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ABSTRACT

Multiple diagnostic procedures entail a partition of the

sample space into a set of critical regions. When the
procedure is designed in a piecemeal fashion these regions
bear no particular relation to one another, and the procedure
as a whole can be logically inconsistent. We use a simple
example to illustrate these difficulties, and also to suggest
criteria that should be satisfied by any diagnostic procedure

that is to meet the needs of the practitioner.




1. INTRODUCTION

The recent surge of interest in diagnostic testing has spawned a new
breed of computer package which will automatically provide the user with
as many as ten different ‘diagnostic tests’ of the key assumptions
emboaied in his/her model. I assume that thié proliferation of
diagnostics is intended to suppiy two important desiderata- for
model-based analysis of data, namely, procedures that enable the user fo
(i) make, and be seen to make, a ‘serious attempt’ to contradict those
key assumptions, and/or (ii) obtain evidence about the .direction or
directions in which the model needs revision.

The profession seems to be agreed that the calculation of a number
of diagnostic test statistics can meet these needs, and recent
theoretical work has been concentrating largely on the question of which
particular statistics are appropriate (cf. other papers in this volume).
In this paper I shall argue that, if it is agreed that multiple
diagnostic procedures (MDPs) are indeed intended for .these purposes,
then the present preoccupation with test statistics is misplaced.
Specifically, 1 shall argue that, just as in classical hypothesis

testing, attention should be focused on the design of critical regions,

not test statistics, and that MDPs, as currently practised, are unlikely

to produce critical regions with desirable properties.

My point of departuré-is the view that a MDP applied in the context
of a single sample of data should be viewed as a single decision-making
procedure, and should be designed accordingly. There -are signs of a
recognition of the need for a coherent strategy in the present volume,
but it is fair to say that current diagnostic practice consists of a

piecemeal approach in which tests developed for single alternative




hypotheses are used jointly. Most of this paper is devoted simply to
pointing out - via a simple and familiar example - the logical problems
inherent in this piecemeal approach. Only briefly (Section 4) do 1

attempt (and this still in the context of the simple example) what might

be thought of as a prescription for the design of MDPs in general. The

main conclusions of the paper are that the problemé are difficult and
much needs to be done.

Some of the points made below are closely related to a familiar
objection to multiple testing procedures, namely, thé non-independence
of the test statistics used. Much of what follows could be viewed as an
elaboration of the consequences of this fact. However, taking explicit
account of the structure of the critical regions involved adds insights
that are not otherwise apparent, and also helps to suggest appropriate
procedures.

For expositional purposes I shall confine attention here to the
classical linear model and, in addition, to MDPs that are exact in the
sense that the probability of rejecting what I shall call the null model
when it is correct is known (at least in principle). Section 2 gives a
characterization theorem for this class of procedures that is of
independent interest. Since the «class of exact procedures is
characterized by a particular statistic, critical regions for both
conventional tests and MDPs 1in this <class are subsets of the
(non-Euclidean) sample space for this statistic. In more general
contexts the critical regions would simply be subsets of the original

sample space, and the arguments below apply equally well to these.




NULL MODEL AND CHARACTERIZATION OF EXACT PROCEDURES

Suppose that the null model for the n-dimensional data vector y is

specified as:

H : y ~ N(XB, 021 ) o (1)

0 n
where X is n x k, fixed, and of full column rank. Alternatives to HO
are unlimited but include (i) non-normality, (ii) a more complicated
structure for the mean, E(y) (e.g., non-linear in X and/or B, or, more
simply, E(y) = XB + Zy for some Z and %), (iii) a more complex structure
for the covariance matrix (e.g. non-constant variances and/or
non-independence), (iv) more complicated structures for both the mean
and covariance matrix induced by lag relationships.

If, as seems natural, we regard any diagnostic procedure as a test
of HO’ the paraﬁeters B and 02 are nuisance parameters. However, the
statistics B = (X'X)"lx'y and s> = y'(In—X(X’X)—IX')y are jointly

sufficient for (B,vz), and are boundedly complete under H Hence (see

o
Cox and Hinkley (1974), Kendall and Stuart (1969), or Hillier (1987))

every similar test of HO must have constant size in the conditional

distribution of y given é and sz, so that the conditional distribution

pdf(y[ﬁ,sz) characterizes the class of similar tests of HO against any

alternative whatever. Rather than working with this conditional
distribution, however, we prefer to use a particular statistic to
characterize the class of similar tests, and we next construct this
statistic.

Let C (n x m; m = n - k) be such that CC’ = In - X(X’X)_IX’ and
c’'C = Im. Define w = C’y, (m x 1), and note that the transformation y -

(é, W) is one-to-one and that, under HO’ W is independent of B, and




2 1/2 2 ,

w ~ N(O, o Im). Now let v = w(w'w) and s = Ww.

transformation w = (v, 52) is one-to-one almost everywhere in Rm (the
exceptional point being the origin, which is clearly of measure zero), v

is a point on the surface of the unit m-sphere
Sm = {v; v e Rm, v'v 1},

and 52 > 0. Lebesgue measure, (dw), on Rm transforms as

() = 27121 (46?) (viav)

where (dsz) denotes Lebesgue measure on R+, and (v’dv) denotes invariant

(Haar) measure on Sm (cf Muirhead (1982), pp.67-72). Because

W o~ N(O,azlm) under HO, v and 52 are independent wunder H
2

s /02 ~ xz(m), and v is uniformly distributed on Sm under H

Ol
0 (pdf (v) =

A—l(m), where A(m) = 2nm/2/r(m/2) is the surface content of Sm).

We have thus established a transformation y - (é, s2, v) which is

almost surely one-to-one, and with the property that, in particular, v

is independent of B and 52 under HO' The following result now follows

immediately:

Theorem 1: The class of similar tests of HO against any alternative
whatever is characterized by the vector v, a point on Sm' and under HO \Y
is uniformly distributed on Sm. That is, a critical region for testing
Ho has size independent of B and 02 if and only if it is defined in

terms of v alone.

Note that the vector of OLS residuals u = y - Xﬁ can be expressed
in terms of v, s, and C as u = sCv. Any scale-invariant test statistic
computed from the OLS residuals (hence, almost all commonly used

diagnostics for this model) therefore yields a test that, in principle




at least, is exact. This result therefore provides a theoretical basis
for the otherwise intuitively reasonable practice of basing diagnostics
for HO on scale invariant functions of the OLS residuals. Andrews
(1971) comes close to stating this result, and also uées much the same
kind of geometrical approach that we shall rely on below.

Let u = U/s = Cv denote the vector of scaled OLS residuals. If c!

i

denotes the i-th row of C, we have Gi = civ, i=1,...,n. In terms of v,

the critical regions for four commonly used diagnostics are:

(i) F-tests for additional variables

The standard F-test for 3 = 0 under y ~ N(XB + Z7, oZIn). where Z

is n x p, say, rejects HO when

15 (515 _1~/
dF = v'2(2'2) "Z'v > c

where Z = C’Z (m x p) .

The Durbin-Watson Test (Durbin and Watson (1950))

This rejects HO against positive first-order autocorrelation when

dDw = v/AV < c, (3)
where A = C’A1C, with A1 the usual Durbin-Watson first-

differencing matrix.

(iii) The Breusch-Pagan Test for Heteroscedasticity

The score test of HO against heteroscedasticity generated by a

’w ),

scalar function of (a, + o, W. . + ... + « W .), where (W,,,... .
rri 1i ri

0 111

i=1,...,n, are known, rejects HO when

— ’ ’ —1/ ‘
dH = f'WW'W) "Wf> c3 - (4)

where W (n x (r + 1)) has ith row (1, wli....wri), and f (n x 1)

has ith element £, = nG?— 1 (Breusch and Pagan (1980)).




(iv) The Jarque-Bera Test for Non-Normality

The score test of HO against non-normal alternatives in the Pearson

family rejects HO when

_ ~3,2 ~d 2
dN = n(Zui) + (n Zui 3)°/4 > 4

(Jarque and Bera (1987)).

c, are chosen to give

€3 Sy

In (2)-(5) the positive constants Cir Cos
critical regions of the required sizes. Since each statistic is a
function of v alone, and v is uniformly distributed fnl Sm under HO,

c,-c, can, in principle, be chosen to give exactly the size required.

1 74

In practice, however, 03 and c4 are usually chosen on the basis of
asymptotic arguments.

Each of these tests and, in general, any similar test of HO against
a specific alternative, has as its critical region some subset of the
surface of the unit sphere Sm. The same is true, of course, of any
exact test of HO against a family of alternatives that departs from HO
in several respects (e.g., the Bera-Jarque (1982) test of HO against
non-normal, heteroscedastic, and serially dependent alternatives ), and
also of tests against a specific alternative that are ‘robust’ to

departures from H, in other directions, provided only that the critical

0
region is defined in terms of scale-invariant functions of the OLS
residuals.

We shall say that a multiple diagnostic procedure is an exact MDP
if the overall probability of rejecting HO when it is true is free of
unknown parameters, and we shall refer to the probability content of the

overall critical region when HO is true as the size of the MDP. It

follows from Theorem 1 that any exact MDP for HO in (1) has as its

critical region a collection of subsets of the surface Sm. As

6




diagnostic procedures are currently practised these subsets are defined

by inequalities (2)-(5) and, increasingly, others like them.

3. THE DESIGN OF MDPs AND REMARKS ON CURRENT PRACTICE

Suppose, for simplicity, that just two families of densities are

regarded as plausible or interesting alternatives to HO’ and that the

intersection of these two families is also admitted as a possibility.
There are then three families of alternatives to HO which we denote by
H10’ HOZ' and le, respectively. Ideally we would like to design an
overall rejection region: for H0 that meets (in some sense) the two
requirements mentioned in the introduction, but before that can be done
we need to define more precisely what cbnstitutes a ‘serious attempt’ to
discredit a model, and what sort of vprocedure_ (critical region) is
capable of providing complete information about the direction of the
alternative if HO is rejeéted.

Taking the second question first, it seems reasonabie to suggest
that the overall critical region will be fully informative about the
direction of the alternative only if it consists of three disjoint,
w

non-empty, parts w and w say, that can be identified with the

10° "02’ 12’

alternatives H H and H1 respectively. Within the class of exact

10" 02’ 2
MDPs for the linear model, these will be disjoint subsets of the
surface Sm’ but in general they could be thought of simply as subsets of
the natural sample space. In the case of r alternatives ‘this
requirement entails a partition of the overall critical region into 21
disjoint, non-empty parts. We shall call a‘diagnostic procedure with
this structure a complete diagnostic procedure of order r. If it is

agreed that MDPs should be complete in this sense, and the overall

critical region is given, the problem becomes one of partitioning the




overall region into its constituent parts W19 Yo and W5 A natural
objective here is to seek a partition that minimizes the probabilities
of ;ncorrect,decisions, and this is the criterion we shall adopt in the
example below.

One obvious problem with piecemeal MDPs consisting simply of a pair
of tests for the separate sub-hypotheses involvéd is that such a
procedure is evidently incomplete in this sense, because, even if the
critical regions for the two tests overlap, the region .of overlap
cannot, in generai, be interp;eted as favorable to le.
Remark 1: Piecemeal MDPs consisting simply of a set of tests for
separate hypotheses are inéomplete. |
Nor does the addition of an ‘omnibus’ test (such as those suggested by
Bera and Jarque (1982), White (1980, 1987), and White and Domowitz
(1984)) to the overall procedure render it complete, because failing the
omnibus test suggests only that at least one of the families of
alternatives of interest holds, not necessarily both (i.e., le).

Omnibus tests are considered further below.

Turning to the question of how to define a ‘serious attempt’ to

discredit the null model, it seems clear that this idea can only be made

precise by reference to the families of densities for v under HlO’ HOZ’

and H12 in the same way that, in the Neyman-Pearson theory of

conventional testing, a ‘good test’ 1is defined by reference to the
probabilities of Type I and Type II errors. Loosely speaking, it seems
reasonable to suggest that a MDP constitutes é 'éerious attempt’ to
discredit HO only if the overall rejection region includes all points
vV € Sm for which pdf(v) can be ‘large’ relative to pdfo(v) (the null
density of v). Unfortunately, but not surprisingly, pdf(v) can often be

‘large’ relative to pdfo(v) virtually anywhere on Sm, depending on the

8




values of the parameters that index the family of alternatives. Thus,
as in conventional testing, compromises must be made in opting for a
particular procedure, and the compromises that are appropriate depend
upon the context. In particular, as the example below will show, the

problem of designing a complete diagnostic procedure may call for quite

different compromises than are traditionally used to Justify tests of HO

against a single family of alternatives.

The strategy we are suggesting, then, consists of two parts: (i) a
choice of the overall rejection region based on an attempt to include
all points for which the non-null density can be ‘large’ relative to the
null density, and then (ii) a partition of this overall region into
subsets corresponding to the families of alternatives that are
entertained, with the objective of minimizing the» probabilities of
incorrect decisions.

The remainder of this section consists mainly of some remarks on
current practice, which I interpret as consisting of a set of tests for
the separate hypotheses of interest, and, possibly, an ‘omnibus’ test
for the alternative formed from the intersection of the separate
hypotheses. Some of discussion to follow would need to be modified if
deliberate decisions to avoid the problems discussed were made by
adjusting the sizes of the tests used. However, since this is typically
not done, I shall assume throughout that the separate tests are carried
out at the sizes commonly used in practise.

To provide a focus for the discussion I shall consider in detail the

simple and familiar case in which:




2

2
HOZ' y ~N( XB + ¥y25 O In), (7)

H12: y ~ N( XB + V12 * 752, ozln). (8)
That is, the problem is to decide whether one or both of the additional
variables z, and z, should be included (linearly) in the model for E(y).
Most of the points that arise in more complex situations can be
illustrated with this problem, and it also serves to illustrate the
nature, if not the complexity, of the problem of designing suitable
MDPs. Also, in the light of Pagan (1984), this problem can serve as
a model for more general specification tests.

It is straightforward to check that, under le in (8), the density

of v is given by

0
pdle(V) = A—l(m) exp{-A/2} ¥ a_(j) (v'i;y/o‘)‘ji
j=0 "

> — ~ ~ -— 7 — ’ — I~I~ 2
where Z = (21,22) =C (21,22), v = (71,72) , A=9y'2'2y/0, and
a (J) = 123721 ((3+#m)/2)/ (51 T(m/2))].

Under H (

10 ¥, = 0) the term (v’Zy) in (9) becomes (71v zl), and

under H02 ( ¥ = 0) it becomes (72v'§2), so that the densities pdf, (v)

10
and pdfoz(v) are identical to (9) except that these terms replace (v'Zy)

in the power series. The (two-sided) t-tests for v = 0 in (6) and for

¥, = 0 in (7) have critical regions:

' 2 o Red 2
(v 21) /(2121) cos™@, > c

* N
“l1o ¢ 1 10’

~ 2 o~
* . ’ , =
W, (v 22) /(2222)




respectively, where 6 is the angle between v and the point

i
€, =z (z'z )—1/2 €S, 1=1,2, and c,,. and c,., are constants chosen to
i S SR R | m’ ' 10 02

* *
determine the sizes of wlO and wOZ'

These two t-tests correspond to what, in a general diagnostic
problem, would be the separate diagnostic statistics for the two

families of alternatives H and H_... Geometricaliy,

10 02 consists of

3
“lo

two circular ‘caps’ on the unit sphere Sm, one centered on 51, the other

on —El. wgz has exactly the same structure with 51 replaced by 52. if
the two tests have the same size (c10 = 002) these four ‘caps’ are all
the same size. The critical region (10) ((11)) is the region that
maximises the average power among tests of H0 against H1o (HOZ) that are
based on v (i.e., among similar tests), the average being taken over
sign(yl) = +1 and sign(vl) = -1 (sign(yz) = +1 and sign(wz) = -1).

Now, unless El and Ez are coincident w?o and wgz cannot coincide,
even if they are of the same size. However, the two regions certainly
can, and in general do, overlap, and the extent of this overlap can be
considerable. In this example this occurs for almost all values of m of
practical relevence, or, if m is very small, if El and 52 are close
together (see section 4 for details on fhis and other assertions about
this example). This situation can evidently oécur with the critical
regions defined by any pair of diagnostic test statistics that are

chosen in a piecemeal fashion, and clearly leads to difficulties in

interpreting the pair of tests.

P
i

Remark 2: The separate critical regions defined by several diagnostic
IR U
test statistics can have substéniialisbbregions in common. Moreover, if

the tests have different sizes, it is possible for the critical region

for one test to be a subset of that for another.




The important point here is that the fact that a pair of regions may
overlap is fortuitous, not intentional, and would often go unnoticed -
unless, of course, the model fails both diagnostic tests, for this
obviously implies that the critical regions overlap. Thus, such a

region of overlap cannot, in general, be interpreted as a region

favorable to the intersection of the two families of alternatives (i.e.,

to le), at least not without further evidence. Such a situation can
arise when the separate critical regions are obtained from local
arguments that ignore the global behaviour of pdf(v).

It can clearly also happen that the critical regions defined by two
diagnostic tests are disjoint, although in the present example this can
only occur if m is very small (< 5).

Remark 3: The critical regions defined by several diagnostic test
statistics can be disjoint. In this case it is impossible for the
procedure to reject HO in favor of more than one alternative.

Again, the problem is that this circumstance can arise unintentionally,
rather than by design, and I doubt very much whether most applied
workers would regard such a procedure as satisfactory were it drawn to
their attention: such a procedure is certainly incomplete and, without
detailed evidence on the properties of the families of densities, would
probably not be regarded as a ‘serious attempt’ to discredit the null
model (since only one unfavorable outcome can occur).

The analog of an ‘omnibus’ test in the context of (6) - (8) is, of
course, the standard F-test for y = 0 in (8), the critical region for
which is:

~ oo =]
#* . ’ s '
Wi, t Vv 2(2'2) "2'v > Cyp




This region again maximises the average power among tests of HO against
le that are based on v, but in this case the average is over values of
7 for which 7’3 3y/c° = constant. The statistic on the left in (12) may
be interpreted as the squared cosine of the angle between v and the unit
vector along the orthogonal projection of v onto the plane spanned by El
and 52.; The region (12) is thus a ‘strip’ around the surface Sm that is
near this plaﬁe. Since the mode of the density (9) must be somewhere on

this plane, the region (12) includes all points v for which pdflz(v) can

be ‘large’ for some 7, and it clearly intersects both of the regions wio

and waz. | |

In this example the critical region for the ‘omnibus’ test includes
points in the critical regions associated with the alternatives H1o and
HOZ’ and also points tgat are in neither of these regions. However, in
general it is not necessarily true (of a procedure consisting of an
omnibus test and two tests of the separate sub-families involved) that
the critical region for the omnibus test intersects the critical regions
for the separate sub-hypotheses, nor is it necessarily the case that the
‘omnibus’ critical region contains points that are not already included
in one or both of the critical regions for the separate sub-hypotheses.
Remark 4: The critical region for an ‘omnibus’ test may (i) have no
points in common with the critical regions for the separate families of
hypotheses embedded within the more general family of alternatives, or

(ii) have no points that are not also included in the critical regions

for the sub-hypotheses, or (iii) intersect one or both critical

regions for the sub-hypotheses, but neither wholly contain those

regions nor be wholly contained within them.
The first of these possibilities obviously renders the procedure as

a whole logically inconsistent, but it can occur in finite samples if

13




the basis for the omnibus test (which might be, for instance, an
Eicker-White information matrix test) is quite different from that used
to obtain the critical regions for the separate sub-hypotheses (which
might be based on the local behaviour of the 1likelihood function (LM
tests), or the local behaviour of the power function). This situation
cannot occur asymptotically if all three tests are éonsistent, but this
is of little comfort in finite samples. The second possibility arises
if the omnibus critical region is a subset of the union of the critical
regions for the two sub-hypotheses. This circumstance can arise if (as
is usually the case in practice) the size of the omnibus test is less
than the size of the union of the critical regions for £he separate
tests, and obviously means that rejection of thg null model by the
omnibus test implies rejection by at least one of the separate tests.
However, if the critical region for the omnibus test is a proper subset
of the union of the critical regions for the two separate tests, the
converse is not true (that is, the model can fail one or both of the‘
separate tests and yet pass the omnibus test), so that a procedure with
this structure can also 1lead to apparently inconsistent results.
Moreover, an outcome that favours H12 but neither HlO nor Ho2 cannot
occur, so again such a procedure would be incomplete.

The third possibility in Remark 4 seems closest to meeting the

requirements discussed earlier, but here the model <can fail an

individual test yét pass the omnibus test, or fail the omnibus test yet

pass one or both of the separate tests, leading again to the possibility
of an inconsistent outcome. Clearly, all of these difficulties arise
because the procedure as a whole has not been designed in a coherent
fashion. Before considering the problem of designing an appropriate

procedure in this example, we shall round off the discussion of current

14




practice by considering the analog of robust tests for this problem.

The region (11) for testing HO against H_ , has size independent of

02

B and 02 under HO’ but under HlO its size depends on 7 (and 02). The

analog of a ‘robust’ test for ¥, = 0 in this example would be a test

0 But, the class
of regions whose size is independent of B, ¥y and &2 under both HO and

HlO can be obtained by applying Theorem 1 in (6), and is characterized

whose size is free of parameters under both H0 and Hl

by a vector W, € Sm—l that is defined in exactly the same way for (6) as
v has been defined earlier for (1). This vector. is uniformly

distributed on S_n 1 under both HO and H10’ and its distfibution under
imnm= -

Ho2 is identical to its distribution under le. Averaging

Pr(w1 € wIHOZ} (= Pr{w1 € wIHlZ}) over 31gn(72) = +1 and 51gn(72) = -1

say, which is

yields a best ‘robust’ region for testing ¥, = 0, wgz

simply the critical region for the two-sided t-test of ¥, = 0 in (8).

An exactly analogous result holds for the ‘robust’ region for testing
v = 0. We shall see shortly that, 1like w§0 and wsz, the two regions
wZO and wgz have extensive subregions in common, that they intersect the
critical region wiz for the ‘omnibus’ test, but also that these regions
contain points that are not in w?z, and that wzz contains points that

are in neither wr nor wr
10 02°

Remark 5: All of the earlier discussion of piecemeal multiple
diagnostic procedures continues to hold if the critical regions for fhe
separate sub-hypotheses are replaced by ‘robust’ critical regions.

The fact that pdfoz(wl) = pdflz(wl) clearly implies that the class
of robust procedures for testing ¥, = 0 in this_example is incapable of
distinguishing between H02 and le, and a similar conclusion holds for
robust tests for ¥, = 0. As long as the question of interest is simply

whether or not ¥, = 0 (or ¥ = 0), this is not a weakness, but if

15




distinguishing between HlO' HOZ’ and le is part of the purpose of the
procedure it most certainly is. Of course, in more complex problems
this conclusion is unlikely to be so clear cut, but it seems clear that
imposing the requirement of invariance to a parameter on a family of

densities under a parametric constraint must, by continuity, impose

something close to that invariance on the family for which the

constraint does. not hold, at least locally.

Remark 6: ‘Robustification’ of the separate tests within a MDP may
make it more difficult to distinguish between HlO’ HOZ’ and H12, rather
than easier.

One motive for ‘robustification’ seems to be that a departure from
the null model in a particular direction may be more serious, in some
sense, than a departure in the other. This seems to me to imply (if
7, * 0 represents the ‘serious’ departure), not that the probability of
wrongly concluding that Lo # 0 should be small whatever the value of 71,
but rather that the probability of correctly concluding that Lo #0
should be large, whatever the value of 71. In our example it is not

s r _ r .
difficult to show that Pr{v e wOZIHOZ} ( = Pr{v e wOZIle}), while free

of ¥y does depend on HIO through ;1’ and can in fact be smaller than

both Pr{v e } and Pr{v e ws Thus, ‘robustification’ for

2|H12}.

size can diminish the probability of correctly rejecting a false

o2 Hoo

hypothesis, but this is an aside to our main line of argument. In fact,
a properly designed diagnostic .procedure would make the (size)
robustness issue irrelevant, so we turn to that question for our example

now.




4. DETAILS AND DENOUEMENT FOR THE EXAMPLE

Before considering the problem of designing a suitable procedure
for the problem (6)-(8), it is convenient at this point to introduce a
set of coordinates for points v € Sm that will enable us to define
critical regions in a two-dimensional Euclidean space, rather than on
the surface Sm. This will also clarify some of the statements made in

section 3 about the various critical regions defined there. Let

L =[ El’ (Ez - pEl)/(l - p2)1/2] (mx2), where p = Eigz, so that

cos—l(p) is the angle between El and Ez. The columns of L are an

orthonormal basis for the two dimensional space spanned by 51 and 52.

Also, let L (mx(m-2)) be such that L’L = 0 and L’L = Im—2' Then we can

represent v uniquely in the form
v = b%Lg + (1-b)"*n, (13)

where g € 82, hesS and 0 < b < 1. In this representation of v,

b = v’%(ﬁ’i)—1~ '2'27/52, and g = Ty/(w’ﬁ’iw)l/z, where ¥ 1is the

OLS estimate of y in (8),

S,P

2,172
o , sz(l—p )

with s? =2z, 1 =1,2, so that T'T = Z'Z, and h ¢ S__, is defined for

i 2

(8) as v is defined for (1). Thus, g is a statistic indicating the
‘direction’ of the vector Ty. The invariant measure (v’dv) on Sm

factorizes under (13) as

1 (m-2)/2-1

(v’dv) =2 (1 - b) (db) (g’ dg) (h’dh)

where (g’dg) ((h’dh)) denotes the invariant measure on S2 (Sm_z).




Next, since g e S we can represent g in polar coordinates:

2’
g = (cos@, sinB)’, where 8 ( -m < 8 < m ) is the angle between g and

(say) the first coordinate axis, e, The invariant measure (g’dg)

becomes simply d6 under this transformation. The statistics (b, 8,h)
provide an alternative characterization of the class of regions whose
size is free of parameters under HO. Transforming v » (b,8,h), we find

that h is independent of b and 6 and is uniformly distributed on Sm_2

Qs
under le, and therefore also under HO’ HlO’ and HOZ' Since h contains

no information about the alternatives it can be ignored, and all regions

of interest can be described in terms of b and 6. Under le the joint

density of b and 6 becomes

pdf ,(b,8) = c(m) (1-b) "2 Neypi /0y 5 a_(§)[(ab)"g
5=0

where c(m) = [2111'((m—2)/2)/I‘(m/2)]-1 and pu = Tar/(ar’T’T'ar)l/2 is an

indicator of the direction of Ty. Note that we have continued to use g
to denote the vector (cosB, sin8)’ to simplify the notation, and that p

can also be expressed in polar coordinates as p = (cosB, sin6)’, where @

is the angle between p and the first coordinate axis. Under HIO’ AI/Z

is replaced by (5171/0) and g’p by cosB6 in (15), while under HOZ’ Al/2

is replaced by (5272/0) and g’p by cos(e-ep), where ep = cos—l(p)

(0 < ep < m) is the angle between El and 52. . In terms of these

3 3 ¥ * £ .
coordinates the regions wlO’ wOZ’ and w12 are:

2
¥ .
0, ¢ bcos“8 > 10 [H0 against HIO]

2
* . - >
¥ bcos™ (6 Gp) o2 [HO against HOZ]

* . 3
wl, b > 0 [H0 against H12]




The ‘robust’ tests for 71 = 0 and 72 =0 (i.e., the two-sided t-tests

for 71 = 0 and 72 = 0, respectively, in (8)) have critical regions

r 2 2 R .
Wig b(1-cos (e—ep))/(l—bcos.(e ep)) > o [H02 against H12] (19)

b(l—cosze)/(l-bcosza) > ¢

02 L

against H (20)

Hio 12!

The critical regions (16)-(20) are subsets of the rectangle
R=1{b,0; 0<b<1, -m <06 < n},
and are depicted in Figures 1(a) and 1(b) for m = 22, p = .766, and a
case where each test has the same size (.05). If we append to each of
“the inequalities (16)-(20) the phrase "and all h € Sm_z", each of these
regions is in one-to-one correspondence with a subset of the surface Sm’
the sample space for wv. Hence, Figures 1(a) and 1(b) confirm the

assertions made in section 3 about the relationships between these

regions.

In the remainder of the paper 1 suggest a procedure for this

problem that meets both of the requirements discussed earlier. The

reader should be forewarned, however, that, Just as in conventional
testing, there is no ‘best’ procedure even in this simple problem,

because the ‘best’ procedure depends on unknown parameters. Thus,

certain aspects of the solution offered below are necessarily ad hoc and

may not appeal to some readers. The argument makes both the need for,

and the rdéle of, the compromises that are made, obvious.

It will be helpful in what follows to write (15) as the product

pdf (b,8) = pdf(6]|b)pdf(b) (21




(m-2)/2-1

pdf (b) = [[(m/2)/T'((m-2)/2)](1-b) exp{—A/Z}lFl(m/Z, 1; Ab/2)

(22)

and

pdf(0]b) = (207" T a (L) Pg'plY/ F (2, 15 Abr2). (23)
j=0 .

. = o ‘j ! i = j—-
where 1Fl(a, b; x) 2j=0x (a)j/J.(b) with (a)j a(afl)...(a+J 1),

J’
denotes the confluent hypergeometric function. Now, it is clear from

(23) that, for each fixed b, the mode of pdf(6|b) occurs at 8 = 8, and
this can be anywhere in (-m, n). Hence, the only way to ensure that the
overall rejection region for HO contains all points (b,8) for which
pdf(b,8) can be large is to include, for each b, the entire interval -=n
U< 8 < m. In other words, the overall rejection region must be of the
form b > ¢, the critical region for the F-test of ¥ = 0 in (8), if it is
to satisfy our ‘serious attempt to discredit’ criterion. Obviously, the
size of the overall rejection region is easily determined in this case.
It remains, therefore, to partition the region b > ¢ into three

disjoint subsets w w and w corresponding to H H and le.

10° "02’ 12’ 02’

Ideally, we would like to be able to choose these regions in such a way

10’

as to minimise the probabilities of incorrect decisions. As we shall
see shortly, however, this cannot be done without first making a number
of simplifying assumptions.

Under H pdf(9|b) has a mode at 8 = 0 and an antimode at 6 = #n

10’

when 71>0, but the mode is at 8 = *m and the antimode at 8 = 0 when

¥.<0. Likewise, under H the mode is at 6 =6 (6 =06 -n) and the
1 02 P p

antimode at 6 = ep-n (6 = Bp) when 72>0 (32<O). Under le the mode is

at @ = 0 and the antimode at ® = 8 * n. In the absence of information

about the likely signs of 71 and 72 it seems reasonable, as before, to

20




work with the averages of the conditional densities pdflo(elb) and

pdf02(6|b) over sign(yl) = +1 and sign(zz) = +i, respectively. That is,

with

= 2
p10(6|b) = 1F1(m/2. 1/2; Alobcos (9)/2)/2n1F1(m/2, 1; Alob/Z) (24)

- 2 ‘
pgp(8]0) = 4F (072, 1/2, Ay bcos (9—6p)/2)/2n1F1(m/2, 1; Ag,b/2)  (25)

22,2 22,2 .
where AlO = 5171/6 and AOZ = 5272 . Similarly, we shall work with
the average of pdflz(elb) over *u. That is, with the average value of

pdf12(9|b) over the pair of points g and 6 * T:

P ,(8]b) = [F (2, 1/2; Ab(cos?(8-8))/2)/2n,F, (n/2, 1, Ab/2).  (26)

Note that the positions of the modes and antimodes of 510(6|b) and
Eoz(elb) are known, but the points at which they cross depend on 110 and
AOZ' and are therefore unknown (see Fig. 2). Both the position and
shape of Elz(elb), on the other hand, are unknown, the former depending
on 5, the latter on A, and it is this that makes it difficult to devise
a reasonable strategy for distinguishing between HIO’ HOZ’ and le.

The general shapes of the averaged conditional densities (24) and
(25) are illustrated in Figures 2(a) and 2(b). In Figure 2(a)

AlO = 102, while in Figure 2(b) A < A It seems clear that,

10 02

whatever criteria are wused to define a ‘good’  procedure for
distinguishing between HiO' HOZ’ and le, the appropriate choices for

Wigr Yo2° and Wy will depend on A A and A. Thus, little progress

10° 02’
can be made without making assumptions about these parameters, and we

shall here confine ourselves to procedures that are appropriate when the

alternatives are ‘balanced’ in the sense that.xlo = AOZ = A. Somewhat




different procedures would no doubt be appropriate under different
assumptions.

" Figure 2(a) relates to this ‘balanced’ situation, and 512(e|b)
looks exactly like the densities shown there except th&t the modes can

be anywhere in -m < 8 < mw. Thus, (e|b) can be very close to either

P12
of the other averaged conditional densities, depending on 8. This

wOZ’ and w12

that uniformly minimise the probabilities of incorrect decisions for all

clearly means that it is impossible to choose regions ©0

values ofvé. To overcome this difficulty it seems reasonable to suggest

that the regions chosen should perform well when le is, in some sense,

most unlike either HlO or HOZ' and Fig. 2(a) suggests that this is so

when 6 = (ep + n)/2 if ep < m/2, and when 8 = ep/z if ep > n/2. For the

purposes of choosing w [3) and w we shall therefore take 8 in

10° 02’ 12
Slz(elb) to be equal to (ep + m)/2 if p > 0, and equal to ep/z if p <O.
We denote the averaged density 512(e|b) evaluated at either of these two
values of 6 by piz(elb).

If, now, we revert to the averaged Jjoint densities

(b,8), (b,8), and p},(b,0) defined by p,,(b,6) (8|b)pdf (b)

Pig Po = P
etc., the problem becomes one of discriminating between three
possible densities for (b,8). But, according to a generalization of the
Neyman-PearsonALemma due to C. R. Rao_( quoted, without reference, by .
Kendall and Stuart (1976), p. 337), the regions that minimize the

probabilities of incorrect decisions are, in the case where the three

candidates are equally likely a priori, defined by:




5 > n 5 > ¥
plO(b’e) = poz(b,e) and plo(b,e) plz(b,e) (27)

(b,8) = p

. n < B 5 *
Wop - plo(b,e) poz(b,e) and Py plz(b,e) (28)

(b,8) = p

- *
(b,8) = P,

p{z(b,e) and (b,0). (29)

“12 7 Pio Po2
Using the expressions given earlier for the averaged conditional
densities, and the fact that the confluent hypergeometric function is a

monotonic function of its argument, it is easy to see that (27)-(29) are

equivalent to, in the case p > 0,

Wy bcosZB bcosz(e—ep) and bcosze > bcosz(6~(6p+n)/2) (30)

bcosz(e—ep) and bcosz(e—ep) = bcosz(e—(ep+n)/2) (31)

bcosZ(e-(ep+n)/2) and bcosz(e—ep) = bcosz(e—(9p+n)/2).

(32)
To each of these, of course, the condition b > c should be appended. In
the case p < 0 (6p+n)/2 is replaced by ep/z throughout.
Note that b can be eliminated from (30)-(32), so that these
inequalities simply define a partition of the interval -m < 0 < m into
strips whose intersections with the region b > ¢ define the subregions

w ©yo and w,,. However, the regions (30)-(32) can also be expressed

10’ 12

in terms of much more familiar and easily calculated statistics. To do

so, first note that bcosze = (t?/m—l)/(1+t§
2

2

/m-1) and

/m-1), where tl and t2 are the t-statistics

associated with ¥y and Lo in (6) and (7) respectively. In a similar

bcosz(e-ep) = (tg/m—l)/(1+t

2
way, bcos (8—(9p+n)/2), and, in the case p < O, bcosZ(G—BP/Z), can be

expressed as functions of the t—statistics‘associated with the vectors

+ -1 + - -1 -
A = ZT "u and z = <ZT "p, respectively, in the regressions of y

+ -
on X and z and y on X and z . Here,

23




172 172

-(1-p) _ (1+p)
, and p = . (33)

172 (1-p) 172

(1+p)
Using these three t-statistics, and noting that the region b>c
corresponds to the region F > Fc(2,m-2), where F 1is the wusual
F-statistic for testing =0 in (8), and Fc(2,m—2) (=(m-2)c/2(1-c)) is
the critical value for F (chosen to determine the size of the procedure),

w and w are, finally:

the regions w 02 121

10’

Wig 0, o, FC(Z,m—Z), (34)

2
: - 35
Wop o, 0, FC(Z,m 2), (35)

: ' - 6
g, < <o, 0, F_(2,n-2), (36)

where t, denotes the t-statistic based on u+ or p— as appropriate.

The regions (34)-(36) provide an optimal partition of the overall
critical region under the assumptions, and in the sense, discussed
above. Whether or not‘the procedure defined by these regions would

perform well generally remains a subject for further study.

S. CONCLUDING REMARKS

We have shown that a piecemeal approach to designing multiple diagnostic
procedures falls far short of meeting the needs of applied researchers.
On the other hand, our simple example reveals that much detailed
information is needed about the densities under the families of
alternatives that are entertained before one can hope to design suitable
procedures. In more complicated situations - for instance, a case in
which Hgo s (8), H02 corresponds to the linear model with

autocorrelation, and le to both additional variables in the mean and

autocorrelation - it is unlikely that the arguments that were successful




for the simple example used here will be enough. Clearly, much needs to
be done even in relatively simple problems before the needs mentioned in
the introduction can fairly be said to be met.

For problems in which the null model is given by (1), the result in

section 2 should serve to both unify the treatment of more complex

diagnostic problems, and to provide geometric insights that are helpful

in choosing appropriate procedures. However, the relatively simple
coordinates used in section 4 will not necessarily be appropriate for

other problems.
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Figure 1(a): Critical Regions for t-tests
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Figure 1(b): Critical Regions for 'Robust' Tests
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