 .0123288 10.98 0.000 .111256 .1595841

c.age1#c.age1 .0027916 .001029 2.71 0.007 .0007749 .0048084

_cons 2.122898 .075198 28.23 0.000 1.975513 2.270283

/lnsig_1 .1070316 .0197925 5.41 0.000 .0682389 .1458243
/lnsig_2 .5709637 .0163749 34.87 0.000 .5388695 .6030578

/atanhrho_12 .1329566 .0398857 3.33 0.001 .054782 .2111312

sig_1 1.112969 .0220285 1.070621 1.156993
sig_2 1.769972 .0289831 1.714068 1.827699
rho_12 .1321787 .0391889 .0547273 .208049

To interpret the findings, we explore a similarity between the joint modeling of
survival processes and the Heckman-type selection modeling. The first-birth equation
implicitly defines the probability of being a mother at time t as P pθs ` σε1 ď log tq “
Φtplog t´ θsq{σu, where θs denotes the linear combination of explanatory variables and
coefficients appearing in the survival model of first births. The probit equation of a
Heckman model defines the probability of being a mother as Φpθpq, where θp denotes
the linear combination of explanatory variables and coefficients of the probit equation.
Hence, the coefficients of the first-birth equation in the joint survival model divided by
the estimated standard-deviation coefficient σ implicitly define the coefficients of the
probit selection equation. More precisely, because θp corresponds to ´θs, the survival
coefficients define the probability of not being in the sample. This is not surprising,
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because a large coefficient in the survival model corresponds to a small hazard of be-
coming a mother. To summarize, the first-birth equation in the above joint survival
model has the same function as the probit model of being a mother in the Heckman
selection model, except the survival equation of first births models the probability of
not being in the sample, that is, of being childless.

Our primary interest is to explain why women with higher education space births
closer together (see section 5.1). In the joint model, higher education in the second
conception equation has a significant negative effect. The difference between the näıve
estimate of ´0.277, reported in section 5.1, and the joint estimate of ´0.250 is the
selection effect. The selection effect is small and negative (´0.027). The selection effect
is negative because the cross-equation correlation of the residuals is positive, and higher
education has a negative effect on the implicit sample inclusion probability because it
has a positive effect on the waiting time to first births.

The joint estimation of survival models on sequentially constructed samples is a com-
putationally attractive alternative to a Heckman-type selection modeling. Nevertheless,
the cmp command accommodates the Heckman model (see section 4.2). In our example,
the estimation of the survival model of the timing of second births requires the sample
of mothers, while the estimation of becoming a mother uses the sample of all women. In
our dataset, this condition can be expressed as (birth1==1). The appropriate syntax
is

. cmp (birth2: lo2 hi2 = $birth2) (sel1: birth1 = $birth1),
> indicators("(birth1==1)*7" 4)

(output omitted )

5.4 Simultaneous equations for different processes

We now turn to the joint model of the timing of second births and the timing of marital
dissolutions. The motivation is that the timing of births depends on the quality of
the marriage. Because match quality is unobserved, we must control for this omitted
variable bias by fitting our survival model jointly with another survival model of marital
dissolution. For simplicity, suppose that marital stability depends on education, age at
the beginning of the conception episode, and the duration of the marriage. Given this
specification, the timing of births should also depend on the duration of the marriage.

The example presented in this section also illustrates the use of the cmp command
with multispell datasets. So far, we have used single-spell data. We turn to multispell
data to accommodate for duration dependence, that is, the effect of the duration of the
marriage on the timing of births and divorce. We split conception episode durations
into smaller intervals by using the stsplit command. We use only first marriages and
women who are at the risk of a second delivery. We use the following Stata commands to
load the data and to create the multispell data structure, as well as the time-dependent
variables for marriage duration and age at the beginning of a spell:
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. use http://web.uni-corvinus.hu/bartus/stata/divorce, clear
(Data on marriages (source: divorce4.raw, shipped with aML))

. keep if marnum==1 & numkids==1
(7535 observations deleted)

. generate dur = time-mardur

. generate double id2 = _n

. stset dur, fail(sep==1) id(id)

(output omitted )

. stsplit bdur, at(1 2 5 10)
(4201 observations (episodes) created)

. replace mardur = mardur + _t0
(4201 real changes made)

. replace birth = 0 if sep==.
(2454 real changes made)

. replace sep = 0 if sep==.
(4201 real changes made)

. replace age = age + mardur - 30
(6322 real changes made)

Note that both marriage duration (mardur) and age are measured at the beginning
of a spell and not at the time when events happen. Originally, the age variable measures
age at the beginning of the marriage. The last command changes this variable into age
at the beginning of a spell, centered around 30 years.

Next, we generate the dependent variables. We study two parallel processes (the
timing of marriage dissolution and the timing of births), therefore, we have to generate
two pairs of limit variables. The respective limit variable names for marriage dissolution
and birth processes will begin with letters m and b. The Stata codes to create the
dependent variables are

. generate mlo = ln(mardur+dur)

. generate mhi = cond(sep==1, mlo, .)
(6076 missing values generated)

. generate blo = ln(bdur+dur)

. generate bhi = cond(birth==1, blo, .)
(4854 missing values generated)

The only new explanatory variable is mardur, that is, the duration of the marriage
at the beginning of the spell. The regression equations and the joint model are defined
as follows. The new syntax elements include the request of clustered standard errors
and the truncation option within both models. The latter accounts for the fact that
times to event are left-truncated in multispell datasets, with the exception of the first
spell.
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. cmp (birth: blo bhi = ib2.hereduc c.age##c.age mardur, trunc(ln(bdur) .))
> (divorce: mlo mhi = ib2.hereduc mardur, trunc(ln(mardur) .))
> if numkids==1, vce(cluster id) indicators(7 7)

(output omitted )

Mixed-process regression Number of obs = 6322
Wald chi2(8) = 683.92

Log pseudolikelihood = -3648.3458 Prob > chi2 = 0.0000

(Std. Err. adjusted for 2121 clusters in id)

Robust
Coef. Std. Err. z P>|z| [95% Conf. Interval]

birth
hereduc

<12 years .0075443 .052122 0.14 0.885 -.0946129 .1097016
16+ years -.2922881 .073531 -3.98 0.000 -.4364062 -.14817

age .0275883 .0079738 3.46 0.001 .0119599 .0432166

c.age#c.age -.0023959 .0009563 -2.51 0.012 -.0042702 -.0005216

mardur .1214816 .0139052 8.74 0.000 .0942278 .1487353
_cons 1.823491 .0978358 18.64 0.000 1.631736 2.015245

divorce
hereduc

<12 years -.0163363 .0729228 -0.22 0.823 -.1592624 .1265897
16+ years .3624115 .1364096 2.66 0.008 .0950536 .6297693

mardur .1109086 .0131804 8.41 0.000 .0850754 .1367417
_cons 3.11875 .1964164 15.88 0.000 2.733781 3.50372

/lnsig_1 -.0309254 .0341747 -0.90 0.366 -.0979065 .0360558
/lnsig_2 -.0764664 .1162889 -0.66 0.511 -.3043883 .1514556

/atanhrho_12 -.5666712 .1151736 -4.92 0.000 -.7924072 -.3409352

sig_1 .9695479 .033134 .9067337 1.036714
sig_2 .9263841 .1077281 .7375744 1.163527

rho_12 -.5129104 .084874 -.6597706 -.328312

To interpret the results, recall that the birth equation is not a structural equation but
a reduced-form equation (see section 2). The structural effect of higher education must
be recovered using (2). Because the covariance is the product of the displayed correlation
and standard deviations, the structural coefficient in question can be estimated as

α̂1j “ β̂1j ´ σ1r12

σ2
β̂2j “ ´0.292 ´ 0.969p´0.513q

0.926
0.363 “ ´0.097
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To assess the significance of this estimate, it is more useful to do the calculation with the
official nlcom command. The resulting linear combination, labeled nl 1, is as follows:

. nlcom _b[birth:3.hereduc] - _b[divorce:3.hereduc]*
> tanh(_b[atanhrho_12:_cons])*exp(_b[lnsig_1:_cons])/exp(_b[lnsig_2:_cons])

_nl_1: _b[birth:3.hereduc] - _b[divorce:3.hereduc]*
> tanh(_b[atanhrho_12:_cons])*exp(_b[lnsig_1:_cons])/exp(_b[lnsig_2:_cons])

Coef. Std. Err. z P>|z| [95% Conf. Interval]

_nl_1 -.0977424 .1021125 -0.96 0.338 -.2978793 .1023945

The resulting nonlinear combination lacks statistical significance. Thus there is
no evidence that education would have a direct effect on the timing of births. The
negative net association between education and the time to second births is indirect;
it is mediated through the latent satisfaction with marriage. The positive coefficient
of higher education in the divorce equation suggests that highly educated women tend
to live in relatively stable marriages. The negative correlation of the residuals suggests
that women who are satisfied with their marriage tend to give birth to the second child
earlier.

6 Conclusion

Seemingly unrelated systems of multilevel proportional hazards equations, often labeled
multilevel multiprocess models, are routinely fit by demographers to adjust regression
estimates for endogeneity and selection effects. In this article, we make a first step
toward estimating systems of survival equations with Stata. We argue that systems of
lognormal survival models can easily be fit with the user-written cmp command. After
discussing the difference between multilevel multiprocess hazard models and multipro-
cess lognormal survival models, we demonstrate both the theoretical and the practical
aspects of fitting models of the latter kind. Our exposition is restricted to the joint esti-
mation of survival models, or the joint estimation of a survival and a probit model. We
show how to fit these models and how to interpret the coefficients of interest. However,
we do not consider systems including more than two equations and equations with error
components.

Although no official Stata command is explicitly designed to estimate multiprocess
survival models, the new gsem command in Stata 13 seems to enable users to fit systems
of proportional hazards models with correlated random effects. Continuous-time expo-
nential regression models can be restated as Poisson models (Skrondal and Rabe-Hesketh
2004), and gsem supports the Poisson distribution. However, gsem cannot handle the
left-truncation of survival times, so it cannot be used to fit systems of continuous-time
survival models on multispell data. In addition, cmp works in Stata 10.1 and later. In
sum, the cmp command is a useful tool for survival modeling in Stata.



T. Bartus and D. Roodman 775

7 Acknowledgments

We thank an anonymous reviewer for helpful comments and suggestions.

Bartus received financial support from the TÁMOP project 4.2.1/B-09/1/KMR-2010-
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Appendix. Multiprocess modeling with gsem

This appendix illustrates the capabilities of the gsem command. We thank the anony-
mous reviewer for the syntax and the permission to include the syntax in this appendix.

Example 1. Introduction: The research problem and the dataset

. cmp (birth2: lo hi = ib2.hereduc c.age2##c.age2) if numkids==2, indicators(7)

. gsem (lo <- ib2.hereduc c.age2##c.age2 if numkids==2,
> family(normal, udepvar(hi)))

Example 2. Multilevel modeling of recurrent events

. cmp (birth: lo hi = ib2.numkids##(ib2.hereduc c.age2##c.age2) || id:),
> indicators(7)

. gsem (lo <- ib2.numkids##(ib2.hereduc c.age2##c.age2) M[id],
> family(normal, udepvar(hi)))
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Example 3. Simultaneous equations for recurrent events

. cmp (birth2: lo2 hi2 = ib2.hereduc c.age2##c.age2)
> (birth1: lo1 hi1 = ib2.hereduc c.age1##c.age1), indicators(7 7)

. gsem (lo2 <- ib2.hereduc c.age2##c.age2 M@(1), family(normal, udepvar(hi2)))
> (lo1 <- ib2.hereduc c.age1##c.age1 M, family(normal, udepvar(hi1)))

Example 4. Simultaneous equations for different processes (this example cannot be
replicated with gsem because it does not support truncated outcomes)

. cmp (birth: blo bhi = ib2.hereduc c.age##c.age mardur, truncpoints(ln(bdur) .))
> (divorce: mlo mhi = ib2.hereduc mardur, truncpoints(ln(mardur) .)),
> vce(cluster id) indicators(7 7)




