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ABSTRACT

In this paper the Kalman filter and regression approaches for estimating

linear state space models are compared. It is argued that the Kalman

filter is no more efficient from a computational point of view, is

relatively more complex and hence more obtruse, and that as

consequence its central role in the smoothing, estimation and prediction

of time series is questionable.

Keywords: Kalman filter, time series analysis, regression analysis,

forecasting, exponential smoothing, maximum likelihood

estimation.
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INTRODUCTION

The Kalman filter (Kalman, 1960) was originally developed to filter

noise from time series. Interest in it for forecasting purposes grew

when Harrison and Stephens (1971, 1976) demonstrated its close links

with common forms of exponential smoothing (Gardner, 1985). Akaike

(1974, 1978) also established that the Kalman filter could be used in

conjunction with numerical optimization procedures to find maximum

likelihood estimates of the parameters in ARMA models (Box and Jenkins,

1976). Together with subsequent developments for ARIMA and structural

models (Harvey and Todd, 1983; Harvey and Pierse, 1984; Ansley and

Kohn, 1985; ) these works established Kalman filtering as a key method

for smoothing, estimating and predicting time series.

Despite its central role, the Kalman filter is often bypassed in

forecasting courses, presumably because of its relative complexity.

Thus, in this paper, an alternative approach based on conventional

regression analysis from a parallel but lesser known stream of

literature is explored. It transpires that when properly implemented,

the regression approach not only involves lower computational loads than

numerically stable versions of the Kalman filter, but is inherently

simpler and more transparent. As such it is better, amongst other

things, for teaching purposes.

STATE SPACE MODELS

The Kalman filter is used to estimate so-called linear state space

models, the coefficients of which evolve over time according to shocked



linear first-order recurrence relationships. An important example is

the local linear trend model (Harrison, 1967) underpinning trend

corrected exponential smoothing (Holt, 1957). A time series, denoted by

z
t 

at time t , has a local mean
t 

and a growth rate 6
t 

which

evolve according to the recurrence relationships:

Pt = Pt-1 6t-1 nt

6
t 

= 6
t-1 

+
t

while z
t 

itself is given by

Z
t 

= + e
t 
. (3)
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respectively and satisfy the following independencec<

conditions:
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Duncan and Horn (1972) showed that state space models can be

rewritten in the form of a regression

= Xj3 + u, (4)

y being a random n-vector, X a fixed n x k design matrix, p a

random k-vector vector of coefficients, and u a random n-vector of

disturbances with zero mean and a diagonal variance matrix V. The

essential idea is that all state space model coefficients such as At and

6
t 

can be stacked to form the vector 0. For example, the result

obtained for the local linear model with a sample {z
1' 

z
2' 

z
4
) is shown

in Figure 1. The equation for z3 has been withheld because the
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corresponding observation is missing from the sample. Since the model

is nonstationary and p has a diffuse prior distribution, the

conventional linear least squares method can be employed to yield an

estimate of it provided values for the variance ratios q
1 
= c

2
/T
2 

and
n c

q = c
2
/0.
2 

are specified. The resulting components pi, µ2, A3 and A4 of
2 < c

g, the estimate of g, can be interpreted as smoothed values of the time

series and, in particular, 113 can be viewed as an estimate of the

missing value z3. Future values of the time series can also be

predicted with

7%.61+E = 114 4- • ki
= 1,2,...

Given the optimal properties of this approach it can be established that

these results are identical to those normally obtained with the Kalman

• filter.
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Figure 1. Regression Formulation of Local Trend Model
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MAXIMUM LIKELIHOOD ESTIMATION

In most applications parameters such as the variance ratios ql and

q
2 

are themselves unknown and maximum likelihood estimates of them must

be obtained. Howeyer, the likelihood function is undefined for

non-stationary models because p has a diffuse prior distribution. An

alternative strategy is to use the marginal likelihood function

(Kalbfleish and Sprott, 1970) without the nuisance coefficients (3. It

can be established that this marginal likelihood function can be written

in terms of the one-step ahead prediction errors ei as follows:

2
t = (2Tur

2 - n-k)/2
( h.a.

2)-1/2 
exp - .E e./(2h.T2 } (5)

1=k+1 c
i=k+1 1 c

wheretheh.are scaled mean squared errors of the e.. This result is
1• 1

sometimes referred to as the 'prediction error decomposition of the

likelihood function' (Schweppe, 1965).

Procedures to find the maximum likelihood estimates require the

evaluation of (5) for many trial values of the parameters. The Kalman

filter is conventionally employed to generate the associated one-step

ahead prediction errors ei and their scaled mean squared errors hi for

each trial. However, it can be shown that these same crucial quantities

can be obtained as a by-product of the orthogonalization procedure based

on fast Givens transformations (Gentleman 1973; Stirling, 1981) when it

is used to compute the least squares estimate fl in a regression model.

As such, the Kalman filter can be replaced by the regression approach in

maximum likelihood procedures.

•••
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CONCLUDING REMARKS

It has been briefly demonstrated how a regression approach can be

used instead of the more complex Kalman filter in smoothing, estimation

and prediction problems in time series analysis. Although the resulting

regressions are often quite large, a study by Page and Saunders (1977)

indicates that efficient least squares routines which automatically

exploit sparsity have computational loads and storage requirements that

are comparable to those associated with numerically stable versions of

-the Kalman filter. Although V
1
 may not exist in special but important

cases where some of the variances equal zero, the associated

relationships reduce to linear restrictions and these can be handled

automatically by Stirlings (1981) least squares method. And although

the approach in this paper was concerned with a nonstationary model, it

is also readily adapted to cope with stationary cases where 6 has an

informative prior distribution.

Interestingly, the regression approach works better in

non-stationary cases such as the local trend model. The Kalman filter,

when initiated with a diffuse prior distribution can be numerically

unstable and special, more complex algorithms (Ansley and Kohn, 1985;

Snyder, 1988) with relatively high computational loads are required to

guard against such a possibility. It transpires that during

initialization, the regression approach involves lower than normal

computational loads so that its performance definitely is superior in

• these situations. Overall, then, the regression approach is not only

inherently simpler and more transparent, but the evidence suggests that

it can involve lower computational loads. As such it leads us to ask:

"Why Kalman Filter?"
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