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ABSTRACT

In the context of the single structural equation model, we derive

a number of exact results that extend and/or simplify results hitherto

available. First, we obtain expressions for both the conditional and

unconditional densities of the limited information maximum likelihood

estimator for the coefficients of the endogenous variables. The

unconditional result is considerably simpler than the corresponding

result obtained earlier by Phillips (1985), and we indicate how this

result can be used to obtain distribution results for the coefficients

of the exogenous variables in exactly the manner used in Phillips

(1984a) for the ordinary least squares and two-stage least squares

estimators. Next, we obtain expressions for the mean square error of

the ordinary least squares/two-stage least squares estimators for the

coefficients of the exogenous variables. Finally, a number of

generalizations of these results are indicated, and we explain briefly

how these results can contribute to further attempts to understand the

general problems of inference in this model.

PROPOSED RUNNING HEAD: Structural Equation Estimators
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1. INTRODUCTION

The study of exact distribution theory for the statistics used in

structural econometric models was pioneered by Basmann (1961) and

Bergstrom (1962) nearly thirty years ago. The subject is notoriously

difficult and, notwithstanding a surge of progress in the 1980's, it is

probably fair to say that our understanding of the properties of the

various estimators and tests that are used remains far from

satisfactory. Vastly improved computing technology may soon improve

matters - in particular, by bringing higher-order asymptotic results

within reach - but the challenge to provide a coherent structure for

inference in this model remains. Moreover, the lessons to be learned

from these efforts are not confined to the structural model, for this

model has much in common with the multivariate time-series models that

are currently of such interest to econometricians generally - see

Phillips (1988) and (1989).

This paper extends the results available for the single structural

equation model in two. ways. First, we derive both a conditional and an

unconditional version of the density of the limited information maximum

likelihood (LIML) estimator for the coefficients of the endogenous

variables. Primitive versions of these results were initially given in

Hillier (1987). The unconditional result provides an alternative to

the expression given in Phillips (1985) for the density of the LIML

estimator for these coefficients, and permits an immediate extension of

the results in Phillips (1984a) for the ordinary least squares (OLS)

and two stage least squares (TSLS) estimators of the coefficients of

the exogenous variables to the LIML case. Second, we provide exact

expressions for the mean square error- of the OLS and TSLS estimators of

the coefficients of the exogenous variables. These results supplement



the results in Phillips (1984a), Skeels (1989a) and (1989b), and

Hillier (1985b).

The conditional result for LIML hinges on a decomposition for

positive definite symmetric matrices - Theorem 1 in section 4 - that is

apparently new. This is a key result for this model, for the following

reason. The single structural equation model is an example of a curved

exponential model - that is, a model in which the dimension of the

minimal sufficient statistic exceeds that of the parameter space, see

Efron (1975), Barndorff-Nielson (1980), Hillier (1987), and Hosoya,

Tsukuda, and Terui (1989). In such models marginal distributions of

the type traditionally studied for this model are not the 'relevant'

bases for judging the merits of the procedures of interest, but should

be replaced by particular conditional distributions. Theorem 1 in

section 4 provides a means of obtaining both a variety of joint

distributions, and the conditional distributions relevant in this

context. In section 8 we briefly indicate how these results follow

from Theorem 1, but a detailed study of the curved exponential

character of this model is not attempted here.

2. MODEL AND CANONICAL FORMS OF ESTIMATORS

We consider a single (normalized) structural equation

(1) y = y(3* + Z
1
7* + u ,

with corresponding reduced form

(2) (Y,Y) = (Z Z 111 111] + (v,V) .1' 2 Tr
2 

IT
2
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Here y is N x 1, Y is N x n, Zl is N x Kl and Z
2 

is N x K
2
. We assume

that K2 n, so that (1) is apparently identified, that Z = (Z1,Z2) is

fixed and of full column rank K = K
1 
+ K

2' 
and that the rows of (v,V)

are independent normal vectors with mean zero and common covariance

matrix

[ (4)11 (4)21
w
21 

0
22

1 n

We shall also refer to an unnormalized version of (1):

(3)

(4)

(5)

(Y,Y)P6, = Z1 
T*.+ u .

The compatibility of (1) with (2) entails the relations

- g*
((n1)13A = T*)

n
2 
- IT

2
g*= 

2'
H
2
43 = 0)

and u = v - Nig* = (v,V)(3A), where the relations in brackets refer to

the unnormalized equation (3). We shall assume that (1) (and (3)) are

compatible with (2), but defer for the moment any .assumption on the

identification of (1) and (3).

The OLS and TSLS estimators for T* in (1) are of the form

(6) = (Z/Z
1 
) 1Z'(y - Yb) ,

1  1

where b denotes the OLS or TSLS estimator for p* in The

LIML estimator for T* is given by

(7)
-1 ,(zly yy,Y;

where ij
A 
is any n+1) x 1 vector that maximizes

4



(8)

where P = I-Z(Z'Z) 12' and P1 
= I-Z

1 
(Z'Z

1 
) 1Z1

. 
Now, fj

A 
is determined by

1 1

(8) only up to a scalar multiple, or, to put thi
s another way, only the

direction of k is determined, not its length.
 Thus, gl in (7) is

well-defined only when rjA is normalized in some wa
y, and i4A can, but need

not, be normalized to correspond with (1). Partitioning pA as

= (kA'14212)/'
with [462 nx1, we set 

b = P--PA2
1- (note that b is

- A1 

uniquely defined even though is not), and define the LIML estimator

for T* in the normalized .equation, (1), as in (6). Since this

normalization for the LIML estimator is probably the 
most common, (6)

covers all of the estimators for T* that are in commo
n use, and is the

version of the LIML estimator that we shall discuss. 
However, it would

be of considerable interest to study the impact (if any) of the

normalization rule adopted for pA on the esti
mator g1 

in (7), but that

is a subject for another paper. The effect of the normalization rule on

the properties of the estimators for p* and 13 is studied in Hillier

(1990).

Joint sufficient statistics for (n1,111), (n2,112), and Q are

) = (z'z
1 
) 12'(y 
" 

Y) at ft ) = 
(ZT12 

)
-1
ZiP1 " 

(y Y) and S*
1 2' 2 2 2 

(y,Y)'P(y,Y). Let -

[ 1/w 0 *

-1/21 '

22

-1
where w

2 
= w

11 
-w

21
' 

22 w21 
and a = 

Q22
-1

w21' 
so that T'OT = I

n+1' 
and

define

1/2 -
(9) (x

1'
X
1
) = (Z'

1
Z
1 
) (Tr

1'
t
1
)T 
', 



1/2 ^
2

(x,X) = (ZiP
1 
Z
2 
) (r

2'
II
2
)T 
' 

= T'S*T .

It is straightforward to check that (x1,X1), (x,X), and S are mutually

independent, that S W114.1(m, In+1), where m = N-K, and that the rows of

both (x1'X1) and (x,X) are independent normal vectors with covariance

matrix 
In+1' 

with

(12) 
E(x1' 

X
1 
) = (Z'Z

1 
)
-1/2

Z/ 
'

Z(n = , say,1 1 

and

(13) E(x,X) = (VP
1 
Z
2 
)
1/2

Or
2'

IT
2
)T = (AM), say,2 

where it = (nl, Ty' and U = (111,

The canonical forms of the OLS, LIML, and TSLS estimators for g.

are

-
(14) ro = (X'X+S22)

1 
(X'x+s

21
)

-(15) r
1 

= -h 
11
h 
2

(16) r
2 

= (X'X)
-1

X'x

respectively, where S has been partitioned to conform with the partition

of 2 above, and h =
1' 2 

h'Y is any characteristic vector satisfying

[S - fi(x,X)'(x,X)]h = 0, with fl the largest root of IS - f(x,X)'(x,X)1
= 0. It is easy to check that, in each case, r and b are related by

(17) =
1/2

(b a)/w.
22



Defining s = 
(Z'Z1 

)
1/2 

g/w, the canonical statistics to be studied below
1 

for the normalized case are of the form

s
i 
=x

1 
- X

1
r
i 

i = 0,1,2.

Thestatisticsri (i=0,1,2),andliencethes.in (18), are
1

well-defined as long as N-K n+1 and K2 n+1, whether or not equation

(1) (or (3)) is identified. In what follows special cases of some

results are given under various simplifying assumptions, some of which

imply lack of identification. The implications of these assumptions

will be discussed below, but for the moment we note that if rank(112) = n

and rank(ir
2'

II
2
) = n, both g* and g

A 
in (5) are uniquely defined except

that g
A 

is determined only up to scale. Equation (4) is then a

definition of e as a function of (ni,ffi) and 13. (or g , and hence as a

function of (Tr1'II1) and (Tr
2'

II
2
). Defining

(19)

and these too are uniquely defined and, in (12) and
1 1

(13), we have

(20) ml = E(x1) = T + mlp (1111,111)71)

and µ = E(x) = Mg ((p,M)17 = 0). Note that p = 0 if and only if Y is

independent of u in (1).

3. SOME CONDITIONAL RESULTS

Since (x1,X1) is independent of (x,X) and S, it is independent of

all functions of (x,X) and S, including the three statistics r 
0' 

r1,

and r
2' 

and the largest root, f
1' 

associated with the LIML procedure.



Using r to denote any one of r
0' 

r
1' r2' 

and setting s = x -X
1
r
' 

it

follows at once that, given r,

(21) slr N( ml-Mir , (1+r'r)I).

The densities of r
0' r1' 

and r
2 

are known - see sections 4 and 5 below

- so that the joint density pdf(s,r) is easily obtained, and the

marginal density of s can, in principle, be obtained from the relation

(22) pdf(s) = f n pdf(s1r) pdf(r) (dr).

This is the procedure followed in Phillips (1984a), who gives results

for the OLS and TSLS estimators. Skeels (1989a) and (1989b) also

obtains results for the OLS/TSLS estimators using a somewhat different

approach. In section 4 we derive an expression for the density of the

LIML estimator r
1 

that makes it possible to evaluate the integral in

(22) for the LIML case by exactly the method that Phillips (1984a) uses

to evaluate (22) for the OLS/TSLS estimators. In the remainder of this

section we derive some simple consequences of (21) and (22).

First, it is known that the densities of the OLS and TSLS

•
estimators r

0 
and r

2 
are identical except in respect of a single

'degrees of freedom' parameter, v, which is N-K1 for OLS, K2 for TSLS

(see equation (53) below). Hence, (22) implies that pdf(s) also differs

between these two cases only in respect of v, and we shall henceforth

make no distinction between these two estimators.

Next, consider an arbitrary fixed linear combination of r and s:

(23) = a'r + as = a'x
1 
+ 

1 
X'a

2 
)1 r

1 2 2 1 

with a
2 
# 0, and a

2 
normalized, if necessary, so that

follows from (21) that, given r,

8
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(24) w l r N a'm
1 
-(M'a

2 -a1 ' 
)'r (1+r/r)).

2 1 

The unconditional density of w can be obtained from (24) by the analogue

of (22); and it follows from this that the density of an arbitrary

linear combination of r and s has precisely the same form as the density

of s itself upon making the substitutions

M 9 
a'm1 ' 

• M 4 (Ma 2-a)' ;
1 2 1 1

for terms that originate from pdf(s1r). The results in Phillips (1984a)

and Skeels (1989a, 1989b) therefore cover not just the density of s for

the OLS/TSLS estimators, but also the densities of arbitrary linear

combinations of r and s. The results below for the LIML estimator

extend in the same way, but we leave the details to the reader.

It, is clear from (21) and (24) that the LIML estimator s1 
has no

moments, because r
1 

has none, and that for the OLS and TSLS estimators

the moments of s exist up to the same order as those of the r from which

it constructed (i.e.,-v-n). Note also that, for OLS and TSLS,

(25) E(w) = a'm
1 
-(M'a

2 
-a

1 
)1E(r) .

2 1 

In the case of an identified equation it follows from (20) that w is an

unbiased estimator for w0 
= at3 + ay only if either E(r) = p, which is1 2

true only if g = 0, or al = M'Ia2, a very special case. The moments of w

are discussed in detail in Skeels (1989a) and will not be considered

further here.

For an identified, normalized, equation we have m = T+M
1
p, and

(21) can be written as

9



(26) sir N( 7+M
1
(13-r), (1+r1 r)I).

Hence, in this case, given r,

(27) [Cs- '(s-T)/(1+ri r)1ir

Defining, for the identified case, q = (s-a')' -T), the conditional

density of q given r can be found easily from (27), and the

unconditional density from a formula analogous to (22). The

unconditional distribution function of q gives the probability content of

spherical regions centered at T. Some properties of q for the OLS/TSLS

estimators are given in section 6.

The mean of q (i.e., MSE(s) in the identified case) does not exist

for the LIML estimator, but for the OLS/TSLS estimators is given by (if

v-n > 2)

(28) MSE(s) = E
r 
K (l+rir)+(r-g)/MiM(r-g)].

Several properties of the OLS/TSLS estimators can be deduced fairly

easily from (28). First, it is clear that MSE(s) Kl, its value in the

simple regression (f3* = 0) case. However, a greater lower bound can be

obtained by completing the square in r in (28) and noting that the

expection of the resulting quadratic term in r cannot be negative. This

gives the lower bound

(29) MSE(s) + 
1 

g1m/[iK
1 
- m A 114114 g' 

where A = Kiln + MIM1. 
Second, it follows from (16) and the properties

1 
_

of the matrix (x,X) that, given X, r
2
IX - NMIX) 1XIMP, (XIX) ).

Evaluating the expectation in (28) conditionally, given X, we see that

10



(30) MSE(s) = E
X
{ K

1 
+ tr[A

1 
(X'X)

-1

,+ mix(x' x)-2x'm + cx — m ix(x'x) 
imm (x,x) lx,(x M)](3 1.

_

Since the matrix 
[ 
.. in the third term here is positive semi-definite

for all X, and the density of X does not depend on 13, it follows that,

for the TSLS estimator, MSE(s) is necessarily larger when p * 0 (i.e.,

when Y is correlated with u in (1)) than it is when p = 0. The same

result is easily obtained for the OLS estimator.

In some of the cases to be considered below the structural equation

is not identified, and in such cases q should be defined as either

q = (s-m1)'(s-m1), with a suitable definition of ml, or, if ml = 0,

simply as q = s's.

4. DENSITY OF THE LIML ESTIMATOR FOR ENDOGENOUS COEFFICIENTS

Phillips (1985) has obtained an expression for the density of r1

in an operator form. In this section we derive an expression for

pdf(r
1
) that is analogous to results obtained earlier for the OLS/TSLS

estimators (see section 5 below). The approach used is quite different

from that used in Phillips (1984b, 1985), and is based on a

decomposition for positive definite symmetric matrices that is of

independent interest (Theorem 1 below). Symmetrically normalized

analogues of the OLS/TSLS estimators for p
A 

in the unnormalized

equation (3) may be defined and have densities identical to that of the

LIML estimator except for certain numerical coefficients - see Hillier

(1990). The results below for LIML can be extended to cover these

estimators as well.

11



t•

Since r
1 

is a function of the independent matrices S and (x,X) we

shall first find the conditional density of r1 given the matrix (x,X).

This can then be converted into the unconditional density by averaging

with respect to the density of (x,X). Let

[ (x,x)1/2r 
2' 

(x,x)1/2 1'

t
2

0

with r
2 

as in (16) and t = x'[I-X(X'X)-1X']x, so that Q'Q

- -
(x,X)'(x,X) = W, say, and define R = (QS

1 
(21)

1 
. Since S is

independent of (x,X), it follows from Muirhead (1982, Theorem 3.2.11)

-
that, conditional on (x,X), RI( ,X) W (m, V), with V = (QQ')

1

n+1

That is,

--2)/2 - m/2,
(31) pdf(RI(x,X)) = C

1
etr{-4-1R}IRI

(mn
2

where C
1 
= [ 

m(n+1)/2r
n+1

(m/2)]-1

If 1-1 = 6111, (with h2 nx1) is a characteristic vector satisfying

[S - f W]h = 0, with fl the largest root of IS - fWI = 0, then r1 =
1

-1711g
2
. On the other hand, if h = (h ' 

h')/ is a characteristic vector
2

-
satisfying ER - flIlh = 0, then Q ih « h and, defining r = -h11

 
h2, we
' 

have r = t
2 
-1
(X/X)

1/2
Cr

1 
r
2 ' 

or

(32)
-1/2r .

r
1 
= r + t 

(Xx) 
'

That is, for fixed (x,X), r1 is a simple function of r. Thus, we shall

first find the conditional joint density of r, fl, and another matrix B

(defined in Theorem 1 below), given (x,X), and then transform to

pdf(r1,f1,81(x,X)) using (32). The following Theorem and its

corollaries (proved in the Appendix) give the details of the

12



transformation R 4 (f
1" ' 

r B) the corresponding transformation of the

measure

(dR) = A d Rij,

and various joint and marginal densities when R W114.1(k, V). Here, and

throughout the paper, we use the notational shorthand for various volume

elements explained in Muirhead (1982, Chapter 2).

Theorem 1:

(a) Let R ((n+1)x(n+1)) be a positive definite symmetric matrix, let F

= diagff1,f2,....,f114.11, with f1
>f2>....>fri+1>0, be a diagonal matrix

containing the ordered characteristic roots of R, and let H E 0(n+1) be

an orthogonal matrix with columns the orthonormal characteristic vectors

of R corresponding to the roots f
1
,f
2'
....

' n+1 
f respectively, with the

elements in the first row of H positive. Partition F and H as

f
1

0 /2
h
1

H
2 1

with F
2 

nxn and h
2 

nx1
' 

and define r =
2 

and

B=f
-
1
1
(I+rr')

-1/2
(r, I)H

2 
F
2 
H'(r,I)'(I+rrI)

-1/2

2

so that r E R
n 

and 0 < B < I. Then, the transformation R (f ,r,B) is

one-to-one, and the volume element transforms as

(33) (dR) = f
n(n+3)/2(1+r'r)

n+1)/21I-B1(df )( dr.)(dB)
1 1

i=1

(b) If R W
1 
(m,V), then the joint density of (fr,B) is given by

n+

(34) pdf(fl,r,B) = 
C1 
fm(n+1)/2-1IBI(m-n-2)/2

II-BI(1+r'r
1

13

n+1)/2
IVI

-m/2



)-1/2(r,,d1
etr{-

2 1
if V-1[(1+ri r)-1( 1-r) 

-r 
+ (r,IY(I+rr')-

1/2_,-
+rri1Al 

Note that, if V = I, r is independent of f and B because the last term

in (34) does not depend on r.

Corollary 1.1: Assuming R W114.1(m,V), the marginal density of (r,f1)

is given by

(35) 
pdf(r,f1 

) = C* f
m(n+1)/

2-1(1+r/r)
-(n+1)/2

etrf-lf V
-1IIVI-m/2

1 1 2 1

1 -
(m+n+2)/2; g1(I+rr')

-1/2
(r,I)V

1 
(r,I)1(I+rri)

-1/2
),

where C* = [CF((m-1)/2)r((n+3)/2)/r ((m+n+2)/2)1.
1 in n

Corollary 1.2: Assuming R 14,14.1(m,V), the marginal density of fl is:

(36) 
pdf(f1 

) c*, fm(n+1)/2-1 1 -1 -m/2
etrf- }IV'1 1

( n/2, (ft+3)/2; (m+n+2)/2, (n+1)/2; 2 1

where C n** = 2 (n+1)/2
C*/1-((n+1)/2).1 1

By applying Corollary 1.2 to pdf(fi lW), this result can be used to

obtain the unconditional density of fl. Rhodes (1981) has obtained a

result of this type for fl, but his expression for pdf(fl) involves

unknown coefficients; we leave it to the reader to confirm that the

-
expression obtained by using Corollary 1.2 does not (set V

1
 = W in

(36), multiply by pdf(W) in equation (40) below, and then integrate over

W>0).

Applying Corollary 1.1 to the matrix R = (QS
-1
(2')

-1
, with

-1
V = (QQ') we obtain the conditional joint density pdf(r,fi l(x,X)).

14



Transforming r 4 r1 using (32) (Jacobian t2-nIX/ Xl
1/2
) and simplifying, we

obtain

(37) pdf(r
1' 
f
1 
1(x,X)) = C* etrf-lf1 

Wlf
m(n+1)/2-1

lwl
(m+1)/2

1 2  1

n+1)/2 /2
(1+r'r

1

where we have put

ly(n+3)/2, (m+n+2)/2;Ch'Wh] 
12

(38)

r11

Lr1i)1+rr 
-1/2

i (I+r r' )
-1/2

1

and W = (x,X)1(x,X). Note that pdf(r , (x,X)) depends upon (x,X) only

through W, and that

-
(39) (GiW

-1
G) = (I+r 1)

1/2
[On() 

1 
+

-
r1-r2) (r1-r2)' (I+r

1 
r')

1/2

1

= (I+r
1 
)1/2:Xl[I-(x-Xr )[(x-Xr/)1(x-Xr1))- (x-Xr

1 
)1 ]X(I+r

1 
r'
1
)
1/2

.

The conditional result in equation (37) can be used to obtain a

number of interesting results that are useful for inference in this

model. For example, on multiplying (37) by pdf(W), and then

2 2
transforming W 4 (r2' 

t
2' 

X1X), we obtain pdf(ri, r2, fl, t2, X/X), and

from this we can obtain, for instance, the joint density of the

TSLS and LIML estimators, pdf(r1,r2). Some further results that follow

from (37) are mentioned in section 8 below

The matrix W = (x,X)'(x,X) has the non-central Wishart

distribution with K
2 

degrees

((3,I)item(g,I). That is,

15
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1 Lyn-
(40) pdf(W) = C2etr(-2W) w 

2n-2)/2 
oFi CK / , 43,Iywmc(3,I)14/4

where C2 = [etrf-WM(I+1313')/21/[2(114-1)K2/2

(41)

n+1
/2)1]. Now,

pdf(r 
'
f
1
) = 5 pdf(r

1'
f
1
IW) pdf(W) (dW) ,

W>0

with pdf(ri,fi lW) given by (37), and pdf(W) by (40). To evaluate the

integral we first transform to CI = (h,G)'W(h,G) (the Jacobian is unity

because (h,G) E 0(n+1)). Partitioning i4 as

w
l1 

w'
_

21 
1

-
W21 171

22

- -1- -, - -we then put U = i42 - w w w
11 21 21' 

z = w
21' 

and w = w
11' 

the Jacobian .

again being unity. Note that, in (37), h'Wh = w and, because

'W-1(11,G)] = [(11,G)1 W(h,G)]-1, U The argument of[(h,G) (G'W-1G)-1 = U.

the 
0 

function in (40) becomes

-1 
(h,G)1((3,I)174-//4,

z U + w zz'

where q is any nxn matrix such that WM. We can write this

function as an inverse Laplace transform:

-
a
n
r
n
(K
2
/2) S etr(Z)1z1 

K2,'2 
etrfA

22 
U/21

Re(Z)>0

-
expf(wa

11 
+ 2z'a

21 
+ w

1 
z'A z)/21(dZ) ,

16



where a
n 
= [2

n(n-1)/2/(2Tri)n
(n+1)/2] and we have put

all a21

a
21 

A
22

= (11,G)/03,IYRiz-1R(0,Imh,G)/2

(cf. Herz (1955), Constantine (1963), James (1964)). Since IWI

wIUI, and tr(W) = tr(1-4) = W

lwl =
-1

+wz
,
z+ tr(U), it is reasonably

straightforward to integrate over U > 0 (using Constantine (1963,

Theorem 1)), and over z E Rn (by completing the square). This leaves

(42) pdf(r f w) = 
[(27)n/2 n(m+K

2 r ((m+K )/2)C *C ]
2 1 2

f
1
m(n+1)/2-1

(l+f
1
) 
-n(m+K

2
+1)/2 

l+r') 
-(n+1)/2 (m+K

2 
-n)/2-1

r w 
1 1

-
a
n
r
n
(K
2
/2) S etr(Z)IZI

-K
2
/2 II

n
-A
22
/(

1
+f 
)m+K

2
+1)/2

Re(Z)>0

-1
2
F ((m+K2)/2, (n+3)/2; (m+n+2)/2.

' 
f
1 
[(1+f1)In-A2])

ex{_ -1a )1(dZ
-.-%4(1-1-fl-a11-a21[(1+fl)In-A22] 21 •

The term in the exponent of the last term in the integrand in (42)

may be written as

1 - -
-2-w(l+f

1
)11

n 
- Rcii-pw)tez 1 /2(i+f1)1/1In - A22/(1+f )

Hence, integrating over w > 0, we obtain an expression which can be

written in the form

m(-(43) pdf(rf
1
) = C

3
f

n+1)/21
(l+f

1 
) 
-(m

2
+K )(n+1)/2

(l+rir
1

17

n+1)/2



[an
r
n
(IC
2
/2)/F

n((n+1)/2)] 
etr(Z) Izi 

-K
2
/2

Re(Z)>0 R>0

etrf-[I - G'03,IYR'Z-41-(j3,I)G/2(1+fi)]R1

II - R(i+giv)Riz- /2(1+fi)I-(m+K2-n)/2

2
F
2
((m+K

2
)/2, (n+3)/2; (m+n+2)/2, (n+1)/2; f1 

R/(1+f
1 
))(dR)(dZ) ,

where C
3 

[ (m+K2
)(n+1)/2r 

n+1 
((m+K

2 
)/2)C*C

2 
I.

1 

(43)

with

(44)

In the totally unidentified case with M = 0 we obtain at once from

pdf(r
1' 
f
1 
) = pdf(r

1 
) pdf(f

1 
)

pdf(r
1
) = r((n+1)/2)[n(1+r'r

1 1

(cf. Phillips (1984b, (1985)), and

(45)

with

C
4 r((n+1)/2)r

n
((m+n+2)/2)rn+1(m/2)1"

n+1
(IC
2
/2)

n+1)/2

pdf(f
1
) = f

m(n+1)/2-1
(1+f 

-m+K 
2
)(n+1)/2

4 1

2F1((m+K2)/2, (n+3)/2; (m+n+2)/2;

(n+1)/2r
n
((m-1)/2)r

n
((n+3)/2)r ((m+K

2
)/2)

n+1

18



Thus, in this leading case r
1 

and f
1 

are independent. We shall see

shortly that this is not true in general.

In the general case, first notice that (43) is invariant under

G 4 GH, H E 0(n), because on making this substitution we can then

transform R 4 HRH' and leave the integral unchanged. Hence, replacing G

by GH and averaging over 0(n), the term

etr{WW,WR'Z-41(13,I)GR/2(1+f1)1 in (43) is replaced by the generalized

hypergeometric series 
0
F(1)(17,1-(13,I)GG'03,WR'Z-;2(1+f

1
), R). We may then

0

use results from Davis (1979) to evaluate the inverse Laplace transform

and obtain

-0.
(46) pdf(r ,f ) = C

4 r((n+1)/2)[n(1+r'r1 
)]1+1)/2 

etrf-M'M(I-113W)/21
1 

f
1
m(n+1)/2-1

(1+f ) 
-(m+K)(n+1)/2

1

((mK
2
-n)/2)

K 0M,KcM,K(mus,7.,„

j! k! (K /2) 0 0 
I)GG'W,WRV2, R(I+WV)R1/2)

adc;0 2 0

(1+f1)
-(j+k)

ga(f1)'

where

(47) g
a
(f

1
) = [ 

n
((n+1)/2)]

-1 
etr(-R)[C

a
(R)/C (I)]

a
R>0

with

(n+3)/2; (m+n+2)/2, (n+1)/2; f
1
R/(1+f

1
))(dR)

((m+K
2 
)/2) ((n+3)/2)

xX 
(f / l+f1 

)] g(a,A),E
t=0 A

19



(48) g(a,A) = E E 
(9
a'A)2}((n+1)/2) C (I)/Ca(I).

pEa.A p=p 
P P 

P*

The notation used here is explained in detail in Davis (1979) and

Chikuse and Davis (1986).

The marginal density of r1 itself may be obtained at once from

equation (46) by simply integrating over fl > 0. This gives the density

in the form

(49) pdf(r) = C
5 r((n+1)/2)[u(1+rir1 

1) 
)]
-(n+/2 

etrf-MWI+W)/21
1 

sx,K;0

a(a,K;0) 
j!k! 

wits I)GG'(g,IY1741/2, ii(I+(3g')R1/2),

with C
5 
= [r(m(n+1)/2)F(K

2 
(n+1)/2)C

4 
/r((m+K

2 
)(n+1)/2)], and

((m+K
2
-n)/2) (K

K2 
(50) a(adc;0) (K /2) ((m+K )(n+1)/2) °O

2 0 2 j+k

2 A A 
E E

t!((m+n+2)/2) ((n+1)/2)
x
(j+k+(m+K )(n+1)/2)

t 
•

t=0 X 2

Equation (49) is exactly analogous to equation (53) below for the

OLS/TSLS estimators.

When n = 1 (49) simplifies to

2 -
(51) pdf(r

1 
) = [n(1+r

1
)]

1 
expf-d /21

co
a(j,k) 2 j+k

E   (d /2) [(1+r
1
13)
2
/(1+r

2)(14132)]j,

j,k=0
j!k! 1

20



where, from (50),

(52) a(j,k) = [((m+K-1)/2). (K (1) /(( /2)
j j 2 j2 

x +
m+K

2
)
j+k

]

4F3((m+K2)/2, 2, m, j+1; (m+3)/2„ j+k+m+K2; 1) ,

and we have put d
2 
= tem(1+13

2
), a scalar in this case.

5. DENSITIES OF OLS/TSLS ESTIMATORS AND SPECIAL CASES

The density functions of the OLS/TSLS estimators have the

form (see (Phillips (1980), Phillips (1983), and Hillier (1985a)),

(53) pdf(r) = C (l+rir etrf-WM(I+(3f3')/21

c (x, [k} p
  C-"-'04/14(I+gri)(I+rr')-1(I+0')/2, wm13(3v2)

a,[k];0 j! k!

where v = N-K
1 
for OLS, v = K

2 
for TSLS, the constant C is given by

C
6 
= n(v+1)/2)/n

n/2
r((v-n+1)/2)],

and the numerical coefficients c
v 
a,[k];0) are given by

(54)
a [k]

c
v a,[k]

;0) = ((v+1)/2)a
((v-n)/2)k 

0' /(v/2)
0

The remaining notation is explained in the references above.

Equation (53) for the OLS/TSLS estimators is evidently analogous

to equation (49) for the LIML estimator, except that the numerical

coefficients a(a;k;0) are much more complicated than the cp(a,[k];(0 in

(53), and the powers of (1+rir) in the leading terms differ.
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The special cases to be considered below are:

Case A: (mM ) = 0, (µ,M) = 0

Here E(y,Y) = 0, equations (1) and (3) are totally unidentified, (21)

becomes simply s -.N(0, (1+r/di), (44) applies and (53) simplifies

to:

(55) pdf(r) = C
6
(1+r'r

In this case we take q = s's.

-(v+1)/2.

Case B: (A,M) = 0, (1111,M1) # o

Here Z
2 

is not involved in the reduced form, and again the model is

totally unidentified. This case yields the leading terms in the series

expansions of pdf(s) and pdf(q) for the general case, and hence embodies

some of the important properties of s and q. Here (21) and(55) apply,

and q = (s-m
1
)'(s-m

1
), with m

1 
= (Z'Z

1 
)
1/2

(n
1
-II

1
a)/w (not

because g and 7 are undefined).

Case C: p = 0 (rank(µ,M) = rank(M) = n)

Here the model is identified but Y is independent of u in (1). The

density of the OLS/TSLS estimators in (53) simplifies to

(56) pdf(r) = C
6
(1+r1r)

-(v+1)/2
etr{-M1 M/2}

(v+1)/2, v/2; M'M(I+rr') 1/2).

The density of the LIML estimator in (49) does not simplify greatly.

Here we may take q = (s-7)'(s-7) and 7 a ml.

We also give a number of results for the special case n = 1,

because •the general expressions are exceedingly complicated and

difficult to evaluate numerically except when n = 1, or perhaps n = 2.

22



6. MEAN AND DENSITY OF q: OLS/TSLS ESTIMATORS

Case A: (m1,M1) = 0, (µ,M) = 0

Since, in this case, sir - N(0, (1+r'r)I),

(57) pdf(qlr) = [ roc /2)] (l+r'r)
-K /2

expf-q/2(1+rir)lq
K
1
/2-1

,
1

and pdf(r) is given by (55). Multiplying (57) by (55), setting r = vt

-1/2 2
(v = r(r'r), t = r'r, (dr) 

= 2-1(t2)n/2-1 (dt2)"v"'dv)), and

integrating over viv = land t
2 
>0, we obtain

K /2-1
(58) pdf(q) 

r(K
1/2)] 1exp{-q/2} q 1

C(v,n) F (n/2, (v+K1+1)/2; q/2),

where

(59) C(v,n) = r((v+1)12)1-((v+Kl-n+1)/2)/r((v+Ki+1)/2)1M-n+1)/2).

Also, it is straightforward to show that

(60) E(q) = (v-1)K1/(v-n-1

CASE B: (µ,M) = 0, (m1,M1) # 0

Using (21) we find that

(61) pdf(q(r) =
2 -r(c

1 
/2)] 

(1+r'r)-/2 
exp{-q/2(1+rir)} q

K /2-1

exp{-r'M'IM1r/2(1+r'r)} F (K1/2; qr'M' r/4(1+r/r)
2
).

1

Multiplying (61) by (55), the integration over r E R
n

can be

accomplished as in Case A above and we find

23



(62) pdf(q) =

C(v,n)

with

/2rm lexpf-q/21 q
K
1
/2-1

/2)] 
1

(-1)
k
a*(j,k) (q/2)i

j,k=0 j!k! v
Cj+k 

(M
1
'M

1 
/2)

1
F
1
(j+k+n/2, 2j+k+(v+K

1
+1)/2; q/2),

(63) a*( ,k) = (1/2) ((v+K -n+1)/2) /(1( /2) ((v+K +1)/2)2j+k.i+ 1 . j 1 j 1

The mean of q in this case is most easily obtained from

(64) E(q) = Er[ K1(1+rir) + riM1M1r].

Multiplying (64) by (55) and integrating over r as before gives

(65) E(q) = [(v-1)K + tr(M'M
1 
)1/(v-n-1).

1 

CASE C: p 0

Consider first the mean of q ( = MSE(s)). Rewrite (64) in the form

(66)
-

E(q) = Kl + Er[(1+rir)tr[A1rr'(I+rrl)
1 
]).

Multiplying (66) by pdf(r) in (56), the resulting integral over r is

evidently invariant under the simultaneous transformations Al 4 HiA1H,

M'M 4 H'M'MH, H E 0(n), because, after making these transformations, we

can then transform r 4 Hr, leaving the integral unchanged. Hence,

averaging the integral over 0(n), we find that the expectation of the

second term in (66) is given by

(67) C e rf-Mi M/21 (l+r'r
rER

n
v-1)/2

(()+1)/2) ex'[11(M'M/2 A )Ca'[1]((I+rra 0 1 

a,[1];0 j!(v/2)a C(I
n
)

24
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•

To evaluate the coefficients in (67) we use:

LEMMA 1: For Re(t) > -1,

(68) I
xER

n

(1/2)
k a [k]
0 ' C (I
0 n

((I+xx')-1, xx'(I+xx1)-1 (dx)

PROOF: The integral on the left in (68) may be written as the

Laplace transform (with p =

(t+n+1)/2-p a,[k]
etr{-S(I+xx')}1S1 (S, xx'S

n
R S>0 
  dS)(dx).

Transform to z = S
1/2 

x and evaluate the Laplace transform using Davis

(1979), equations (2.12) and (2.2), to obtain

F ((t+n)/2)((t+n)/2)
a
(1/2)

k  a,e, c (I
n
) f 

n
expf-z'zl(ez) (dz

r
n
((t+n+1)/2)((t+n+1)/2) (n/2)

k

and this yields the right side of (68).

(69)

where

Using (68) in (67) with t = v-n-2, k = 1, gives (for v > n+1)

-
E(q) = 

(v1)
etrf-WM/21P(WM, A1),

(v-n-1)

((,-2)/2)
a 
((v+1)/2)

, a [1]
(70 P(M1 M, A ) = 0

a1 
C ' (M'M/2 A /2)

1 ch ' 1
a,[1],0 j!(v/2)

a
((v-1)/2)

is a polynomial in the matrices M'M and A
l' 

invariant under

M'M H'M'MH, A
1 
4 H'A

1
H, H E 0(n). When n = 1 (69) simplifies to
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(71) E(q) = K + 
A
1
+K

1 expf-A/21 
1
F
1
((v-2)/2, v/2; A/2),

1
v-2

where A
1 
= M'M

1 
and A = M'M. The second term in (71) is an increasing

1 

function of A
1, 

a decreasing function of A, and a decreasing function of

v (= K
2 
for the TSLS estimator).

The density of q = (s-a')' (s-s')can be obtained by much the same

argument and we find:

(72) pdf(q) =

03

/2-1
/2

2r(K
1 
/2)]etrf-M'M/21C(v,n)

(-1)1+k(q/2)1+t i ,k t a k+t]
(WM/2, M'M

i,j,k,t=0 i!j!k!t! a,0Ea. k+E]e/5 
' C ' 

1 
1/2),

with coefficients e
i
'
a
'
k
'
t 
equal to

(73)
((v+1)/2) (i+t+(v+K

1
)/2)

a
((v+K -n+1)/2) (1/2)

0
a 1 i+t k+t a, [k+t].

(v/2)
a
(K

1
/2)

t
(i+t+(v+K +1)/2) ((v+K +1)/2) çt

1 1 i+t

When n = 1 this reduces to

(74) pdf(q) = exp{-q/2}q
K /2-1

/[2
K
1
/2r(K1/2)]c(v,i)

co (1/2)
t
((v+K

1
)/2)

k+t

kitl(K1 
/2) ((v+K +1)/2)

k+2t
(A1 

q/4pk(A
'
A
1
)

k,t=0 • •  t 1

1F1 (1'2,t+ k+2t+(v+K
1 
+1)/2; q/2

where

k
(75) p

k
(A,A

1
) = expi-(A+A

1 
)/21 E [((v+1)/2) /(v/2) ] (A/2

j=0lj) 
. .

THE GENERAL CASE

(A /
k-j

To evaluate E(q) = MSE(s) in the general case, first write (27) in

the form

26



(76) E(q) = K
1 
+ gim'm

1 
g + tr[A

1 
E(rr')] - 2g'M'M

1 
E(r).

1 1 

Now, using equations (46) and (48) from Hillier (1985a), the terms

E(rr') and E(r) in (76) can be expressed as inverse Laplace transforms,

and these can be evaluated using results from Davis (1979). Thus,

(77) 2 'M'M E(r) = r
-

v/2)etrf-WM/21 a f etr(W)Wi
v/2

n Re(W)>0

- -
o
(v/2; M'MW

-1
/2) tr[M(gg'M'M +M'M gwww

1 
/2](dw)

=etrf-M'M/21 E 
(v/2)

a  a, ]
(M'M/2, mim(/m'm gp/)/2),

[1];0juv/2)0o0

where a
n 
= [2

n(n-1)/2
/(2Tri)

n(n+1)/2

matrix such that M'M = M'M. Also,

and, as before, R is any nxn

(78) tr[A E(rr')] = F (v/2)etrf-M'M/21 a I etr(W)IW
1

Re(W)>0

- 
1 

-- - -
F
0 
(v/2; M'MW

-1
/2)-{tr[mA

1
M'W

1 
Mf313'M'W

1 
]/4

-v/2

• + (1+WR'W-1-171(3/2)tr[Al(I-R'W- R/2)1/(v-n-1)1 (dW).

This integral can be resolved into the following three terms:

(79a)

tr(A )
1 

1+etrf-M'M/21a,T1];0.
(v/2)a 

0
a,[1]

C
a,[1](WM/2, www/2)},

(v-n-1) j!(v/2)
0 
0 0

(79b)

(v/2)
a  a [1] a [1](v-n-2) o. 

E 0 '
(v-n-1) 

C ' (M'M/2, M'MA
1 
/2)

j!(v/2) 0
a,[1];95

(v/2)
a a,[1],[1]ca,[1],[1](M'M/2, M'MA

1 
/2, mimpw/2)},

a,[1],[1 ;p
j!(v/2) Op
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and

(79c)

- etr{-M/M(I+(3f3')/21
(v/2) (1) 

a
'
[1],[t]

a,[1],[t];Piltl(v/2)p ep

a,[1],[t]
C (M'M(I+PR')/2, M'MA

1 
/2, M'MP(3h/2)1.

Inserting equations (78) and (79a-c) into equation (76) yields an

expression for E(q) in the general case. These equations simplify

greatly, of course, when n = 1, and we find

(80) E(q) = K1(1+(32) + 132(v-3)(A
1
+K

1
)/2 +

1
2g + cx1+K1 m1-13 —0

2
(v+A)(v-3)/2]/(v-2)]e

-A/2
1
F1((v-2)/2, v/2; A/2).

This reduces to equation (71) when g = o.

The density of q may be obtained by similar but much more

tedious calculations and we omit this result.

7. THE LIML ESTIMATOR FOR THE EXOGENOUS COEFFICIENTS

The joint density pdf(r
1' 

s
1
) is simply the product of equation

(49) with the conditional normal density pdf(si lri) in equation (21),

and this might well be the most useful result for these estimators from

the point of view of hypothesis testing. However, to integrate out r1

it is a simple matter to adapt the argument in Phillips (1984a) to this

case, and hence to obtain an expression for pdf(si) in an operator form.

We omit the details of this calculation, and give here instead the

results for Cases A•and B that provide the leading terms in the more

general expression for the density.
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CASE A: (mM
1
) = 0, (1,M) = 0

Since (omitting the subscripts on s and r for simplicity)

sir - N(0, (1+r/r)I), and pdf(r) is as in (44), it is reasonably

straightforward to obtain:

(81) pdf(s) = (2n
/2

expf-s's/21 C(n,n) 
1
F
1
(n/2, (n+K

1 
+1)/2; s's/2),

where C(v,n) is defined in (59). Transforming to q = s's then yields

pdf(q) in exactly the form (58), but with v replaced by n. Hence, in

this case the densities of the OLS, TSLS, and LIML estimators have

exactly the same form apart from a degrees of freedom parameter v which

takes the values N-K
1' 

K
2' 

and n respectively.

CASE B: (p,M) = 0, (m ,M ) # 0.

Here (21) and (44) hold for pdf(s1r) and pdf(r) respectively. Using the

same approach as in section 6 to integrate out r we find:

(82) pdf(s) = (270-1(1/2expf- s-m s-m
1
)/2} C(n,n)

:1:(11//22)).,r((+:(K+11))/

/22)

: 

c
l'+1c 1

c(14,1(s_m
1)(s-m1"1/4' M1M1/2)

j,k=0 1 +k

1
F
1
(j+k+n/2, 2j+k+(n+K

1
+1)/2; (s-m

1 
)'(s-m

1
)/2).

Transforming to q = (s-m1)' (s-m1)yields pdf(q) exactly. as in (62) except

that v is replaced by n throughout, so again the densities of the three

estimators differ only in repect of the degrees of freedom parameter, v.

Unfortunately, Case C = 0) is no simpler in the case of the LIML

estimator than is the general case (see equation (43) above for evidence

of this), so this special case must be treated by the methods described
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above for the general case. It does not seem possible to obtain

expressions analogous to (81) and (82) for the general case.

8. EXTENSIONS 

As indicated in section 4, the result in equation (37) can be used

to obtain, for instance, the joint density of the LIML and TSLS

estimators, pdf(r1,r2). By an obvious extension of the argument leading

to equation (21) we also have the conditional result:

(83)
)1 1 1 )

y 
1+r'r 1+r'r

2 
)

,s2)1(r1,r2) N 
,m 

I
K 

1 1' 1
1 (-r

1
-r
2 1 1+rir 1+r'r

2 1' 2 2

so that the joint density pdf(r
1'
sr

2'
s
2
) is easily obtained. Such

results may be useful in comparing the properties of the two estimators.

More generally, Theorem 1 provides (after transforming r 4 r1 in

equation (34)) the joint density pdf(r1,f1,B,(x,X)). Multiplying by

pdf(x
1'
X
1
) then gives 

pdf(r1' 
f
1' ' " 
B (x X) (x 

X1 ' 
)) which is equivalent to

the joint distribution of the (canonical) minimal sufficient statistic t

= (S,(x,X),(x1,X1)). A variety of useful joint distribution results can

then be obtained by transformation in this distribution. In particular,

motivated by the curved exponential character of this model, one can

A
consider the family of (one-to-one) transformations t 4 (0(t),a(t)) in

which 0(t) is the LIML estimate for all of the parameters in (2) (subject

to (4) and (5)), and the a(t) are statistics defined on the manifold (in

t-space) defined by 0(t) = const. that essentially capture the

information lost in the reduction t 4 0(t) (see Barndorff-Neilson

(1980)). Of particular interest is the question of whether or not there

exists an exactly ancillary statistic a(t). These matters will be

pursued in future work.
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APPENDIX

Proof of Theorem 1 and its Corollaries

Proof of Theorem 1: The transformation R 4 (F,H) described in the

Theorem is one-to-one, and the volume element transforms as

(A.1)
n+1

(dR) = H (f.-f.) df.(H'dH)
1 1

i<j i=1

Partitioning H = (h,H2), H2 is an element of the Stiefel manifold

orthogonal to h. That is, H?2 = In and H? = 0. This manifold may be

generated by choosing, for each fixed h, a fixed matrix G, say, on the

manifold (i.e., G'G = In, and G'h = 0, and so GG' = I - hh1 ), and then

setting H
2 
= GH

1' 
where H

1 
ranges over the orthogonal group 0(n). To

ensure that the transformation R 4 (F,h,111) is one-to-one we can replace

the condition that the elements in the first row of H
2 

are positive

by the condition that the elements in the first row of H
1 
are positive.

The volume element on 0(n+1) transforms as

(A.2) (H/dH) = (h'dh)(Widy,

where (h'dh) denotes the invariant measure on the surface of the unit

(n+1)-sphere, and Widly that on 0(n) (see Muirhead (1982, Lemma 9.5.3,

p. 397)).

-
Next, partition h = (hi,y', with h2 nxl, and define r = -hi

1 
h2.

Thetransformationh4risone-to-onebecause hi is taken to be

positive, and the transformation of the volume element is given i

Phillips (1984b) as:

(h'dh) = (1+r/r)-
n+1)/2 

A dr. .
i=1

The matrix G that defines the transformation H 4 (h,H1) may be defined

in terms of r by
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) 
-1/2

(A.3) (I+rr'
n

since, under the transformation r = -h
-11

h
2'

(A.4)

1 )(14.r,r)-1/2
-r

Now definePby F
2 
=fP so that 1 >1.- >...>> , and

2 2 3  n+1

n+1 n+1 n+1 n+1
II (f.-f ) A df = (f

n(n+3)/2
df

1 1
)( H (1-T.) H (T.-T.) A dT.).

j i 1 j
j=1 j=2 i,j=2 j=2

1<j

Finally, set B = H1P2W1, 0 < B < I. Since the elements in the first row

of H
1 
are positive, and the elements on the diagonal of F

2 
are ordered,

the transformation (P
2' 
H
1 
) 4 B is one-to-one and we have

(A.5)
n+1 n+1
H (f.-f.) A df.(H/dH ) = (dB).

j J11
i,j=2 

1 
j=2

i<j

Combining (A.1) - (A.5), and noting that, in (A.4), e+10-T.) I-BI,
J=2 J

we have

(A.6) R = f

(A.7)

i+r,r) 
) 

-1( 11(
+ (r,I)'(I+rr')

-1/2,
B(I+rr')-

1/2(r,I)
-r 

(dR) = f
n
(
n+3)/2

(1+r1r
1

n+1)/2
I-Bldf A dr.(dB).

1
1=1 

1

Since H
2 
= GH

1' 
H
1 
= G'H

2 
and we can express B in terms of r, F

2' 
and H

2

as

= (i+rr,)- 
( 

1/2,r,
I)H2P2yr,I)'(I+rr'

thus completing the proof of part (a).
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Part (b) follows from equations (31), (A$6), and (A.7) on noting

that RI
(m-n-2)/2 = f(n+1)(m-n-2)/2 IBI 

(m-n-2)/2
' 

1

Proof of Corollary 1.1: The matrix B may be integrated out of

pdf(r,f1,B) in equation (34) by using Muirhead (1982, Theorem 7.4.2).

This gives

'
pdf(r 

f1 
) = C*f

m(n+1)/2-1 -(n+1)/2 -m/2
(A.8) (l+r'r) IVI

1 1

expi4f1(1,-r')V-1(1,-r')'/(1+rir)} ((m-1)/2,(m+n+2)/2, -1f1G'V-1G)

with G as in (A.3) above. Equation (35) then follows on using the

Kummer formula for the confluent hypergeometric function (James (1964,

equation (51))): iya, c; S) = etr{S}iF (c-a, c; -S).

Proof of Corollary 1.2: To integrate out r in equation (35) we can

invert the transformation h r used above to define h

( 1 -1/211 -1/2

•
Then, only the confluent hypergeometric function in

(35) involves h and its argument is, apart from the factor (f1/2), the

rank-n matrix (I-hh')V
-1
. Integrating term by term we have

2n
(11+1)/2

-C ((I-hh')V 1 
)(11'dh) 

= F((n+1)/2)
h'h=1 0(n+1) 

(I-1( n ]1-1/ V-1)(dH)
0 0

2u(n+1)/2

F((n+1)/2)
C (in (21)C

X 
(V-1)/C (I )

A0O A n+1 '

which vanishes unless 
En+1' 

the (n+1)-th part of the partition A, is

zero, and is equal to

2n
(n+1)/2 (n/2) 

A
F((n+1)/2) ((n+1)/2)

A

when tri
+1 

= 0. Since (n/2)
A 
= 0 unless i

n+1 
= 0, this yields equation

(36).
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