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Summary

In this paper we will consider the problem of estimating a multinomial logit model for

choice behaviour, when the data has been collected using choice—based sampling. We

illustrate the estimation process using a set of data collected by the National Associ-

ation for the Care and Resettlement of Offenders to investigate whether an offender's

employment status affected the sentence chosen by the magistrate.

Keywords: multinomial logit; choice—based sampling; choice model; unemployment;
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1. Introduction

The purpose of this paper is to examine the problem of estimating a multinomial logit

model when the data arises from choice—based sampling. Our interest in this estimation

problem arose because we wished to investigate some data concerned with the sentence

imposed on offenders who appeared in the magistrates court. The data was collected

by The National Association for the Care and Resettlement of Offenders (NACRO)

to answer a range of questions, in particular whether a relationship exists between

unemployment and the type of sentence imposed. The data will be described briefly in

section 2, a more detailed description is given in Crow and Simon (1987a).

Most estimation methods assume random sampling, which in the context of our problem

would mean a random selection of offenders is drawn and we observe the sentence type

imposed. The random sample may be simple or perhaps stratified on the basis of some

explanatory variables. In a choice—based sampling process a sequence of offenders who

have had a particular sentence type imposed is drawn and their characteristics are

observed. That is we select a sample of individuals with a particular outcome variable

and collect information about the variables we think influenced the choice of outcome

variable. We could think of this as selecting a stratified random sample where the

stratification is on the outcome variable. This procedure is discussed in more detail in

Manski and McFadden (1981), and Manski and Lerman (1977).

This type of sampling is commonly used in economic surveys and in epidemiological

case—control studies. There are often significant cost savings associated with using a

choice—based sample. For example, if we are studying choice of mode of transport for

getting to work, it is much cheaper to survey passengers at the station and car users

at the car park than to interview commuters in their home. As far as epidemiological

case—control studies are concerned, they provide economies of cost and study duration,

especially for rare diseases.

In this paper we attempt to modify existing theoretical results to a form more suitable

for practical use. Indeed most of the results are attainable with standard statistical
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packages. We hope this will encourage use of the more appropriate multinomial logit

model for the analysis of quantal choice data in preference to using linear probability

models, even when the data comes from choice—based sampling.

2. The NACRO data and analysis

Crow and Simon (1987a, b) give detailed information about how the data were collected,

the twenty—one hypotheses that were stated for the research, and provide an analysis

of the data. In discussing the background to the study Crow and Simon (1987a) state

"Employment status is often believed to have some bearing on the way that offenders

are dealt with, but has been subject to little detailed study. This, and the growth of

unemployment in recent years, gave rise to the study reported here." We can take this

as the primary motivation for the study.

Ideally the study would have included both crown courts and magistrates courts. How-

ever, resources were limited and it was felt it would be difficult to get access to crown

courts. The study was therefore confined to a small number of magistrates courts in

England and Wales. Six courts were chosen to represent different experiences of unem-

ployment and sentencing traditions. Three areas of England and Wales were selected

to represent different experiences of unemployment; one in which unemployment was

relatively low; one in which unemployment had been high for many years; and one which

had experienced a transition from low to high unemployment in recent years. Within

each area two magistrates courts were selected, one which used custodial sentences more

frequently than the area average and one which used such sentences less frequently than

the area average, as shown in Table 1. A sample period was selected for each court, as

indicated in Table 1, to provide at least 500 cases per court.

[Table 1 about here]

The sample design is a cluster design, based on area unemployment and custody use.

Over the sampling period every male property offender, aged 17 or over, sentenced in
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the court was included in the data set, except for those offenders who were fined where

every second case was included. This was a mixture of census and systematic sampling

procedures. Notice that the sentence type was the basis for the "every other fines case"

sampling. Sentence type is the variable whose frequency of occurrence it is hoped to

explain in the subsequent analysis. Thus, sentence type is our outcome variable and the

sample has been selected by a choice—based sampling procedure.

The data extracted from the court record consisted of age; ethnic origin; details of the

offence and previous criminal record; employment status on day of sentence; social en-

quiry recommendation (SER), if any; and the sentence type imposed. We might have

thought it desirable to collect information on other potential explanatory variables, for

example, income, educational qualifications, employment status at the time of commit-

ting the crime, however, this was not done.

The data made available to us was a restricted subset of the information originally col-

lected and consists of age; offending score; employment status on the day of sentence;

SER recommendation, if any; and sentence type imposed. The offending score (OS-

CORE) is constructed from information about the offence committed and the offender's

previous history; the variables included and their 'scores' are given in Table 2. An

offender's OSCORE is obtained by adding up the score he obtains for each variable in

Table 2. We were only provided with the final °SCORE, not the constituent variables

which we would have preferred. For a first time offender °SCORE has a minimum value

of 3 and a maximum of 10, whilst for an offender with a criminal history the minimum

is 5 and the maximum is 19.

[Table 2 about here]

Although the study considers male property offenders over 17 years old, those offenders

aged 17 — 20 are treated differently by the courts than older men. Thus Crow and

Simon (1987a, b) often consider separately men aged 17 — 20 and those aged 21 and

over. We consider only those aged 21 and over in our analysis. Crow and Simon (1987a,
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b) consider nine sentence types: fine; discharge, compensation order only; probation;

community service order; suspended imprisonment; immediate custody; deferred; at-

tendence centre; and committed to crown court for sentence. Since attendence centre

is only appropriate for 17 — 20 year olds it does not occur in our data. In addition we

have omitted from our analysis offenders with sentence deferred and those committed to

crown court for sentence, because the numbers receiving such sentences are very small

and their final sentence is unknown. In our analysis we consider only those male prop-

erty offenders age 21 years or more who received one of the following sentences: fine;

discharge; probation; community service order (CS0); suspended imprisonment (SI);

and immediate custodial sentence (ICS), giving a total sample size of 1359 men.

Crow and Simon (1987a, b) report the results of fitting linear probability models to

the data. In their analysis they treated the data as if they were a random sample.

To overcome the underrepresentation of fines cases they simply 'double up' the fines

category, that is they included each fine case twice. Such a procedure assumes that

each fine case included had a missing identical twin.

Suppose the sentence categories are indexed by j = 1, 2, ... , J and the offenders are

indexed by k = 1, 2, ... , K. In order to fit the linear probability models J binary

variables yik were constructed, such that

{_ 1, if offender k receives sentence j;
Yik - 0, otherwise.

Two explanatory variables were used in the model, offending score (xik) and employ-

ment status (x2k), were xi k is °SCORE for offender k and

X2k 0, otherwise.

The model estimated can be written

jk = Poj thjxik #2jx2k efic

where eik is the error term. This is a model for the probability that yik = 1.

{ 1, if offender k is in employment on day of sentence;



For each offender yjk = 1. for a single sentence type and is zero for all others, so

Ei yik = 1. This holds for all possible values of xik and x2k, hence it follows that

/30; = 1; 131 = 0; /92j= O; E eik = O.

Thus we need only estimate the parameters for five of the six sentence types. The

estimation can be carried out in any package able to do multiple regression.

Crow and Simon (1987b) present the results of such an analysis for each sentence type

in each court separately.. However, they only provide the values of the employment

coefficient for the analyses in which all courts are considered together, so court effects

are ignored. We have performed, for our data set with only six sentence types, the

same type of analysis as Crow and Simon used, for each court separately, the results

are shown in Table 3.

[Table 3 about here

There are several objections to the analysis as performed by Crow and Simon (1987b).

Firstly, the 'doubling up' procedure seems an unnecessary assumption. If we introduce

an appropriate weighting variable to allow for the under sampling of fines cases, as

discussed in section 4, we would have obtained the same parameter estimates but got

larger standard errors. This reflects the fact that our data set is not really as large as

that implied by the 'doubling up' approach.

Amemiya (1981, 1985) and Maddala (1983) give a number of objections to linear proba-

bility models, among these is that the predicted probabilities can be outside the interval

[0,1]. We can observe this happening in the NACRO data set, for example, the prob-

ability of a fine for an employed individual in court 4 will be greater than one if their

°SCORE is less than six. There are nine such cases in the data set, so it is not simply

that the models give impossible probabilities for variable combinations that are rare.

Finally the linear probability model neglects the multi—alternative nature of the prob-

lem. The analysis fits separate (independent) regressions for each sentence type and



assumes that the alternative to sentence type j is 'not sentence type j', where as the -

alternatives are the other sentence types. These objections lead us to our reanalysis of

the data using a more appropriate model and making allowance for the choice—based

sampling.

3. The Multinomial Logit Model

When considering response or choice probabilities, parametric models are often pro-

posed. Logistic models are frequently used in the analysis of epidemiological studies

(Breslow and Day 1980). In such studies there are generally only two outcome states,

diseased or not diseased. The multinomial logit model generalises this analysis to sit-

uations in which the outcome variable has several states and has been used in the

econometric literature to model choice behaviour.

Let there exist j = 1,2, .. , J mutually exclusive and exhaustive responses (e.g. sentence

types, illness states) and z = 1,2, ... , Z mutually exclusive and exhaustive stimulus

values. By stimulus values we mean possible combinations of the explanatory variables,

for example if our explanatory variables are OS CORE and employment status there are

34 combinations so Z = 34. Let Piz be the probability of response j conditional on

stimulus z. Our interest is in inferring these conditional response probabilities from our

sample.

A variety of parametric forms might be considered for Piz, we have chosen to use the

multinomial logit model. For a particular stimulus value, z, the response variable has

J categories with category probabilities Pjz, j = 1,2,... , J. The probability that in a

sample of nz independent observations we obtain njz in the jth category is

nz!
P(niz, n2z, • ,12J.z) = P1:711' -LP 2z • • • P.I.znjz

n1z!n2z! • • .72./z!
where Ej Pjz = 1, that is there are only J — I distinct probabilities.

The multinomial logit transformation of Plz, , Pjz is the parameter set Oiz, , Ojz

defined by

eiz = log(PiziPiz)

7
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We can model the logits with a linear combination of the explanatory variables, so that

Oiz = floj [311ixz, where xz is the vector of explanatory variables making up stimulus

value z. The restriction Ei Piz = 1 leads to the following expression for Piz,

exp(/3oj gijxz)
Piz = j = 1,2,..., J; z = 1,2,..., Z. (1)

E exP(/3ok 011.kxz)
k=1

However, Oiz = log(Piz/Piz) = 0, so we can re-write (1) as

P1 z=  
1 -I- E expPok + O'ikxz

k=2

expPoi
Piz =  

1 + E exp(/3ok -1 ,311kxz)
k=2

z = 1, 2, . . . , Z,

= 2, 3, , J.

(2)

The multinomial logit model would seem to be appropriate for the problem described

in section 2. It overcomes the objections to the linear probability models, since the

predicted probabilities always lie in the interval [0,1] and the model allows for the

multi—alternative structure. Although the model structure is more complicated than

the linear probability model it is computationally easier to deal with than probit or

complementary log-log models. A major difference between the linear probability model

and the multinomial logit model is that we consider the effect of explanatory variables

to be additive in the linear model and multiplicative in the logit model.

An objection to the logit model is the assumption of independence of irrelevant alterna-

tives, explained by Judge et al (1985, p770-771). The effect of this assumption is that

the odds of a particular dichotomous choice are unaffected as additional alternatives

are added. This seems implausible if some of the alternatives are close substitutes, for

example two buses identical except for colour. For the sentencing data this is not such

an unreasonable assumption since the sentence types are not close substitutes.

Having chosen a model we need to estimate the parameters. Assuming we have a random

sample, this can be done in many packages, for example SPSSX, GUM, GENSTAT. We
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have chosen to consider estimation in GENSTAT as this allows us to write procedures

appropriate for use in later sections. Although the multinomial distribution is not one

of the distributions explicitly included in GLIM and GENSTAT we can make use of the

relationship between the multinomial distribution and the Poisson distribution to fit

the models. This relatonship is shown in Aitkin et al (1989, p231-232) and McCullagh

and Nelder (1989, p210).

For convenience in later sections we define a variable xo, = 1 for all z, so /30i = flojxoz

and we can simply write floi Olix, as

To fit the model in GENSTAT or GUM we need to define a response factor with J

levels, corresponding to the multinomial response categories. We also need to define, for

each explanatory variable, a factor with an appropriate number of levels, thus giving a

complete set of classifying factors. The parameter Oi is the coefficient of the interaction

between the jth level of the response factor and the explanatory variables x. In addition

the model must contain a parameter for each explanatory variable combination, that is

each observed multinomial distribution. This requires the inclusion in the model of a

nuisance factor with Z levels, which can be conveniently achieved by fitting all levels

of interaction for the set of classifying factors. An example is given by McCullagh and

Nelder (1989, p212) and a detailed example of fitting the multinomial logit model in

GUM is provided by Aitkin et al (1989, p235).

If the data arises as a random sample we will be able to use this methodology as

presented, however, if we have a choice—based sample some modifications are necessary.

These modifications are given in section 4.

4. Estimating the Multinomial logit model for choice—based data

Consider the population joint distribution of stimuli and responses,

PjzPz = Qzjqj, (3)



where Piz is the probability of response j conditional on stimulus z; pz is the marginal

probability of stimulus z; Qzi is the probability of stimulus z conditional on response

j; and qi is the marginal probability of response j. Our interest is in Piz for which a

model was proposed in section 3. However, with choice—based data we know about Qzj

rather than Pjz. Notice that

qi = P(response j)

so that

P(response jiz)P(z) =
z=1

Qj
P.zPz 

= 3 •
E Pizpz..1

z=1

If we have a choice—based sample we can only make statements about Pi, if we have

information about qi and pz. Manski and Lerman (1977) and Manski and McFad-

den (1981) consider situations in which choice—based samples are combined with exact

knowledge of qi and/or pz. The assumption of such knowledge is often unrealistic, so

Hsieh et al (1985) consider the situation in which qi are estimated from an auxiliary

random sample. We will consider both these situations and the implications for our

model. In each situation we will consider two approaches to the estimation.

4.1. When the population proportions, qi, are known.

This situation was first considered by Manski and Lerman (1977) who proposed and

developed the weighted exogenous sampling maximum likelihood (WESML) estimator.

Let hi be the probability an observation in our choice based sample has response j;

then the joint distribution for our sample is

f(j, z) = P(z1 response j)P(response j) = Q zjhi

PizPzhi

qj

10
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Piz = 
E wk exp(Pkxz)

Suppose N is the total number of individuals in the sample and njz is the number

of individuals with stimulus z who selected j. The exogenous sampling log-likelihood

function would be

n=1

log Pin zn = log Pjz
z=1 j=1

Manski and Lerman (1977) show that under choice-based sampling this yields inconsis-

tent estimates. Instead they propose using the weighted exogenous likelihood function

WN
• n=1

n) log Pjn zn
Z J

Z1 j=1

• log Pjz (5)

where wj = (qilhi),qj is assumed known and hi is the sample proportion. Manski and

Lerman (1977) show that maximisation of (5) gives estimates that are consistent and

asymptotically normal with covariance matrix given by

where

= (a2w3 log Pjz

ai350'

v

and

It can be shown that these matrices reduce to
Z J

Z1 j=1

Z J

Z1 j=1

= 1E ( awi log Piz (awi log Piz 1

DO 013'

30 a log Piz a log Pjz 1 apiz 
5P,.jz 0, Pz =

Z1 j=1 Piz ai31

S log piz Slog Piz 
iz ao, Pz —

Z J

Z1 j=1

Pz

1 apiz apizpiz  1j35o, pz

(6)

A proof is given in Amemiya (1985) and these are the forms used in Manski and Mc-

Fadden (1981).

We could do the maximisation of expression (5) using GENSTAT, setting wj in a weight

vector and following the procedure described in section 3. To calculate estimates of Piz

we use the following form

wJ expOixz

k=1 k=2

11
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We can simply include w3/w1 in the parameter Ni given by GENSTAT, so the intercept

parameter is /30i-Flog(wi/wi ). The parameters associated with the explanatory variables

require no alteration, however, the standard errors will require some adjustment. We

can calculate the correct standard errors using the expressions for S2 and A. We will also

need an estimate of pz to use these forms, this will simply be nzIN where nz= Ei niz.

Suppose we have H explanatory variables, then S2 and A appropriate for the multinomial

logit model are as follows. We consider parameters in the order P021. • • ,POJ then the
J —1. parameters associated with explanatory variable 1, ,812, , fisi Jr, then those for

explanatory variable 2 and so on.

where,

f2(i,i) =
Z=

nzPiz(1 — Piz)xzxz and n(i, k) =

xz =1 for all z if i < J,

xz =X1,, Piz = if J1< i <2J,

Xz = x2z, Piz = if 2J +1 < i <3J,

Xz = XHz, Piz = P(i-11.1)z if HJ +1 <i < (H +1)J,

xy =1 if k < J,

X y =Xlz, Pkz = P(k--j)z if J+1 < k <2J,

Z=

nzPizPkzxzxy

Xy = XHz, Pkz = P(k-H,I)z if H.1 +I< j < (H 1),T.

Using similar notation

A(i, — nz (Pi2z(wiP1z w2P2 TD.T.P.rz — 2wi) wiPiz) xzxz

A( ,

z=1

Z

Z=

72zPizPkz(W1Plz W2P2 + • • • + W JPJz — Wi — Wk)XzXy.

A GENSTAT procedure could be written to calculate these matrices and hence the new

covariance matrix.
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An alternative approach is to generalise the method suggested by both Breslow and

Day (1980, p203) and McCullagh and Nelder (1989, p113) for binary data. Consider

P(Choice jlxz) = Piz as given by (2). Introduce a dummy variable Y to define whether

an individual is sampled or not, and denote the sampling proportions by

= P(Y = 11 choice j) = P(in sample I choice j)

assume the sampling proportions depend only on choice j and not on the explanatory

variables, so P(Y = 1.(j, x,) = ri for all z. We can now use Bayes' theorem to compute

the choice frequency among sampled individuals with explanatory variable xz.

P(Y = lichoice j,xz)PizP(choice j IY" = 1, xz ) =

P(Y = lichoice 1,xz)Piz E P(Y. = lichoice k,xz)Pkz

where

k=2

expPoj

7r1 E 7rk exP(Sok Okxz)
k=2

exp(Poi 01ix.z)

1+ E exp(Pok frkx
k=2

eXp( -I- 131iX z)

1 + E exp(4k o'kxz)
k=2

pt. = poi + log( 7a) = 1, 2, . . . , J

(7)

(8)

(9)

If we use GENSTAT as suggested in section 3, the estimates for the parameters associ-

ated with the explanatory variables are correct, but we will get estimates for f3 j rather

than i30j. We can easily recover the required estimates using equation (9), since

= = 1 1 j) =
P(Y = 1,j) PUIY = 1)P(Y = 1) (ni1N)P(Y = 1) PCY 

P(i) P(i) qi

where qi, the population proportion selecting j, is assumed known. Also nj and N

are assumed fixed. Thus Var(floj) = Var(4) so the standard errors produced by

GENSTAT will be correct.
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4.2 When the population proportions, qi are estimated.

In many situations we will not know the proportion of the population selecting choice

j, qi. For example in a survey to determine a model of choice selection for breakfast

cereals we would not know the proportion of the population selecting a particular brand.

However, we could carry out a survey of a large random sample of the population and

just ask what brand of breakfast cereal they eat in order to estimate the proportions

qi. If we estimate qi with an auxiliary sample, independent of our choice—based sample,

both the estimation procedures discussed in section 4.1 are still appropriate. Both give

estimators that are consistent and asymptotically normal, however, the variances of the

estimators will be different to those given in section 4.1.

The WESML estimation is discussed by Hsieh et al (1985) who provide an expression

for the covariance matrix. By using the appropriate expressions for a logP,, from our

multinomial logit model, we can evaluate the covariance matrix given by Hsieh et al

(1985). This could be done with a GENSTAT procedure.

For multiplicative intercept models such as ours, Hsieh et al (1985) prove that condi-

tional maximum likelihood (CML) estimation and full—information concentrated like-

lihood equation (FICLE) estimation will give estimators that coincide. The second

approach considered in section 4.1 is CML estimation. Hsieh et al use the form given

in equation (7), so the relationship between the intercept parameters is

exp(i3Oi) = 7ri exP(,(30j) = 1, 2, . , J. (10)

Suppose we estimate the population proportions, qi, by a sample of size T in which tj

people selected j, so 4i = ti/T. Then we will have

(ni1N)P(17 =1)
= (11)ti/T

nibut, the term P(17= 1) will cancel in equation (7). So if we let qrs.' =  /N can3 ti I we T 7

replace ri in equation (10) by RI. GENSTAT will give us 0'0'i rather than 

/3o,

however

exp(/3oi) = 
exp(13$1:3.) 

= [exp(M.) (Ar-)] (12)3 n • Tl .
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Also GENSTAT gives variances for i3*j•• Hsieh et al (1985) obtain variances for exp(f3oj)o 

by considering exp(floi) as the product of two independent random variables, so

ii[exp(Poi)] =[E 2 v [(7-2-7N) expAd [E ((7-2N-;) expK))12 CIO

+ j) eXP(/9 j)] (t
i)

= (ntiii/NT  ) 2 (exp00.3) exp(138'M (!_70

niIN T

T)
t;\ ( V (exp(Mi)))

njIN
(13)

However, Hsieh et al omit the last of the three terms since it will in general be small.

This still leaves the problem of what is the variance of exp(Mj). Since the estimators are

asymptotically normally distributed, exp(P) will be asymptotically lognormal, hence

[exp(08'.)1 = exp(2,8) exp(v) (exp(v) — 1) (14)

where v; = VV(fl6ki) and is given by GENSTAT. This enables us to get V (exp(fl( ))

which we can use in (13) to get V (exp(Poi)). We need to use an expression similar to

(14) to recover V(30j).

An alternative and more straightforward method for getting V(floj) is to use a Taylor

series approximation. Taking logs of (12) and rearranging gives

floi = log 0.0 — log (7*

which, since nj and N are fixed, gives

V(80i) = V [log 
(

1,)]

A Taylor series expansion of log(ti/T) about E(ti/T) = qi gives

v (-ti.-9] =1— qj (1 qj)(3 qi)
Tqj 2T2q.?

15
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To evaluate this we need to, use "di = t,/T. This approach will give V(100i) directly. In

practice t will not be zero and T will be large. If we explicitly exclude the possibility

that ti is zero we need to divide expression (15) by

[1 - P(ti = 0)12 = [1 - (1 - 2

In most practical situations T will be large enough to make (1 - q j)T very close to zero,

so we will not generally need to make this adjustment to expression (15).

The Hsieh et al (1985) approach, working from equation (7), has resulted in An 0.

Usually we would have chosen /3n = 0 and adjusted the other parameters appropriately.

If we now make such an adjustment we will need to make further alterations to the

parameter standard errors. This will require knowledge of the covariance between /301

and 130j.

Suppose instead we work from relationship (9), then

poi = ffoti — log (1-1 j =2, ... , J

= - log (TiiiN 
ni 
/)
/V/

ni(ti 1
= - log (

n1 (t IT) )

= j -4- log a -F log (L) -1 01)
\nil

Since n1 and ni are fixed we have, assuming the choice-based sample and the auxillary

sample are independent, that

(14j) + V Flog )1 + V [log (--ti )1 - 2Cov flog 021) , log Nil 
J.

(16)\Tii \Tjj \TJ \Tii

Using Taylor series expansion about E(ti/T) and E(ti/T) gives

V (f3o) = V ( ) V [10(tTi)] +V [log 
(

1)]+2 ( 1 (giqi - - qi
2T2qjqi
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where the second and third terms are given by (15). Again we should consider excluding

the possibility that ti is zero, as we did for expression (15).

5. Results for the NACRO data

In order to use the methodology described in sections 3 and 4 we will assume that the

data set was collected as a choice-based sample and that the number of individuals of

each sentence type was fixed. It is more problematic to decide whether we can assume

qi are known. Strictly we' do not know qi. We do know how many cases there would

have been in a random sample because of the way the data was collected, however, this

random sample is not independent of the choice—based sample. For the CML estimation

this will only cause a problem with the variance of the intercept parameters, but these

will be more complex as (1.6) should also involve terms for Cov(f3)0ki, log(ti/T)) and

Cov(Ni, log(ti/T)). We could expand these terms using a Taylor series, but we would

still need to know Cov(#, tin') and Cov(Ni, ti IT). We simply present here the results

assuming (i) that qi are known, and (ii) that qi as estimated is from an independent

sample. It is important to note that the results from (ii) are given simply to illustrate

the technique, we do not really have an appropriate independent sample to estimate qi.

With each approach we fitted the minimal model, that is the model to give just the

intercept parameters, 130j. We are effectively modelling a large contingency table which

in parts is rather sparse. We cannot really assess the overall fit of a model however we

can assess the value of adding terms to the model using an F statistic,

F
G2(211) G2 G2 1

U II — sj Fu -

where M1 is a model with r terms, M2 is the model with u further terms, r -Fu = s. G2

is the deviance from fitting model M2 and I — s is the number of degrees of freedom for

the deviance, G2(211.) is the change in deviance from fitting M2 rather than M1 and u

is the change in degrees of freedom. Roberts et al (1987) discuss the merits of this and

other goodness of fit tests.
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As the study design was set up to include six courts representative of different area

effects we might expect there to be different court effects which should, if present, be

allowed for in the model before we consider other explanatory variables. The court

effects were found to be significant, as shown in Table 4. We then added °SCORE to

the model, this has a highly significant effect. Finally employment status was added to

the model, this also has a highly significant effect, that is, it appears that employment

status has a significant influence on the choice of sentence, even after we allow for the

court and °SCORE.

[Table 4 about here]

We are unable to make any claims about how well the model fits the data, but this criti-

cism can also be made of the Crow and Simon (1987a, b) analysis. The only assessments

of fit they made was to consider R2 for each of their multiple linear regressions.

The parameter estimates from WESML estimation are given, with their standard errors,

in Table 5. The results for CML estimation with standard errors from equation (17)

are also given in Table 5. If we use the formulation of Hsieh et al (1985) we get slightly

different results for the parameters [30i. These are shown in Table 6. Although the

parameter estimates appear different for CML in Tables 5 and 6, they will give the

same values for Piz. Table 6 shows how close the standard errors from the Taylor series

expansion (15) are to those from the more complicated formulation of equation (13).

[Tables 5 and 6 about here]

Notice how close the standard errors given by GENSTAT are to those from any of the

corrections, either with qi known or unknown. From a practical point of view there is

probably little value in making the corrections for this example. This is likely to be the

situation in most examples with reasonably large data sets.

The easiest way to compare the results of the multinomial logit model with those of

the Crow and Simon approach is to consider some graphs of the probability of selecting
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particular sentences. All the information necessary to construct such graphs is given

in Tables 3 and 5. For illustration we show in Figure 1 the graph for the probability

of fine in court 1, whilst Figure 2 shows the probability of probation in court 2. It is

clear from the figures that although the linear probability model may give, on average,

a reasonable approximation to the probabilities it cannot allow for a probability peak

in the middle of the OSCORE range. This is particularly a problem with probation and

CSO, which tend to be used most in the middle of the OSCORE range. For the sentence

discharge, which tends to be given only for very low OSCORE, the linear probability

model gives probability predictions very close to those of the logit model in all courts.

[Figures 1 and 2 about here]

As an illustration of the sentencing probabilities within a court Figure 3 shows the

sentence probabilities for the unemployed in court 1, whilst Figure 4 shows the pattern

for the employed in court 1. Broadly similar pictures are found in the other courts. As

we might expect there is a tendency for courts 2, 4, and 6 to show higher probabilities

for awarding custodial sentences, SI and ICS, than courts 1,3, and 5. There are also

differences between the courts with different area employment levels, for example courts

3 and 4 have a higher probability of giving a fine to an employed offender than courts

1 and 2, for all values of OSCORE.

[Figures 3 and 4 about here]

We agree with the conclusions of Crow and Simon that employment status affects the

choice of sentence. In any particular court, for offenders with the same OSCORE, an

unemployed offender is less likely to be fined than an employed offender; is more likely

to be discharged; is more likely to receive probation; is more likely to have a CSO; is

less likely to get suspended imprisonment; is more likely to get ICS. In addition we

note that particularly for CSO and ICS, the probability of receiving such a sentence

gets reasonably large (say greater than 0.2) at lower OSCORE for the unemployed. For
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example, in court 1 for unemployed the probability of ICS exceeds 0.2 at OSCORE 17,

whilst for the employed this does not occur until OSCORE 19.

Crow and Simon (1987b) draw conclusions about the possible consequences of the rising

unemployment rate on the number of offenders given custodial sentences. This is easy

for a linear probability model because of the simple interpretation of the coefficients

in such models. Crow and Simon (1987b) provide evidence that an increase of 1% in

the unemployment rate in the general population might be followed by a 3% rise in

unemployment among the offending population. If the number of men sentenced in a

particular court in a year is m and supposing that the employment coefficient for the

ICS regression in the court is c, then for a 1% rise in the unemployment rate there will

be 3cm/100 more men receiving a custodial sentence, assuming all other variables are

the same and the model still holds.

The interpretation of the logit model is not so simple. Suppose we consider a particular

court, say 1, and OSCORE value, say s, then the expected number of offenders given

ICS is

exp(/306) exp(th s)
6

1 + E exp(f9oi) exp(this)
j=2

exp(P06)exP(316.5)exki326)
6

1 + E exp(f3oi) exp(131.0) exp(132i
j=2

me

where mu is the number of unemployed offenders in court 1 with OSCORE s, and me

is the number of employed offenders. Suppose me more lose their job, so the number

employed is reduced to (me — me), the change in expected number of offenders given

ICS is

exp(806) exp(th6s)

1 + exP(f3oi) exP(th .0)
j=2

( 

6

1 + E exp(P0J) exp(this) exp(i32.)
j=2 I

exp(/ 06) exp(fl16s)exp(1326)

A more common interpretation of the parameters is to consider the odds ratio of choice

j for individuals with different sets, z* and z of risk variables, that is

Piz*
= exp (pit( - z))

Pi z
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So exp(f3ii) is the fraction the risk of j is increased (or decreased) for every unit change -

in zi.

Also of interest might be the odds of sentence j compared to say sentence 1 (fines).

PjZ
exp(Oji z)

z

or the odds of sentence j relative to sentence k which is exp [63j — /3k )'z]. So, for

example, if all other variables are the same, the odds ratio of ICS compared to fine

is multiplied by exp(1326) = 0.181 for a change from unemployed to employed, or by

exp(-1326) = 5.507 for a change from employed to unemployed. It is difficult to provide

confidence intervals for Piz, or for the relative risk. However, since 13 is asymptotically

normally distributed, so exp(flij) will be asymptotically lognormally distributed, thus

we can calculate confidence limits for exp(flii).

Alternatively we could consider the log odds, in which case

log (7,-;---j —
Piz

i=1

(f3i; - 131k)z1

where H is the number of explanatory variables. If all other variables are the same

then the effect on the log odds of ICS relative to fine of a change from employed to

unemployed is  —/26 = 1.70. The standard errors given in Table 5 can be used to

calculate a 95% confidence interval for this effect, which we find does not contain 1,

so conclude that being unemployed significantly increases the log odds of ICS relative

to fine. The effect on the log odds of sentence j relative to sentence k of a change in

employment will be (i32j —,82k), the variance of this includes the term Cov(,82i 7 8 2 k)• For

CML estimation this comes directly from GENSTAT whilst for WESML it will come

from the adjusted covariance matrix.

6. Discussion

The multinomial logit model seems structurally more appropriate than the model of

Crow and Simon (1987a, b) however, we cannot test whether the logit model actually
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fits the data any better. The conclusions about the effect of employment status are

similar from both models; that is, in any court for offenders with the same OSCORE,

fine and SI are more likely for an employed offender than an unemployed offender, whilst

the other sentences are more likely for an unemployed offender. This raises a number

of moral and political issues. However, from a practical point of view there is no point

in imposing a large fine on someone who has little chance of being able to pay the fine,

they will simply default and have to be dealt with again by the court.

It is important, if we have choice—based data, to make adjustments for this in the

analysis. It is preferable that assumptions about the unsampled cases, such as those

made by the 'doubling up' method, are avoided. No such assumptions are made by CML

and WESML estimation and the sample size is preserved. The example considered in

this paper perhaps raises doubts about the practical benefits of adjusting the covariance

matrix, however it is hard to say under what circumstances the adjustment is necessary.

A further point of practical interest is whether we should use CML or WESML. Hsieh

et al (1985) perform Monte Carlo trials to determine some properties of the CML and

WESML estimators, but find little to suggest one method is preferable. If the model

to be estimated is the multinomial logit then CML seems much easier to perform than

WESML as the estimation can be carried out with any package capable of performing

multiple logistic regression and the adjustments for choice—based sampling can be done

with a calculator. To perform WESML requires a package allowing the use of a weight

vector, and adjustment of the covariance matrix requires a computer program. We

recommend using CML for the multinomial logit model.

Schmidt and White (1984) argue that the ordered logit model is appropriate for sentenc-

ing data. In such models it is assumed that there is an underlying, unobservable, latent

variable and that what we observe is an ordered categorical variable which corresponds

to a partitioning of the latent variable. If such a latent variable were to be interpreted

as a measure of the offenders 'culpability' then the model might be considered appro-

priate for sentencing data. However, since the sentencing variable is incomplete, in the
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sense that some disposals have been excluded, and because there would be some dispute

about the correct ordering of some of the disposals, we decided such a model would be

inappropriate.

The econometric package LIMDEP has the capability to fit multinomial logistic models.

There is an option available that supposedly makes the corrections for choice based

sampling using WESML estimation and assuming qj known. Unfortunately the standard

errors produced by the option seem to be incorrect.

In most survey work a design—based approach, rather than a model—based approach, is

usual. However, in this area most development has been in the medical or econometric

fields in which stochastic modelling is second nature, so a model—based approach has

become the convention. Recent work on a design—based approach is discussed by Scott

and Wild (1989) for the binary outcome situation.

In epidemiological studies the outcome variable is frequently binary but the sample

design may be complex. Breslow and Cain (1988) discuss the use of logistic regression

for two-stage samples of case—control data and Breslow and Zhao (1988) consider logistic

regression for stratified case—control data. The papers provide the necessary adjustments

for the parameter estimates and their covariance matrix to make allowance for the

choice—based sampling for a binary outcome variable. Both of these sampling structures

are likely to be of use in choice surveys in which the choice set is more than two.

Extensions of these papers to a polytomous outcome variable would be useful.
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Table 1: The research design, showing the characteristics and sample period for each
court.

Use of custodial

sentence Low

Area unemployment

High Low to High

Below average Court 1

(June 83 to May 85)

Court 3

(July 83 to Dec 84)

,

Court 5

(Jan 84 to May 84)

Above average Court 2

(July 83 to Dec 84)

Court 4

(Jan 84 to June 84)

i
Court 6 -

(,n 84 to Sept 84)



Table 2: The seven variables that are included in °SCORE. The table shows the score
for each variable category. An individual's OSCORE is computed by adding up his seven
variable scores.

Variable Category Score

Current offence burglary 4

theft, fraud, forgery, deception 2

damage 1

Number of charges 1 1

2 or 3 2

4 or more 3 ,

Value of property less then .C20 1

involved £20 — .C99 2

.C100 or more, or motor vehicles 3

Number of previous none 0

convictions 1 or 2 1

3 or 4 2

5 or more 3

Time since last sentence less than 1 year 1 .

or release from custody no previous conviction, more than -1 year 0

Similarity of offence if any previous offence was of similar type 1

, type no previous offence was similar

Most severe previous None 0

sentence or disposal discharge, compensation only 1

(lowest in list) fine, probation, supervision, care order 2

attendence centre, community service order 3

any custodial sentence 4



Table 3: Regression coefficients from the series of multiple linear regressions performed
for each court seperately as described in section 2, with the fines cases 'doubled up'.

Sentence type Coefficient for Court 1 Court 2 Court 3 Court 4 Court 5 Court 6

constant 0.9798 0.6930 1.0646 1.2000 0.8364 1.0173

Fine OSCORE -0.0487 -0.0417 -0.0444 -0.0574 -0.0383 -0.0501

employment 0.1628 0.3273 0.0786 0.0912 0.1176 0.2253

constant ' 0.2988 0.3106 0.2986 0.2403 0.6065 0.2573

Discharge OSCORE -0.0168 -0.0170 -0.0141 -0.0118 -0.0334 -0.0169

employment -0.0729 -0.0915 -0.0479 -0.0792 -0.0591 -0.0529

constant 0.0333 0.1806 -0.0676 0.0135 0.0386 0.0669

Probation OSCORE 0.0121 -0.0013 0.0158 0.0026 0.0068 -0.0001

employment -0.0889 -0.0675 -0.0221 -0.0213 -0.0855 -0.0558

Community constant -0.1217 0.0489 * -0.0981 -0.0723 -0.1388 0.0130

service OSCORE 0.0232 0.0015 0.0186 0.0131 0.0191 0.0187

order employment -0.0288 -0.0160 -0.0305 -0.0262 0.0102 -0.1142

Suspended constant -0.1082 -0.0640 -0.0629 -0.1305 -0.1845 -0.1922

imprisonment OSCORE 0.0176 0.0214 0.0069 0.0196 0.0244 0.0198

employment 0.0329 -0.0422 0.0219 0.0487 0.0374 0.1103

Immediate constant -0.0820 -0.1692 -0.1335 -0.2508 -0.1582 -0.1619

custody OSCORE 0.0126 0.0371 0.0173 0.0339 0.0214 0.0287

employment -0.0005 -0.1101 -0.0001 -0.0130 -0.0205 -0.1127



Table 4: Assessing the model fit. The figures in brackets are for the WESML approach,
the unbracketed figures are for the CML approach

Model Deviance

G2

Change in

deviance, G2(2/1)

Degrees of

freedom for

Degrees of

freedom for

G2, 1 — s G2(2/1), u, ,
Minimal 1735.7 (1454) — 1015 —

+ court effect 1543 (1303) 193(151) 990 25 4.95 (4.59)

+ OSCORE effect 767 (632.7) 776(670) 985 5 - 199 (208)

+ employment effect
,

696 (568) 71(64) 980 5 20.0 (22.1)
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Table 5: Parameter estimates and adjusted standard errors for both WESML and CML

estimation. Note for both WESML and CML the estimates shown are after adjustments

have been made. For CML with qj known, s.e.(/3) are the same as those given by GEN-

STAT.

Parameter

WESML

Estimate GENSTAT Known qj Unknown qj

-0 s.e.(/3) s.e.(/)* s.e.(/3)

CML

Estimate GENSTAT Unknown qj

'g s.e.(/3) s.e.(13)**

Discharge /302 -0.598 0.351 0.343 0.307 -0.574 0.328 0.337

OSCORE 1312 -0.092 0.027 0.026 0.025 -0.094 0.026 0.026

Employment )322 -0.867 0.208 0.204 0.191 -0.882 0.192 0.192

Court 2 )332 0.192 0.362 0.344 0.330 0.163 0.333 0.333

Court 3 1642 0.167 0.305 0.297 0.284 0.183 0.281 0.281

Court 4 1352 -0.203 0.346 0.335 0.317 -0.195 0.317 0.317

Court 5 fl62 0.994 0.304 0.295 0.289 1.001 0.286 0.286

Court 6 1372 -0.668 0.402 0.379 0.359 -0.699 0.363 0.363

Probation An .-3.829 0.488 0.449 0.406 -3.835 0.441 0.449

OSCORE )312 0.262 0.035 0.032 0.031 0.261 0.032 0.032

Employment )322 -1.265 0.274 0.252 0.245 -1.241 0.246 0.246

Court 2 )332 0.777 0.345 0.324 0.327 0.797 s 0.327 0.327

Court 3 An -0.776 0.341 0.320 0.316 -0.802 0.317 0.317

Court 4 /352 -1.615 0.443 0.402 0.403 -1.614 0.401 0.401

Court 5 )362 -0.446 0.348 0.321 0.326 -0.459 0.328 0.328

Court 6 1372 -1.066 0.404 0.367 0.374 -1.019 0.370 0.370

CSO An -6.526 0.624 0.567 0.546 -6.500 0.560 0.566

OSCORE )312 0.455 0.043 0.039 0.039 0.452 0.039 0.039

Employment f122 -1.091 0.277 0.255 0.256 -1.104 0.254 0.254

Court 2 /332 0.274 0.437 0.390 0.412 0.399 0.404 0.404

Court 3 )342 -0.796 0.374 0.344 0.343 -0.853 0.349 0.349

Court 4 )352 -0.867 0.402 0.367 0.367 -0.865 0.372 0.372

Court 5 P62 -0.620 0.388 0.321 0.326 -0.651 0.363 0.363

Court 6 )372 0.458 0.335 0.317 0.326 0.531 0.322 0.322

Table continued



Parameter

WESML

Estimate GENSTAT Known qj Unknown qj

13 s.e.(16) s.e.(13)* s.e.(/)

CML

Estimate GENSTAT Unknown qj

ij s.e.( .4) s.e.(/)**

SI fl02 -8.699 0.776 0.688 0.768 -8.658 0.687 0.693

OSCORE ,812 0.579 0.052 0.046 0.050 0.575 0.046 0.046

Employment 1622 -0.238 0.269 0.246 0.262 -0.233 0.248 0.248

Court 2 (332 1.292 0.395 0.364 0.403 1.390 0.374 0.374

Court 3 An -2.325 0.621 0.523 0.519 2.402 0.550 0.550

Court 4 /352 -0.105 0.394 0.360 0.380 -0.099 0.367 0.367

Court 5 /162 -0.146 0.395 0.355 0.365 -0.180 0.370 0.370

Court 6 1672 -0.346 0.411 0.370 0.389 _ -0.264 0.382 0.382,
ICS fio2

-
-12.863 1.010 0.858 0.858 -12.774 0.886

,
0.890

OSCORE 1112 0.832 0.063 0.054 0.055 0.825 0.055 0.055

Employment )622 -1.706 0.357 0.310 0.330 -1.700 0.321 0.321

Court 2 1632 2.685 0.497 0.429 0.472 2.758 0.456 0.456

Court 3 /642 -0.967 0.547 0.462 0.470 -1.052 0.492 0.492

Court 4 f352 0.664 0.482 0.419 0.449 0.668 0.440 0.440

Court 5 1362 -0.021 0.501 0.425 0.461 -0.065 0.455 0.455

Court 6 /372 _ 1.042 0.469 0.407 0.447 1.139 0.431 0.431

* Uses equation (6)

** Uses equation (17)
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Figure 1: Probability of Fine in court one

Curves are probabilities from multinomial logit model.
Straight lines are probabilities from linear probability model.
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Table 6: The adjusted Ni parameters and their standard errors for CML estimation and
the population proportions qi are unknown. Using the approach of Hsieh et al (1985).

Parameter GENSTAT values

, i3(ii s.e.(13(13̀)

Adjusted

parameter fisoi

Adjusted s.e.

Eqn (13) Eqn (15)

/Om 0 0

.

0.3788 0.0214 0.0214

1902 0.119 0.328 -0.195 0.3332 0.3343

/g03 -3.142 0.441 -3.456 0.4459 0.4477

/304 -5.807 . 0.560 -6.121 0.5629 0.5646

• /005 -7.965 0.687 -8.279 0.6896 0.6916

i6136 -12.081 0.886 -12.395 0.8875 0.8891
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Figure 2: Probability of Probation in court two

Curves are probabilities from multinomial logit model.

Straight lines are probabilities from linear probability model.
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Figure 3: Probabilities for unemployed in court one

Probability predictions are from the multinomial logit model.
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Figure 4: Probabilities for employed in court one

Probability predictions are from the multinomial logit model.
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