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ABSTRACT

Inference on the autocorrelation coefficient p of a linear

regression model with first-order autoregressive normal disturbances is

studied. Both stationary and nonstationary processes are considered.

Locally best and point-optimal invariant tests for any given value of p

are derived. Special cases of these tests include tests for

independence and tests for unit root hypotheses. The powers of

alternative tests are compared numerically for a number of selected

testing problems and for a range of design matrices. The results

suggest that point-optimal tests are usually preferable to locally best

tests, especially for testing values of p greater than or equal to one.
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1. INTRODUCTION

The first-order autoregressive [AR(1)] process is one of the most widely

used models in econometrics. An important extension is the linear regression

model with AR(1) disturbances. In this context, one usually meets the

problem of making inferences about the autocorrelation coefficient. This

problem can be of interest in itself (e.g., tests of random walk and

stationarity hypotheses) or can play a role in making inferences about the

regression coefficients. In this paper, we develop finite-sample methods for

testing whether the autocorrelation coefficient has any given value. We

consider the general linear model

X + u , (1)

where y is an nx1 vector, X is an nxk matrix of fixed regressors with

rank(X) = k < n, g is an unknown parameter vector and u is an nx1 vector of

disturbances which follow an AR(1) process with normal innovations:

ut = put_i + et , t = 2, ..., n (2)

n 
IN(0,T

2
), T

2 
> 0. Further, it is necessary to make assumptions2'

on the value of p and the distribution of the initial disturbance ul. In

this paper, we consider two main assumptions:

ASSUMPTION A (Stationary process): Ipl < 1, ul N(0,T/(1-p
2
)) and ul is

independent of c,, C
n

ASSUMPTION, B (Unrestricted p): -m < p < +co and ul = diel, where d1 is

unknown, e
1 

N(0,T
2
) and e is independent of C2, •. , C.

Clearly, Assumption A is a special case of Assumption B. Further, Assumption

B includes the case of a random walk (p = 1) and explosive processes

> 1) in the disturbances. Though most of our derivations will be based
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on these two assumptions, we will consider occasionally the more general

assumption that ul follows an arbitrary distribution.

ASSUMPTION C: -m < p < +co, ul follows an arbitrary distribution with mean

zero and u
1 
is independent of e

2' 
. e

n

If x denotes the t
th 

row of X and we take x
t 
= 1, (1) and (2) also

includes as a special case the simple stationary AR(1) process

Yt t = 2, n = P Yt-1t '

where µ = (1-p)31 and yl - N(13
1
,cr
2
/(1-p

2
)) . By taking xt = (1,t)', we can

get (under Assumption B)

+ + C ,t PYt-1 t t = 2, ..., n

where pi = (l-p)(31 + 112 = (1-013 and yl mpl+(3

this yields the random walk model

Yt = P2 Yt-1 4. et '
t = 2, ..., n

c
2
). With p = 1,

2 
where yl N(P1-1(32,dic

2 
); the mean and variance of yl and the drift

coefficient p
2 

can take arbitrary values. Finally, if we take x
t 
= (1,p 

t
)'

and p # 0 and 1, we get (under Assumption B)

Yt
t = 2, . 

= 111 PYt-1 
+ e

t '

where µ1 = (l-p)(31 and yl mpl+(3
2' 
p d

2
1
c
2
'
). in contrast with the stationary

case, y
1 
has here arbitrary mean and variance.

Following Anderson (1948) and Durbin and Watson (1950, 1951), many

authors have studied tests of p = 0; for a survey, see King (1987a).

Attention has also been devoted to testing the random walk hypothesis p = 1,

either in linear regressions [Sargan and Bhargava (1983)1 or in simpler
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models [Evans and Savin (1981, 1984), Bhargava (1986), Nankervis and Savin

(1985)1.
1
 On the other hand, very little has been done on testing whether p

has a prespecified value, possibly different from 0 or 1. For example, one

may wish to test whether p has a value close to but not equal to 1. A more

basic reason why this problem is important is that tests of p = po can be

turned into confidence sets for p. Exact tests yield exact confidence sets

which can be employed to obtain exact inference procedures (tests and

confidence sets) for the regression coefficients [see Dufour (1990)1. In

this context, we need efficient tests because the power of the test

determines how short the intervals tend to be [see Lehmann (1986, Chapter

3)]. Finally, in view of the unreliability of asymptotic critical values

[see Park and Mitchell (1980) and Miyazaki and Griffiths (1984)1, there is a

potentially large benefit from developing finite-sample procedures.

In this paper, we construct optimal invariant tests of Ho : p = po

against alternatives of the form H
a 

: p > po and H
a 
: p < po where po is any

admissible value of p. We derive both locally best invariant (LBI) and

point-optimal invariant (POI) tests, the latter being constructed as most

powerful invariant (MPI) tests against non-local point alternatives. We also

discuss how to obtain two-sided tests against Ha : p * po. In section 2, we

consider the stationary case (Assumption A) while the case of a nonstationary

process (Assumption B) is studied in section 3. For all the statistics

considered, we explain how exact critical values can be calculated. For the

LBI test of p = 1, we also show that critical values may be obtained from

tables of the central F distribution. We give expressions for the LBI test

statistics as exponentially weighted averages of residual autocorrelations.

In the nonstationary case, we stress the importance of dealing carefully with

the distribution of the first disturbance, u
1.

By considering tests

invariant under appropriate transformation groups, we find LBI and POI tests
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whose null distributions are not influenced by the distribution of u
1
. In

sections 4 and 5, we report the results of power comparisons between LET

tests, • POI tests, and Durbin-Watson (DW) tests based on appropriately

transformed data. Among other things, the results suggest that POI tests can

lead to substantial power improvements over alternative tests. The advantage

of POI tests over LBI tests is especially striking when values of p equal to

or greater than one are tested. Section 6, finally, summarizes our results

and contains a few concluding remarks.

2. STATIONARY DISTURBANCES

In this section, we assume a stationary error process (Assumption A) and

consider testing Ho : p = p
0 

against the alternatives 'H
a 
: p > po,

H
a 

p < po and H
a 

: p # pc). p
0 

is arbitrary and such that Ipo l < 1. We

denote the problem of testing Ho by PA(p0). Under Assumption A,

u N(0,c
2
E(p)), where

E(p) = 01-p
2
)

p
n-1

1 p
2

1
2

1

n-1

The above problems are invariant to transformations of the form

0
y + (G1)

where zo > 0 and T is kx1. G1 is the transformation group used by Durbin and

Watson (1971) to establish optimal properties of the DW test. This suggests

studying tests of p = po that are invariant under G1. For a general
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discussion of invariant tests, see Lehmann (1986).

Let

8(p) =

1/1-p2 0 0 0

-p 1 0 0

0 -p 1

0 0

1 0

-P 1

B
o 
= B(p0) and E = E(p

0 
). We can transform (1) by premultiplying by the

0 

nonsingular transformation Bo, so that

y* = + u* , (3)

where y* = B y, X* = BoX, u* = Bou and under H
0' 

u* N(0,0'21).

When p # po, u* - N(0,0.
2 
0
E(p)B1) and the transformed disturbances

0

follow the ARMA(1,1) scheme, u* - pu*
1 
= c 

POc1' 
t = 2, ..., n. Also

t- t t-

note that if G1 is transformed by premultiplying by Bo we get

(y*) = 7y* + X*T (4)

so that G1 and (4) are equivalent groups of transformations. The

disturbances of (3) remain autocorrelated when p # po which suggests that p =

p
0 

may be tested by checking whether the residuals of (3) are independent;

see Dufour (1990). Any test for first-order autocorrelation in (3) may in

principle be employed. Though they may have computational advantages, these

procedures have no known optimal properties. For this reason, we study here

tests with clear optimal properties against local and non-local alternatives.

Note that King and Evans (1988) have shown that the DW test is approximately

uniformly LBI against ARMA(1,1) disturbances. This is for H
0 
: p = 0 = 0 in

Here we are interested in a different problem which- pu
t-1 t 95ct-1.

= -

5



involves testing H :
0 P =

when 0 is known.

Theorem 1, which follows from King and Hillier (1985) [see Shively,

Ansley and Kohn (1989) for an alternative statement of the King-Hillier

result], gives LBI tests of p = p
0 

against one-sided alternatives.
2

THEOREM 1. Under (1), (2) and Assumption A, a LBI test of p = po against p >

p
o 
(p < p

o
) is to reject H

o 
for small (large) values of

D
1
(p
0
) = e'A

0 
'E
0
1
'

(5)

where ; is the generalized least squares (GLS) residual vector from (1)

corresponding to covariance matrix E0 and

A
0 

= aE(p) / Up

P= PO

in which A
1 
and C

1 
are the nxn matrices

and

A
1

-2(1-p0)In +A
1
 - 2p0C1

2 -1 0 0

-1 2 -1 0

0 -1 2

1

0 0 -1 2

(6)

C
1 

= diag(1,0,0,...,0,1) . (7)

Note that because 80e = z*, where z* is the OLS residual vector from the

transformed model (3), (5) can also be written as

-
D
1
(p
0
) = 

z*/(130
-1 

0 
B
0
1 
z* z*'z*

u*'M (B
0
-1

)'A
0 
B
0
-1

M
0 
u* u*'M

0 
u*

6



-
where M

O 
= I

n 
- X*(X*1)(*)

1 
X*'. Under H

0' 
u* N(0,T

2
I
n
) so that D

1
(p
0
) is a

ratio of quadratic forms in normal variables and its distribution function

can be computed using numerical methods developed for the DW test such as

described by King (1987a, pp.27-28) and Shively, Ansley and Kohn (1989).

For the case po = 0, the statistic D1(p0) takes the form

D (0) = z'A
1
z z'z - 2 =

1 
-2r

1

where z is the OLS residual vector from (1) and r
1 

is the first-order

autocorrelation coefficient of these residuals. More generally, it is

possible to express D1(p0) in a more intuitive form. After some tedious

algebra (see Appendix A), we can find two alternative expressions. The first

A
relates D

1
(p
0
) to the first-order autocorrelation of the GLS residuals e:

where R
1
(p
0
)

D
1
(p
0
) = -2[111(P0) - Po]

n-1 n-1„
= E etetil. if E ;

t=1 / t=2
and q=

n-1

t=2
e
t

z*/z*. R
1
(p
0
) is

approximately the first-order autocorrelation of e while q can be viewed as

2 2
an estimator of var(ut)/T

2 
= 01-p0). When p = po, q converges to 14/(1-p0)

under fairly general regularity conditions. Roughly, Ho is rejected against

P PO (P
< p0) when R

1 
(p
0 
) - p

0 
is large (small). The second expression

relates D
1 
(p
0 
) to the autocorrelations of the OLS residuals, z*, from the

transformed model (3):

n-1
k-1

D1(p0)  = -2 E po +
,

k=1

where

n-k
= E ztzt+k /

t=i

and

z*, z* 0
0 1

( 9 )



have poor power away from H0,

2 -1 2 2,-1/2 _ 1}
p
0 
(1-p ) (z*) + (l-p0) 

n t_2

E p e] / z* *
0 1 0 t z

t=2

In large samples, n is negligible (under standard regularity conditions on

X), so that D
1
(p
0
) is proportional to an exponentially weighted average of

all the autocorrelations, q. When po = 0, (9) reduces to -2r1, but not

otherwise. This shows that looking only at low order autocorrelations is not

generally efficient.

While LBI tests have optimal power in the neighbourhood of H
0' 

they may

i.e., when accepting Ho is most damaging from

the point of view of making reliable inferences. Power can even fall below

the level of the test, see for example Kramer (1985). An attractive

alternative is to use a point-optimal test, i.e., a test that optimizes power

t a pre-determined point under the alternative hypothesis. The next

theorem, which follows directly from King (1980), gives the MPI test of

p
0 

against a given alternative P = (31
where IP0 < 1, Ipi l < 1 and E

1 
=

THEOREM 2. Under (1), (2) and Assumption A, a MPI test of p = po against p =

p is to reject H
o 
for small values of

S
1
(p
0
,p

1
) =

,- -- - -^
e E

1 
e e'E

1
 e

1 0 '
(10)

where e and e are the GLS residual vectors from (1) corresponding

covariance matrices E
0 

and E
l' 

respectively.

To obtain a test of p = po against p > pc), we select a value of pl such

that po < pl < 1 and apply the test based on S1(p0,p1). For example, we may

choose pl close to 1 or an intermediate value like pl = (p0+1)/2. Similarly,

against p < po, we select pl such that -1 < pl < pc). Tests obtained in this

way optimize power at p = pl and are known as POI tests. A survey by King



(1987b) reveals that such tests often have substantially better power than

LBI tests. Let B
1 
= B(p

1
) and let

y
t 

X= 
t
p + ut

denote (1) transformed by premultiplying by Bl. The statistic S1(p0,p1) is

easy to compute because it can also be written as S
1
(p
0
,p

1
) = z

t, zt 
z*' z*

where z
t 

and z* are the OLS residual vectors from (11) and (3), respectively.

Further, we can write

S1(p0,p1) u*/ 
1 
B-1111,1

1 
B
1 
B liu*

0  0 
u*'M

0
u*

where u* N(0,c
2
I) under H and M = I - X

t
(X

t
'X)-1Xt;. Thus S(p

n 
,p

1
)

0 1 n 1 0

is a ratio of quadratic forms in normal variables and its distribution

function can be computed in a similar way to the DW test.

Theorems 1 and 2 describe tests against one-sided alternatives. To

obtain confidence sets, one typically needs two-sided tests of p = po against

P PO'
It is certainly possible to obtain LBI unbiased tests for this

problem [see King and Hillier (1985)], although the test criterion does not

reduce to a ratio of quadratic forms in normal variables. Instead, one gets

forms of order 4 whose finite-sample distribution is unknown. For this

reason, we suggest the combining of optimal one-sided tests.

Let 0 < a < 1 and 0 < 
2
a < 1 such that a

1 
+ 02 

= a, e.g. a
1 
= a

2 
= a/2.

1 

Using LBI tests, it is natural to reject Ho : p = po against Ha : p # po when

D
1
(p
0
) < c

1 
or D

1
(p
0
) > c'

1 '

where c
1 

and c are chosen so that P[D
1
(p
0
) < c

1
] = a

1 
and P[D

1 
(p
0 
) > =

1  1

under Ho. Clearly this test has level a. Similarly, it is also possible2

to construct two-sided tests from POI tests. Choose pl and p2 so that -1

9



< p < p
2 

< 1. We reject H
0 

against H
a 

when
0 

S
1
(p
0'

p
1
) < c

2 
or S

1
(p
0'

p
2
) < c'

2 '

where c
2 

and c are chosen so that P[S
1
(p
0
,p

1
) < c

2
] = a and

2 1

P[S1 
(p
0' 

p
2 
) < ci] = a

2 
under H

0 
. By the Bonferroni inequality, this test has

2 

level less than or equal to a.

3. NONSTATIONARY DISTURBANCES

Assumption A is restrictive because it excludes p = 1 or Ipl > 1 and

requires the variance of u
1 

to be cr/(1-p
2
). Even if II < 1, we may wish to

allow more flexibility for the distribution of ul. For example, the process

may not have run long enough to become stationary. To obtain exact tests, it

is important to take these difficulties into account. In this section, we do

not impose any restriction on the value of p and simply assume that ul

follows a normal distribution with an arbitrary unknown variance (Assumption

B). The normality assumption of ul is used mainly to derive tests with clear

optimal properties. However, the procedures obtained in this way have

correct sizes under weaker conditions (Assumption C).

Let C(p) denote B(p), with the top left element taking the value 1

instead of 14-p21 and let J, E
1 

and E
n 

be nxn matrices defined as J

diag(d
1' 

,..., 1,11), E
1 
= diag(1,0,0,...,0) and E

n 
= diag(0,0,...,0,1). Under

Assumption B, C(p)u = Jc, where c N(0,c
2
I
n
) so that u N(0,o

-2
Q(p,d )) in

Observe thatwhich (p,d1) = C(p)- 
1j2[c(p)-1]'

-1
= C(p)/ J 2C(p)

1

(1-p)
2
I
n 
+ 

pA1 
2 

- p E
n 
+ (d

1 
-1)E

1 
.

2
If d

1 
= (1-p

2
), Q(p,d

1 
= E(p), while if d

1 
= 1, the covariance matrix of u

10



is identical to that used by Berenblut and Webb (1973). The assumption

d
1 
= 1 is, however, very stringent and usually implausible. We thus prefer

to use Wp,d1) with d1 taken as unknown.

Under (1), (2) and Assumption B, y N(X(3, 
2 
Wp,d1)). We denote

the problem of testing Ho : p = po against H
a 
: p > po or Ha : p < po in this

context by PB(p0). It is invariant to transformations in the group G1.

Theorem 3, which again follows directly from King and Hillier (1985) and King

(1980) gives LBI tests and POI tests of p = po assuming d1 is known. Even

though such tests are rarely applicable, they provide useful benchmarks in

the power comparisons that follow.

THEOREM 3: Let (1), (2) and Assumption B hold with the exception that d1 is

assumed known and d1 # 0. A LBI test of p = po against p > po (p < (30) is to

reject Ho for small (large) values of

-1^
2
u u'O(p

0'
d
1
) u15(p

0
)

where fi is the GLS residual vector from (1) corresponding to covariance

matrix Wp0,d1) and

A
2 

-2(1-po)In Al - 2poEn . (12)

A POI test of p = po against p > po (p < po) that optimizes power at p = pl

is to reject Ho for small values of §1(p0,p1) =

where i is the GLS residual vector from (1) corresponding to covariance

matrix Wp1,d1).

The 15
1
(p
0
) and

1
(p
0'

p
1
) tests can be implemented like the tests of

Theorems 1 and 2. In particular, both statistics can be written in forms

involving OLS residuals from the transformed regression

11



-1
J C(p)y = J 1C(p)X + J 1C(p)u (13)

in which p takes the value po or pl. In practice, d1 is usually unknown. To

deal with this problem, we will try to find test statistics that satisfy two

conditions:

(a) the value of d
1 
is not required to compute the test statistic;

(b) the null distribution of the test statistic does not depend on dl.

Let Co = C(p0) and consider the transformed regression model

= CoXP + Cou . (14)Coy

,
Observe that under Ho and Assumption B

, 
C
o
y - 

N(C0 
x(3'02j2). 

Thus if we

consider testing Ho : p = po in the context of (14), conditions (a) and (b)

above would be satisfied if the test statistic does not depend on d1 and is

invariant to the value of the first element of Cou. The testing problem

expressed in terms of (14) is invariant to transformations of the form

(coy) = 7
0
C
0
y+C X7

0
(15)

where 70 is a positive scalar and 7 is a kx1 vector. If the test statistic

is to be invariant to the first element of C
0 
u then it must also be invariant

to the first element
3 

of C
0 
y and so to transformations of the form

(C
o
y) = 

0 
C
0
y+C

0
X7 + 7

k+1
t
1

(G2)

where 7
k+1 

is an arbitrary scalar and t
1 

is the nx1 vector of zeros with one

as the first element. Note that we are not claiming that the testing problem

is invariant under G2. However, we wish to consider tests invariant under G2

because such tests are invariant under (15) and satisfy (b).
4

In terms of y,

transformations in the group G2 are equivalent to transformations of the form

12



n-
Further, C

0
1t
1 
= (1,p0,...,p10 

), 
Thus testsY . T0

y + XT + T
k+1

C
0 

t
1
. 

t
invariant under G2 are invariant to transformations of the form

y =t

y
t 
+ T p

t-1 
t 

k+10 
= 1, n. The results of the test should not change when

'

a solution of the homogeneous equation Zt - p Z
t-1 

= 0 is added to y.

A maximal invariant for the group G2 is v (v
, 
v)
1/2 

where v is the OLS

residual vector from the regression of Coy on [CoX,ti]. One can get 'v by

adding a dummy variable for the first observation into the transformed model

(14), or by introducing the regressor (1,p
0' 

...,p
n-1

)' into (1). Note that
0

the extra regressor is not used because we believe it is a regressor in the

model but simply to find a test that satisfies (b).

-1
The matrix [X,C0 ti] may not always have full column rank; an example

being when pc) = 1 and X contains a constant regressor. Let R denote

[X,C
0
-1

t ] where, if necessary, columns have been deleted until it has full

column rank and let = c
0 
R denote 

[C0'1 
X t ] with the analogous columns

0 

deleted. Then

= Rc
0 
y = Mu (16)

- - --
where R =I

n 
- 

0
(X'X

0
1 

) X' and u = C
o
u. Theorem 4, which can be proved

00

along similar lines to King and Hillier' (1985) result, gives LBI tests of

p = p
0 

against one-sided alternatives.

THEOREM 4. Under (1), (2), Assumption B and assuming d1 # 0, a LBI test of

= /Jo against p > po (p < po) under the transformation group G2 is to reject

H for small (large) values of

- - --
D
2 
(p
0 
) = v'(C

0
1 
)/A

2 
C
0
1 
v viv

2
'N; v'S-2(p

0 
,1)

1 
v (17)

where A
2 

is given by 12) and v = C
0
-1

v is the GLS residual vector from

13



= R6 + u (18)

assuming covariance matrix Wp0,1).

Critical values and critical levels for tests based on D2(p0) can be

obtained by noting that

D
2
(p
0
) = U1 -1:1(C-1)/A ,

0 2 0

where u N(003-
2
J
2
) when p = po. As a consequence of ti being a regressor,

the first row and column of M are zero so that v = Mu is not a function of

u
1 

= u
1' 

and hence under H
0 

the distribution of D
2 
(p
0 
) does not depend on d

1

or indeed on the distribution of u
1 

(Assumption C). The test is thus

applicable, in the sense that its level is correct, under the weaker

Assumption C. Furthermore, when computing critical values and critical

levels, one can assume d
1 
= 1 or u N(007

.2
I
n
). Also observe that v

1 
= 0.

As in the stationary case, we can rewrite D2(p0) in the form of (8)

where now

n-1 / 
v
t

t=2 

n-1 -2ER
1(p0) = E vt vt+1

t=2

-2
and q = E v, / viv .

t=2

n-1

n-1 n-k
k-1

Also D
2 
(p
0 
) = -2 E po rk where rk = E vtvt+k / vi v. Thus D

2
k=1 t=1

) is

proportional to an exponentially weighted average of all the auto-

correlations r
k.

For p
0 
= 0, D

2
(0) = -2T

1 
where T1 is the first-order autocorrelation of

the OLS residuals from the regression y = XP + pk+iti + u. For po= 1 (random

walk), the test statistic takes the form

n-1
D
2
(1) -2 E rk .

k=1

14
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We reject p = 1 against p > 1 (p < 1) when the sum of all the

autocorrelations of the OLS residuals is large (small). Critical values of

D
2
(1) may be obtained from tables of the central F distribution. Provided

# o,

1 - D
2
(1) [E' RE / [1 + (n-k -1 )F (n- - ,1)] ,

n n

where t = (1,1,...,1)', = rank[X] and F(n-k
1
-1,1) is a random variableri

1

that follows a central F distribution with (n-k1-1,1) degrees of freedom;

see Appendix B for the proof. When Rtn = 0, we have D
2
(1) = 1 and the test

is not applicable. This corresponds to a linear trend regressor in (1).

It is worth noting that Sargan and Bhargava (1983) considered the

related problem of testing po = 1 under Assumption B against the alternative

hypothesis of Assumption A. As well as suggesting the use of the DW and

Berenblut and Webb (1973) tests applied to (1) in first-differenced form,

they. derived an approximately LBI test that is also approximately uniformly

most powerful when the column space of X is spanned by k eigenvectors of

(A
1 
- C

1
) where A

1 
and C

1 
are given by (6) and (7), respectively.

As in the stationary case, LBI tests are not necessarily optimal against

non-local alternatives. Theorem 5 allows the construction of POI tests that

are invariant under G2 and thus have correct size for any d
1 

value.

THEOREM 5. Under (1), (2), Assumption B and assuming d1 # 0, a MPI test at

p = po against p = pl, under the transformation group G2, is to reject Ho for

small values of

-^ -1-
S
2
(p
0'

p
1'
d
1
) .‘7 10(p

1'
d
1
)

1 
v '''S2(p

0' 
1) v viv ,

where V and -Nif are the GLS residual vectors from (18) assuming covariance
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matrices Wp1,d1) and Wp0,1), respectively, and v and are the OLS

-
residual vectors defined by (16) and the regression of J

1
n 
C(p

1
)y on

J
-1

C(p1 ' 
)R respectively. Further, if p = po and WI' is any real number such

n 

that dl # 0, the null distribution of S2(p0,p1,d1) does not depend on dl.

The proof of the first part of Theorem 5 follows directly from King

(1980, 1987b) and the fact that v/(v/v)
1/2 

is a maximal invariant for the

-1 -1
= d* andin which J* denotes J withgroup G2. Let Q = J* C(p

1
)C
0 ' 

d1 
1'

define M
O 
= I

n 
- QR

0 
(R'Q'OR

0 
)-15-VW. Then we can write

0  0

S2 
(p
0' p1' 

d*) = 17.1'RQ'M
0 
QK / riiRii = v'Q'M

0 
Qviviv (20)

1 

so that 
S2 
(p
0' p1' 

d*) depends on u only through v = Mu. When
1

p = p0, 
S2 
(p
0' p1' 

d*) is not a function of -1-1 = u
1 

given that the first row
1 

and column of M are zero.

When applying Theorem 5, one needs to specify both pl and a value of dl,

say dl. The resultant test is POI, optimizing power at (p,di)' = (p1,d1)1 .

It is not necessary that d* be the true value of d
1 

to get a valid test.
1

Critical values can be computed from (20) in the usual way because we can

assume u N(0,c
2
I
n
) when p = p0. As for the LBI test, this test remains

applicable under Assumption C because it depends on u only through v =

For the special case in which pl = 1 and the model contains an intercept,

C(p
1 
)X contains t

1 
as a regressor so that QX

0' 
Q'M

0 
Q and thus 

S2 
(p
0' 

1,d*) are
1

invariant to the value of d* selected. I this case 
S2 
(p
0' 

1,d* =
1 1

S2 
(p
0" 

1 d
1 
) and the choice of d* is irrelevant.

1

The determination of d* in S
2 
(p
0 
,p

1 
,d*) is usually arbitrary so it would

1 1

be convenient to have a test that does not require specifying a value of d*
1.

A way to do this is to consider a larger invariance group such that the MPI

test of p = po against p = pl does not depend on dl. Such a group is

16



-1 -1
= 70Y X7 7k+1C(P0) 1 7k.+2C(P ) 1

(G3)

where T 7 7 
' k+2 

are arbitrary scalars, such that 7 > 0 and 7 is a kxl
0 k+1' 0

vector. It can be shown that the MPI test of p = po against p = pl under the

transformation group G3 does not require specifying an arbitrary value of d1

and has a null distribution that does not depend on the true value of dl.

However, power comparisons suggested that the power of this procedure is very

inferior to that of the test based on S2(p0,p1,d1). For this reason, we do

not elaborate here on POI tests under G3.

Theorems 3, 4 and 5 all provide optimal one-sided tests for testing p =

p0. Corresponding two-sided tests may be obtained in a way analogous to the

one used in the stationary case.

4. EMPIRICAL POWER COMPARISONS

In order to study the small-sample properties of the above tests, their

powers were calculated for testing problems PA(0.5), PA(0.9), P13(0.5),

P8(0.9), PB(1.0), P8(1.1) and design matrices:

X1: (n x 1; n = 20,60). The constant dummy as the only regressor.

X2: (n x 3; n = 20,60). The first n observations of Durbin and Watson's

(1951, p.159) consumption of spirits example.

X3: (n x 3; n = 20,60). A constant, the quarterly Australian Consumer

Price Index commencing 1959(1) and the same index lagged one quarter.

X4: (n x 4; n = 20,60). A constant, quarterly Australian private capital

movements, the same series lagged one quarter and quarterly Australian

Government capital movements commencing 1968(1).

17



X5: (n x 3, n = 20,60). Watson's X matrix with an intercept, i.e., a
l' 

(a
2

+ a
n' 

(a
3 

+ a
n-1

)/1/2- as regressors where a a
n 

are the

eigenvectors corresponding to the eigenvalues of the DW matrix (A
1 
- C

1
)

arranged in ascending order where A
1 
and C

1 
are defined by (6) and (7).

These design matrices cover a range of applications. X1 is the special

case of the Gaussian time-series model with unknown mean. X2 is based on

annual data while X3 is quarterly with a slight seasonal pattern. The two

capital movement series which make up X4 are strongly seasonal with two

seasonal peaks per year plus some large fluctuations. Watson (1955) found

that within the class of orthogonal X matrices, OLS has minimum efficiency

relative to the BLUE for X5. We therefore expect X5 to show an extreme in

the behaviour of the tests.

A summary of the tests and the p values at which their powers were

calculated is given in table 1. For PA(p0) and against 14+a (Ha), Dypo)

denotes the one-sided DW test against positive (negative) autocorrelation

applied to (3). In the case of PB(p0), two sets of power comparisons were

made. The first involved applying each test assuming d1 is known. This is

unlikely to happen in practice, so these powers were only calculated to

provide benchmarks. The tests in this case are based on (p ) (p p )
1 0 ' 1 0' 1

and Dypo) which is the DW statistic applied to (13) with p = po. These

tests are invariant under Gl, but not necessarily under G2. The second set

involved applying the tests D2(p0), S2(p0,p1,d1) and DW2(p0) constructed to

be invariant under G2.
5

This required (1,p0,...,p1-01-1)' to be added as an

additional regressor to (1) before the test was applied. For PB(1.0), the

two sets of tests are identical (provided the model contains an intercept).

Also in this case, Sargan and Bhargava's (1983) approximately LBI test

denoted SB was also included in the comparison. For the remaining PB(p0)

testing problems except when pl = 0, the S (po,pi,d1) tests require a choice

18



of d* value. The values used were d* = 0.1, 1.0, 10.0. Although powers vary
1 1

with d
1' 

in order to keep the computations manageable, all calculations were

performed with d
1 
= 1.0.

All test statistics can be expressed as ratios of quadratic forms of the

disturbance vector, being of the form u'Au/u'Bu, where A and B are known nxn

matrices. In order to calculate exact critical values and powers of tests

based on such statistics, we need to be able to compute

n
2

Nu/Au/11'13u < c*Iu - N(0,E)] = -I' E Ai<i < 0
i=1

(21)

where c* is the critical value, E = E(uu'), Ai, ..., A
n
, are the eigenvalues

of (E
1/2

)/(A - c*B)E
1/2
 and < = (‹ <n)' N(0,In). (21) may be

1'

evaluated using Imhof's (1961) algorithm, coded versions of which are given

by Koerts and Abrahamse (1969) and Davies (1980). All power calculations

were made using exact critical values at the five per cent level.

We began by computing (21) using a modified version of Koerts and

Abrahamse's FQUAD subroutine with maximum integration and truncation errors

of 10
-6

. This worked well for PA(p0) and PB(p0) with '30 = 0.5,0.9 but for

PB(1.0) and PB(1.1), especially under ea, it frequently failed to converge

despite increasing the number of iterations. The lack of convergence seemed

to be caused by there being one very large positive (negative) eigenvalue

balanced by a number of smaller negative (positive) eigenvalues. A FORTRAN

version of Davies' (1980) algorithm worked slightly better but also had

similar problems. For the cases of nonconvergence, it seems that the

numerical integration problem we were trying to solve is ill-conditioned and

so accurate answers may not be possible. We successively lowered the maximum

integration and truncation errors until convergence was achieved. This

sometimes meant integration and truncation errors as large as As a
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final check, the Monte Carlo method with ten thousand replications was used

to re-calculate all powers computed for the X2 design matrix. We could find

no significant difference between the two sets of results.

5. RESULTS ON POWER

In this section we discuss the results of the power comparison. A more

detailed discussion can be found in an earlier version of this paper [Dufour

and King (1989)]. We begin by discussing the results for PA(p0). Calculated

powers for design matrix X3 and PA(0.5) and PA(0.9) are given in tables 2 and

3, respectively.
6

The powers of all tests increase as p moves away from Ho • . p = po.

Also, ceteris paribus, there is a noticeable drop in power going from X1 to

any of the other design matrices, reflecting the addition of extra

regressors. With one minor exception, the DW
1
(p
0
) test always has inferior

power to the other tests. Generally the POI tests have almost identical

power which is typically slightly higher than that of the D1(p0) test. The

spread of powers is greatest for PA(0.9) against Ha, particularly for X2 -

X5. As expected, the D1(p0) test is most powerful near po while the

S
1
(p
0
,p

1
) test is most powerful at p values near 

pl.

is typically a POI test with p1 taking a middle value.

The best overall test

Turning to the nonstationary case, we begin by discussing the results

for P8(0.5) and PB(0.9). Calculated powers for X3 and P8(0.9) are given in

table 4. With occasional exceptions for the S2(0.9,0.45,10.0) test, the

powers of all tests nearly always increase as p moves away from po, ceteris

paribus. Each test shows a loss of power going from X1 to any other design

matrix, ceteris paribus, reflecting the cost of including regressors. With

the single exception
7 

of the 51(0.9) test against Ha the G1-invariant tests,
'
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•

1
(p0, 

1 
(p
0 
) and g

1
(p
0
,p

1
), which require knowledge of d

1' 
are almost

always more powerful than their respective G2-invariant tests. It also

appears that knowledge of d1 has greater potential to improve the power of a

test, the further po is away from zero. Because G1-invariant tests are

typically nonoperational, our interest is in the G2-invariant tests.

In some circumstances, the choice of d* in 
S2 
(p
0' p1' 

d*) has almost no
1  1

effect on power while in other situations, such as testing against H
a
, the

choice of d*
' 

particularly that of d* = 10.0, can cause a severe loss of
1 1

power. The choice seems to be less critical in large samples. In fact for

n = 60, setting d* = 0.1 can result in a slight power improvement for p
1

values close to p
0. 

An explanation is that setting d* at a lower than true
1

value seems to have a similar effect on power as moving pl closer to po. In

all cases, the results suggest that a good strategy if d1 is unknown is to

attempt to set dl to a value that is likely to be below, but hopefully near,

the true d
1 
value. Of the tests that remain after exclusion of the POI tests

with d* = 10.0, the DW
2
(p
0
) test is nearly always the least powerful. For

1

PB(0.5), the powers of the D2(0.5) and S2(0.5,p1,d1) tests with dl = 0.1 or

1.0 are nearly identical, particularly when n = 60 against H. Against H+a,

the results indicate that the S2(0.5,0.75,0.1) and S2(0.5,0.75,1.0) tests

have the best overall power properties. For PB(0.9) and against H+
' 

the
a 

powers of the S
2 
(0.9,p

1 
,d*) tests with d* = 0.1 or 1.0 are almost identical

1 1

and are typically slightly higher than those of the D2(0.9) test. Against

H
a' 

the power differences are more distinctive with the S
2
(0.9,0.45,d*) tests

1

with d* = 0.1 and 1.0 possibly having the best overall power.
1

We now discuss the results of most interest, those for PB(1.0). Table 5

gives calculated powers for design matrix X4 which are more representative

than those for X3. This is because some tests exhibit uncharacteristic

behaviour only for X3 and occasionally also X2. For example, the
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S (1.0,1.1
' 
d*) tests are found to be biased, but only for X3 when n = 60.1

Ceteris paribus, the powers nearly always increase as p moves away from

po. Each test typically shows a loss of power going from X1 to any other

design matrix, ceteris paribus. A feature of the results against fra is the

poor performance of the D
2
(1.0) test. Across all design matrices and p

values, its maximum power is 0,217 when n = 20 and 0.369 when n = 60. In

contrast, all other tests have maximum powers above 0.72 and 0.98,

respectively. Once again, in order to apply a POI test when d1 is unknown,

it seems setting d* to a value near or below the true d
1 

value would be a
1

sensible strategy, particularly if n is small. Against Ha, the SB test is

clearly superior to the DW2(1.0) test. For most design matrices, the power

of the S2(1.0,0.5,1.0) test dominates that of the SB test. The powers of the

SB and S2(1.0,0.0,1.0) tests are identical for X1. We conclude that against

H
a
, the SB test has good power which can be improved by the use of an

S
2 
(1.0,0.5,d*) test with d* chosen to be near or below the true d

1 
value.

1 1 

A feature of the PB(1.0) results against 1-14-a is the relatively good

performance of the D
2
(1.0) test which almost totally dominates that of the SB

and DW tests. Another feature is the insensitivity of the S2(1.0,p1,d1)

tests to the choice of d* when n = 20. At first sight, a surprising result
1

is the general dominance, when n = 60, of the S2(1.0,p1,10.0) tests over POI

tests with d* set to 1.0 or 0.1. An explanation is that against H
a' 

an1

S2(1.0,p ,10.0) test has power properties similar to an S2(1.0,pl,1.0) test

where pl. < pl. The S2(1.0,1.1,d1) test has better overall power than the

S2(1.0,1.2,dT) test for dl = 1.0,10.0.. When n = 20, both the S
2 
(1.0 1.1 d*)

1

tests can be described as superior to the D2(1.0) test, although the picture

is reversed when n = 60. In summary, against H
a
, the D

2
(1.0) test has good

power properties which can be improved upon by the use of an S2(1.0,p ,d1)

test with pl = 1.1 for n = 20 and a lower value, say 1.025, when n = 60. The
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d* value should be set near or above the true d
1 
value.

1

Finally we discuss the results for PB(1.1). Calculated powers for X3

are given in table 6. A feature is that not all tests increase in power as p

moves away from po. For example, the power of nearly all the G2-invariant

tests against H- either first increases and then decreases or, first
a

decreases and then increases, with the point of inflection being around

p = 1.0. Also, when n = 60, the powers of the D
1
(1.1) test against H

a 
and

the D
2
(1.1) test against H

a 
always decrease rapidly to zero. Further

calculations at p values closer to 1.1 showed that the powers of both tests

first increase and then decrease. Increasing n does not always improve

power. In general, if a test's power when n = 20 is below (above) 0.05, then

its power when n = 60 is further below (above) 0.05. Typically, all tests

show a loss of power going from X1 to any other design matrix, except when

the power is below 0.05 in which case it invariably increases. The

G1-invariant tests are generally more powerful than their respective

G2-invariant tests. Against Ha, the S
2 
(1.1 1.0 d*) test is invariant to the

1

choice of d* value while for the S
2 
(1.1 0.5 d*) test, the choice can have a

1  1

substantial impact on power when n = 20. In view of these results, we

recommend a choice of d* near or below the true d
1 
value when n is small, and

1

near or above when n is large. Against H
+

' 
the power functions of the

a 

S2(1.1,p1,d1) tests are insensitive to the choice of dl value and this

insensitivity increases with sample size.

Against H-a, no one G2-invariant test performs well over both the

subregions R1: 1.0 5- p < 1.1 and R2: 0 p < 1.0. When n = 20, the power

curves of the D
2 
(1.1) and S

2 
(1.1 1.0 d*) tests are almost identical while,

1

for n = 60, the S
2
(1.1,1.0

' 
d*) tests have a definite power advantage. These
1

tests dominate the DW2(1.1) and S2(1.1,0.5,d1) tests over R1 while the

reverse is the case over R2. The S2(1.1,0.5,1.0) test can be regarded as the
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best test over R2. While we have found that no test performs well over both

R1 and R2, it may be that a better choice of pi_ in the S2(1.1,p1,dT) test

will produce such a test. For example, the most stringent POI test which

involves choosing pl to minimize the maximum power difference with the power

envelope could be such a test.

A feature of the G2-invariant results against H
a 

is the poor performance

of the D
2
(1.1) test. It seems that while the powers of the other tests tend

to one as n increases, the power of the D
2
(1.1) test tends to zero. The

powers of the remaining G2-invariant tests are very similar when n = 60 with

the POI tests being slightly superior. Overall, we recommend the use of the

S
2
(1.1
'
1.15
' 
d*) test, with d* chosen to be close to or above the true d

11 1

value, for testing p = 1.1 against p > 1.1.

6. CONCLUDING REMARKS

In this paper, we considered the linear regression model with AR(1)

disturbances and derived optimal invariant tests for the hypothesis that the

autoregressive coefficient p has any given value. In the nonstationary case,

we stressed the importance of getting test statistics that do not depend on

the distribution of the first disturbance (which is typically unknown). We

dealt with this problem by considering tests invariant under a larger

transformation group than the one used by Durbin and Watson (1971). In

practice, this can be done in a simple way by adding an artificial

"regressor", which depends on po, to the X matrix.

We also presented power comparisons between alternative tests. For the

stationary models, our results suggest that both LBI and POI tests are

usually superior to DW tests (based on transformed data under H0), sometimes

by wide margins, while the power differences between LBI and POI tests are
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relatively small, with the biggest differences favouring POI tests. For the

nonstationary models, the same situation seems to hold when testing values of

p less than (and not too close to) one. On the other hand, when testing

values of p equal to or greater than one, LBI tests (under G2) have poor

power relative to other tests. An exception is the LBI test of p = 1 against

p > 1. The advantage of using POI tests (under G2) is especially strong for

testing values of p equal to or greater than one. However, the results

indicate that choosing a test which optimizes power at a particular point

gives no guarantee about power at non-neighbouring points. In fact when

testing p = 1.1 against p < 1.1, our results suggest it is extremely

difficult, if not impossible, to find a test which has good power over both

1.0 < p < 1.1 and 0 < p < 1.0. Concerning the choice of d*' 
our results

1 

suggest that it can have a sizable effect on the performance of POI tests.

In general, selecting d* below the true d1' 
rather than above it, appears to

1

be a wise choice. Further research on whether this extends to d* = 0 is1

currently planned. It is also useful to note that G2-invariant point-optimal

tests of p = po against p = 1, based on the statistic S2(p0,1,dT), are

invariant to the value of d*
' 

provided the model contains an intercept.
1 

Given a general procedure for testing hypotheses of the form p = (Ay we

can obtain confidence regions for p by finding the set of admissible values

p
0 

that are acceptable at a given significance level a [see Dufour (1990)1.

It is easy to see that the probability that the true value p be contained in

this set is 1-a. Numerical methods for constructing these confidence sets

and comparisons between alternative testing procedures are the topic of

on-going research.
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Appendix A: Alternative forms of LBI tests

We show here how the LBI test statistic, 
D1 
(p
0' 
) can be put into the

forms (8) and (9). From (5),

D
1
(p
0
) = e'A

0 
e z"z*

f2p (e'e - e2
0 1 n

n-1 ^ } /- 2 E etet+1
t=1

n-1 / n-1
2+0 - E 

etet+1 
/4

t=1 t=2
e21tj

-24111(p0) - po] (A.1)

which establishes (8). Because = n, we have
t POet-1 t = 2' •

R
1
(p
0
)

{ 

t=1 t=1 

n-1 
2 

n-1 n-1
^ ^2

po E et + E etzt+4 / E et .
t=2

„
Let w

1 
= e

1 
and w = z*

' 
t = 2, ..., n. Then (setting

t t 

and

t-1
k

=
k=0

t = 1, n

1) we have

n t;2 kn-1 , n-1 t-1 k
E etzt+1 = E E Po wt-kwt+1

t=1 k=0 
= E POwt-k-lwt

t=1 t=2 k=0

n t-1
k-1

= E E Po wt-kwt
t=2 k=1

n-1
k-1

= E Po Ck(w)
k=1

n-1
k-1

= k=1 E t=1
Po E wtwt+1

(A.3)

(A.2)
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where

n-k
C
k
(w) = E wtwt+k

t=1

= [1 21-1/2
0

From (A.2), (A.3) and (A.4), we get

p (•2
0 1

n-k
- z*]z* + E z*z*

k+1 t t+k
t=1

dz*z* + C
k 
(z*) , 1 5 k 5 n-1. (A.4)1 k+1 

n-1n-1 

/

n-1
-2 f-2E et) +

t=2 t=2 

/ 
L etl ttti. t t+1

n-1 n-1
-2 / E q14.fq-1[1 

P(7)-1.z;+1/z*/ z4(1).
= p

0
(e

1 
2 -1/2

-1]zq Eo
/ t=2 ) k=1

• Thus, using (A.1)

D1 (p0)

1 
n-1 

k-1-
q E Po

k=1

fn-1
k- -2

• -2 P 
* 

E o 1r k POP1
k=1

P
[1,..._

P 
2)-1/2
+
_

31 r 
_t-2

1 O 
z*

O 1 I- t
t=2

n-1
k-

• -2 E p
1

o rilEc + n
k=1

so that expression (9) is thus proved.

In the nonstationary case, analogous expressions for D2(p
0 
) can be

derived in a similar way and by noting that vl = O.
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Appendix B: Distribution of the LBI statistic in the nonstationary case

with po = 1.

From (19), we have D,)(1) = 1 - 0 where

= (Vv)
2 
/ viv = u'ME t'Mu u'Mu

n n

in which po = 1 so that u = C(1)u N(Oor
2
I ) when p = 1. (Since the

distribution of v does not depend on dl, we can take d = 1.) If = 0, we
1

have 0 = 0 and the test is not applicable. This corresponds to the case

where the untransformed model contains a linear trend. If we exclude this

case and suppose that kIn # 0, we have

17%1 '=" q1 (q1 + 1 2

[where qi = i-I'Mji, i = 1,2, M1 = REntn'M / 'M 1, , M2 = M - Ml. M1 and M2 are

idempotent matrices with M1M2 = 0. Further, because trit;1 has rank 1 and 174-tn

# 0, Mi has rank 1 and

rank [NI tr [14
2
] = n - rank[R] - 1

Thus, q
1 
and q

2 
are independent chi-square random variables with 1 and n-k

1
-1

degrees of freedom, respectively, where k
1 

= rank[X]. Hence q/q2 1

(n-k
1 
-1)F(n-k

1 
-1,1), where F(n-k

1
-1,1) is a random variable that follows a

central F distribution with (n-k1-1,1) degrees of freedom.
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TABLE 1: SUMMARY OF THE EMPIRICAL POWER COMPARISON

Problem

PA(0.5)

PA (0.5)

PA(0.9)

PA(0.9)

PB(0.5)

PB(0.5)

PB(0.9)

PB(0.9)

PB(1.0)

PB(1.0)

PB(1.1)

PB(1.1)

Alternative
Hypothesis

H
a

H
a

H
a

H
a

a

H
a

Tests

DW1 ' 
(0.5) 

D1 ' 
(0.5) 

S1 ' 
(0.5 0.75),

S1(0.5,0.999).

DW1 ' 
(0.5) 

D1 ' 
(0.5) S

1 
(0.5
' 
0.25),

S1(0.5,0).

DW
1 
(0.9)

' 
D1(0.9), 

51 ' 
(0.9 0.95),

S1 ' 
(0.9 0.999).

DW
1 
(0.9), D1(0.9), 5i(0.9,0.45),

S
1 
(0.9,0).

DW 
1 
(0.5), 5

1 
(0.5), i(0.5,0.75),

1
(0.5,1.0), DW

2
(0.5), D

2
(0.5),

S
2 
(0.5,0.75,d*), S

2 
(0.5,1.0,d*).

1 1

DW 
1 1
(0.5), 5 (0.5), -S (0.5,0.25),

1 

1
(0.5,0), DW

2
(0.5), D

2
(0.5),

S
2 
(0.5,0.25,d*), S

2 
(0.5,0,d*).

1 1

DW 
1 1 i(0.9,0.95),

S1(0.9,1.0), 

5 (0.9), g (0.9,0.95),

1
(0.9,1.0), DW

2
(0.9), D

2
(0.9),

S
2 
(0.9,0.95,d*), S

2 
(0.9,1.0,d*).

1 1

Values of p at which
power computed

0.6, 0.7, 0.8,

0.9, 0.999.

0.4, 0.3, 0.2,

0.1, 0.

0.92, 0.94, 0.96,

0.98, 0.999.

0.8, 0.7, 0.6,

0.3, 0.

0.6, 0.7, 0.8,

0.9, 1.0.

0.4, 0.3, 0.2,

0.1, 0.

0.92, 0.94, 0.96

0.98, 1.0.

H
a 

 5
1 
(0.9), §

1 
(0.9,0.45), 0.8, 0.7, 0.6,

1 
.g
1 
(0.9,0), DW

2 
(0.9), D

2
(0.9), 0.3, 0.

S
2
(0.9,0.45,d*), S

2 
(0.9,0,d*).

1 1

DW
2
(1.0), D

2
(1.0

)
, S

2
(1.0,1.1,d*), 1.025, 0.05,

1
S
2 
(1.0,1.2,d*). 1.115, 1.2

1

H
a

H
a

H
a

SB, DW
2
(1.0), D

2
(1.0),

S
2 
(1.0,0.5,d*), S

2 
(1.0,0,d*).

1 1

0.9, 0.75, 0.5,

0.25, 0.

DW 
1 
(1.1), D1(1.1), S1(1.1,1.15), 1.12, 1.14, 1.16,

§
1
(1.1,1.2), DW

2
(1.1), D

2
(1.1), 1.18, 1.2

S
2 
(1.1,1.15,e), S

2 
(1.1,1.2,d*).

1 1

H
a 

D 
1

W (1.1), 15 (1.1), -ff (1.1,1.0),1 1
-g
1
(1.1,0.5), DW

2
(1.1), D

2
(1.1),

S
2 
(1.1,1.0,d*), S

2 
(1.1,0.5,d*).

1 1

33

1.05, 1.0, 0.9,

0.5, 0.



TABLE 2: CALCULATED POWERS FOR PA(0.5) AND X3 AGAINST H- AND H+
a a

P =

Test

DW

D
1 
(0.5)

S1(0.5,0.25)

S1(0.5,0)

DW

D
1
(0.5

)
S (0.5,0.25)
1

S
1 
(0.5,0)

p=

DW

D
1 
(0.5)

S
1 
(0.5,0.75)

S
1 
(0.5,0.999)

DW

D
1 
(0.5)

S (0.5
' 
0.75)

1 
S (0.5 0.999)
1

0.5

0.050

0.050

0.050

0.050

0.050

0.050

0.050

0.050

0.5

0.050

0.050

0.050

0.050

0.050

0.050

0.050

0.050

0.4

0.080

0.083

0.083

0.083

0.149

0.169

0.169

0.168

AGAINST H-
a

0.3

n = 20

0.125

0.134

0.134

0.134

n = 60

0.334

0.400

0.401

0.399

AGAINST H
a

0.6 0.7

0.094

0.104

0.103

0.102

0.187

0.219

0.219

0.215

n = 20

0.163

0.188

0.189

0.187

n = 60

0.455

0.532

0.534

0.528

34

0.2

0.190

0.208

0.210

0.209

0.574

0.677

0.681

0.680

0.8

0.254

0.296

0.300

0.298

0.744

0.814

0.818

0.815

0.1

0.275

0.305

0.311

0.311

0.788

0.878

0.883

0.884

0.9

0.357

0.411

0.418

0.418

0.914

0.946

0.949

0.949

0.0

0.381

0.422

0.433

0.437

0.921

0.968

0.971

0.972

0.999

0.452

0.508

0.516

0.520

0.969

0.981

0.983

0.984



TABLE 3: CALCULATED POWERS FOR PA(0.9) AND X3 AGAINST Ha 
AND H

a

p=

Test

DW

D
1
(0.9)

S
1
(0.9,0.45)

S
1 
(0.9,0)

DW

D
1 
(0.9)

S
1 
(0.9,0.45)

S
1 
(0.9,0)

P =

DW

D
1 
(0.9)

S (0.9,0.95)
1
S
1 
(0.9,0.999)

DW

D
1 
(0.9)

S
1 
(0.9,0.95)

S (0.9,0.999)
1

0.9

0.050

0.050

0.050

0.050

0.050

0.050

0.050

0.050

0.9

0.050

0.050

0.050

0.050

0.050

0.050

0.050

0.050

0.8

0.067

0.073

0.073

0.072

0.111

0.184

0.181

0.175

0.92

0.056

0.060

0.060

0.060

0.064

0.086

0.086

0.085

AGAINST H-
a

0.7

n = 20

0.092

0.110

0.110

0.108

n = 60

0.210

0.458

0.465

0.447

AGAINST H
a

0.94

n = 20

0.061

0.071

0.071

0.071

n = 60

0.081

0.136

0.136

0.134

35

0.6

0.126

0.161

0.166

0.161

0.352

0.747

0.781

0.763

0.96

0.068

0.084

0.084

0.084

0.102

0.196

0.198

0.196

0.3

0.300

0.405

0.458

0.454

0.834

0.990

0.999

0.999

0.98

0.074

0.097

0.098

0.098

0.126

0.259

0.264

0.264

0

0.579

0.676

0.785

0.806

0.993

0.999

1.000

1.000

0.999

0.080

0.111

0.113

0.114

0.148

0.310

0.318

0.322



TABLE 4: CALCULATED POWERS FOR PB(0.9) AND X3 AGAINST H- AND 114.
a a

WITH d
1 
= 1.0

AGAINST H-
a

P = 0.9 0.8 0.7 0.6 0.3 0.0

Test n = 20

DW
1 
(0.9) 0.050 0.067 0.093 0.127 0.299 0.577

D1(0.9) 0.050 0.073 0.110 0.161 0.391 0.650

S
1
(0.9,0.45) 0.050 0.073 0.111 0.166 0.451 0.773

0.0501
DW
2
(0.9) 0.050

D
2
(0.9) 0.050

52
(0.9,0.45,0.1) 0.050

(0.9,0.45,1.0) 0.050S2

S
2
(0.9,0.45,10.0) 0.050

S
2
(0.9,0.0,0.1) 0.050

S
2
(0.9,0.0,1.0) 0.050

S
2
(0.9,0.0,10.0) 0.050

DW
1 
(0.9) 0.050

D1(0.9) 0.050

0.0501

0.0501
DW
2
(0.9) 0.050

D
2
(0.9) 0.050

S
2
(0.9,0.45,0.1) 0.050

S
2
(0.9,0.45,1.0) 0.050

52
(0.9,0.45,10.0) 0.050

S
2
(0.9,0.0,0.1) 0.050

S
2
(0.9,0.0,1.0) 0.050

S2(0.9,0.0,10.0) 0.050

0.072 0.107 0.160 0.446 0.800

0.065 0.086 0.114 0.254 0.503

0.070 0.100 0.140 0.324 0.557

0.069 0.100 0.141 0.342 0.613

0.069 0.099 0.142 0.352 0.647

0.042 0.036 0.033 0.038 0.056

0.069 0.098 0.138 0.337 0.626

0.068 0.097 0.136 0.348 0.678

0.062 0.080 0.105 0.258 0.562

n=60

0.112 0.212 0.352 0.832 0.992

0.183 0.434 0.690 0.954 0.990

0.177 0.448 0.760 0.999 1.000

0.169 0.427 0.739 0.999 1.000

0.103 0.193 0.324 0.807 0.990

0.155 0.381 0.660 0.981 0.999

0.154 0.385 0.682 0.995 1.000

0.153 0.384 0.686 0.997 1.000

0.136 0.330 0.614 0.995 1.000

0.150 0.373 0.668 0.995 1.000

0.147 0.366 0.663 0.997 1.000

0.143 0.351 0.642 0.997 1.000
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p=

TABLE 4 (CONTD)

AGAINST H
a

0.9 0.92 0.94 0.96 0.98 1.0

Test

DW
1
(0.9) 0.050

0.050

0.050
1

1
(0.9,1.0) 0.050

DW
2
(0.9) 0.050

D
2
(0.9) 0.050

S2(0.9,0.95,0.1) 0.050

S2(0.9,0.95,1.0) 0.050

52(0.9,0.95,10.0) 0.050

5z(0.9, 1.0,d) 0.050

• DW
1 
(0.9) 0.050

5
1 
(0.9) 0.050

51(0.9,0.95) 0.050

1
(0.9,1.0) 0.050

DW
2
(0.9) 0.050

D
2
(0.9) 0.050

52(0.9,0.95,0.1) 0.050

S2(0.9,0.95,1.0) 0.050

S2(0.9,0.95,10.0) 0.050

S2(0.9,1.0,d1) 0.050

n = 20

0.055 0.061 0.067 0.074 0.085

0.059 0.068 0.078 0.092 0.112

0.058 0.068 0.080 0.096 0.122

0.058 0.067 0.079 0.097 0.126

0.054 0.058 0.062 0.066 0.070

0.058 0.065 0.072 0.079 0.089

0.058 0.065 0.072 0.079 0.089

0.058 0.065 0.072 0.079 0.089

0.057 0.065 0.072 0.079 0.089

0.058 0.065 0.072 0.079 0.089

n = 60

0.065 0.085 0.113 0.152 0.204

0.089 0.148 0.226 0.316 0.403

0.089 0.148 0.229 0.324 0.418

0.087 0.144 0.224 0.324 0.429

0.061 0.074 0.088 0.101 0.117

0.077 0.110 0.146 0.181 0.221

0.077 0.110 0.146 0.183 0.225

0.077 0.110 0.146 0.183 0.225

0.075 0.107 0.141 0.179 0.227

0.076 0.108 0.144 0.182 0.230
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TABLE 5: CALCULATED POWERS FOR PB(1
.0) AND X4 AGAINST H- ANDa a
a

WITH d = 1.0
1

p=

AGAINST H-a

1.0 0.9 0.75 0.5 0.25 0.0

Test 
n = 20

DW
2
(1.0) 0.050 0.077 0.124 0.252 0.451 0.673

D
2
(1.0) 0.050 0.091 0.122 0.148 0.166 0.184

SB 0.050 0.097 0.193 0.450 0.708 0.862

S
2
(1.0,0.5,0.1) 0.050 0.104 0.213 0.433 0.614 0.738

S
2
(1.0,0.5,1.0) 0.050 0.102 0.211 0.476 0.729 0.879

S
2
(1.0,0.5,10.0) 0.050 0.056 0.080 0.205 0.431 0.667

S2(1.0,0.0,0.1) 0.050 0.100 0.200 0.437 0.677 0.836

S
2
(1.0,0.0,1.0) 0.050 0.096 0.188 0.442 0.738 0.917

S
2
(1.0,0.0,10.0) 0.050 0.086 0.155 0.379 0.681 0.891

n = 60

DW
2
(1.0) 0.050 0.102 0.235 0.613 0.921 0.996

D
2
(1.0) 0.050 0.150 0.196 0.223 0.239 0.256

SB 0.050 0.261 0.799 0.997 1.000 1.000

S2(1.0,0.5,0.1) 0.050 0.301 0.750 0.921 0.962 0.983

S2(1.0,0.5,1.0) 0.050 0.273 0.816 0.999 1.000 1.000

S2(1.0,0.5,10.0) 0.050 0.217 0.734 0.999 1.000 1.000

52(1.0,0.0,
0.1) 0.050 0.279 0.739 0.936 0.974 0.990

S2(1.0,0.0,1.0) 0.050 0.236 0.749 0.999 1.000 1.000

S2(1.0,0.0,10.0) 0.050 0.221 0.724 0.999 1.000 1.000

a
For PB(1.0), the tests DW2

(1.0)
' 

D2(1.0) and S2
(1.0
'
p
1'
1.0) are identical to

DW
1 
(1.0)

' 
D
1 
(1.0) and 1(1.0'p1)' 

respectively.
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P =

TABLE 5 (CONTD)

AGAINST H
a

1.0 1.025 1.05 1.1 1.15 1.2

Test

DW
2
(1.0) 0.050

D
2
(1.0) 0.050

SB 0.050

S
2
(1.0,1.1,0.1) 0.050

S
2
(1.0,1.1,1.0) 0.050

S
2
(1.0,1.1,10.0) 0.050

S
2
(1.0,1.2,0.1) 0.050

S
2 
(1.0,1.2,1.0) 0.050

S
2
(1.0,1.2,10.0) 0.050

DW
2
(1.0) 0.050

D
2
(1.0) 0.050

SB 0.050

S
2
(1.0,1.1,0.1) 0.050

S
2
(1.0,1.1,1.0) 0.050

S
2
(1.0,1.1,10.0) 0.050

S
2
(1.0,1.2,0.1) 0.050

S
2
(1.0,1.2,1.0) 0.050

S
2
(1.0,1.2,10.0) 0.050

n = 20

0.072 0.124 0.381 0.684 0.857

0.120 0.238 0.533 0.751 0.871

0.106 0.202 0.464 0.685 0.816

0.111 0.232 0.577 0.803 0.908

0.110 0.231 0.577 0.804 0.909

0.107 0.224 0.574 0.807 0.913

0.078 0.135 0.465 0.802 0.921

0.079 0.140 0.481 0.804 0.921

0.081 0.148 0.501 0.805 0.920

n = 60

0.175 0.662 0.977 1.000 1.000

0.417 0.789 0.981 1.000 1.000

0.361 0.743 0.971 1.000 1.000

0.085 0.555 0.991 0.999 1.000

0.093 0.648 0.991 1.000 1.000

0.125 0.757 0.991 0.999 1.000

0.033 0.025 0.961 0.999 1.000

0.036 0.030 0.979 1.000 1.000

0.039 0.038 0.982 0.999 1.000
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TABLE 6: CALCULATED POWERS FOR PB(1.1) AND X3 AGAINST H- AND 11+
a a

WITH d
1 
= 1.0

=

AGAINST H-
a

1.1 1.05 1.0 0.9 0.5 0.0

Test n = 20

DW
1 
(1.1) 0.050 0.066 0.072 0.082 0.203 0.599

151(1.1) 0.050 0.097 0.066 0.034 0.006 0.000

1
(1.1,1.0) 0.050 0.120 0.182 0.188 0.107 0.026

(1.1,0.5) 0.050 0.098 0.143 0.195 0.600 0.951

DW
2
(1.1) 0.050 0.046 0.046 0.052 0.134 0.483

D
2
(1.1) 0.050 0.069 0.063 0.042 0.009 0.000

S2(1.1,1.0 d*) 0.050 0.069 0.064 0.043 0.005 0.000
1

S
2
(1.1,0.5,0.1) 0.050 0.045 0.045 0.052 0.158 0.528

S
2
(1.1,0.5,1.0) 0.050 0.045 0.045 0.052 0.161 0.576

S
2
(1.1,0.5,10.0) 0.050 0.053 0.053 0.046 0.030 0.030

n = 60

DW
1
(1.1) 0.050 0.017 0.035 0.070 0.546 0.993

B1(1.1) 0.050 0.000 0.000 0.000 0.000 0.000

0.050 1.000 1.000 1.000 1.000 1.000
1

Si (1.1,0.5) 0.5) 0.050 0.998 0.982 1.000 1.000 1.000

DW
2
(1.1) 0.050 0.014 0.028 0.056 0.493 0.989

D
2
(1.1) 0.050 0.551 0.136 0.032 0.009 0.001

S2(1.1,1. 0,d) 0.050 0.620 0.222 0.031 0.000 0.000

S2(1.1,0.5,0.1) 0.050 0.013 0.024 0.061 0.855 0.996

S2(1.1,0.5,1.0) 0.050 0.012 0.023 0.060 0.911 1.000

S2(1.1,0.5,10.0) 0.050 0.012 0.026 0.054 0.856 1.000

•



•

= 1 . 1

Test

0.050
1

-151(1.1) 0.050

(1.1,1.15) 0.050
1

-S- (1.1,1.2 0.050
1

DW
2
(1.1) 0.050

D
2
(1.1) 0.050

S
2
(1.1 1.15.0.1) 0.050

S
2
(1.1 1.15.1.0) 0.050

S2(1.0,1.15,10.0) 0.050

S
2
(1.1 1.2,0.1) 0.050

S
2
(1.1 1.2,1.0) 0.050

S
2
(1.1 1.2,10.0) 0.050

DW
1 
(1.1) 0.050

D1(1.1) 0.050

(1.1,1.15) 0.050
1

1
(1.1,1.2) 0.050

DW
2
(1.1) 0.050

D2(1.1) 0.050

S2(1.1,1.15,0.1) 0.050

S2(1.1,1.15,1.0) 0.050

S2(1.1,1.15.10.0) 0.050

S2(1.1,1.2,0.1) 0.050

S2(1.1,1.2,1.0) 0.050

S2(1.1,1.2,10.0) 0.050

TABLE 6 (CONTD)

AGAINST H
a

1.12 1.14 1.16 1.18 1.2

n = 20

0.097 0.208 0.374 0.541 0.678

0.174 0.352 0.521 0.652 0.748

0.169 0.369 0.559 0.698 0.791

0.135 0.316 0.538 0.702 0.805

0.047 0.061 0.140 0.330 0.539

0.053 0.047 0.032 0.020 0.012

0.049 0.087 0.233 0.459 0.651

0.048 0.086 0.240 0.475 0.665

0.045 0.078 0.234 0.474 0.666

0.046 0.083 0.241 0.479 0.669

0.046 0.083 0.240 0.479 0.669

0.045 0.081 0.238 0.478 0.669

n = 60

0.935 0.987 0.997 0.999 1.000

0.885 0.927 0.000 0.000 0.000

0.170 1.000 1.000 1.000 1.000

0.026 0.988 1.000 1.000 1.000

0.938 0.988 0.997 0.999 1.000

0.011 0.002 0.000 0.000 0.000

0.969 0.994 0.999 1.000 1.000

0.969 0.994 0.999 1.000 1.000

0.969 0.994 0.999 1.000 1.000

0.967 0.994 0.999 1.000 1.000

0.968 0.994 0.999 1.000 1.000

0.968 0.994 0.999 1.000 1.000
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Footnotes
•

1. Several authors have also studied asymptotic distributions in models

with roots equal to or greater than one; see, for example, Anderson

(1959), Rao (1978), Dickey and Fuller (1979, 1981), Satchell (1984),

Fuller (1985), Phillips (1987a, 1987b), Phillips and Durlauf (1986) and

the survey of Diebold and Nerlove (1988). In this paper, we concentrate

on finite sample procedures.

2. Detailed proofs of the theorems that follow are available in an earlier

version of this paper [Dufour and King (1989)].

3. Because the normal distribution is complete, this is a necessary as well

as sufficient condition provided the mean of the first element of C
0 
y is

unknown. We are grateful to a referee for pointing this out to us.

4. A similar technique was used by Dufour and Dagenais (1985) to obtain

optimal autocorrelation tests in regression models with missing

observations.

5. DW
2
(p
0
) is the DW test based on the OLS residuals v given by (16).

6. To save space, only results for one design matrix are tabulated although

this section discusses the results for all design matrices.

7. Although puzzling, situations in which knowledge of a parameter value

can reduce the power of a test are not unknown. A related example is

given by Kramer (1985) who shows that for certain regressions fitted

through the origin, the power of the DW test can be improved by adding a

superfluous intercept to the regression. D
1
(0.9) is most powerful

(among G1-invariant tests) only in the neighbourhood of p = 0.9, not

against p = 0.0.
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