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ABSTRACT

Multiple diagnostic procedures entail a partition of the

sample space into a set of critical regions. When the

procedure is designed in a piecemeal fashion these regions

bear no particular relation to one another, and the procedure

as a whole can be logically inconsistent. We use a simple

example to illustrate these difficulties, and also to suggest

criteria that should be satisfied by any diagnostic procedure

that is to meet the needs of the practitioner.



1. INTRODUCTION

The recent surge of interest in diagnostic testing has spawned a new

breed of computer package which will automatically provide the user with

as many as ten different 'diagnostic tests' of the key assumptions

embodied in his/her model. I assume that this proliferation of

diagnostics is intended to supply two important desiderata for

model-based analysis of data, namely, procedures that enable the user to

(i) make, and be seen to make, a 'serious attempt' to contradict those

key assumptions, and/or (ii) obtain evidence about the direction or

directions in which the model needs revision.

The profession seems to be agreed that the calculation of a number

of diagnostic test statistics can meet these needs, and recent

theoretical work has been concentrating largely on the question of which

particular statistics are appropriate (cf. other papers in this volume).

In this paper I shall argue that, if it is agreed that multiple

diagnostic procedures (MDPs) are indeed intended for these purposes,

then the present preoccupation with test statistics is misplaced.

Specifically, I shall argue that, just as in classical hypothesis

testing, attention should be focused on the design of critical regions,

not test statistics, and that MDPs, as currently practised, are unlikely

to produce critical regions with desirable properties.

My point of departure As the view that a MDP applied in the context

of a single sample of data shovid be viewed as a single decision-making

procedure, and should be designed accordingly. There are signs of a

recognition of the need for a coherent strategy in the present volume,

but it is fair to say that current diagnostic practice consists of a

piecemeal approach in which tests developed for single alternative
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hypotheses are used jointly. Most of this paper is devoted simply to

pointing out - via a simple and familiar example - the logical problems

inherent in this piecemeal approach. Only briefly (Section 4) do I

attempt (and this still in the context of the simple example) what might

be thought of as a prescription for the design of MDPs in general. The

main conclusions of the paper are that the problems are difficult and

much needs to be done.

Some of the points made below are closely related to a familiar

objection to multiple testing procedures, namely, the non-independence

of the test statistics used. Much of what follows could be viewed as an

elaboration of the consequences of this fact. However, taking explicit

account of the structure of the critical regions involved adds insights

that are not otherwise apparent, and also helps to suggest appropriate

procedures.

For expositional purposes I shall confine attention here to the

classical linear model and, in addition, to MDPs that are exact in the

sense that the probability of rejecting what I shall call the null model

when it is correct is known (at least in principle). Section 2 gives a

characterization theorem for this class of procedures that is of

independent interest. Since the class of exact procedures is

characterized by a particular statistic, critical regions for both

conventional tests and MDPs in this class are subsets of the

(non-Euclidean) sample space for this statistic. In more general

contexts the critical regions would simply be subsets of the original

sample space, and the arguments below apply equally well to these.
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2. NULL MODEL AND CHARACTERIZATION OF EXACT PROCEDURES

Suppose that the null model for the n-dimensional data vector y is

specified as:

y - mg, m2I
n)

Ho (1)

where X is n x k, fixed, and of full column rank. Alternatives to H0

are unlimited but include (i) non-normality, (ii) a more complicated

structure for the mean, E(y) (e.g., non-linear in X and/or (3, or, more

simply, E(y) = XP + Z7 for some Z and 7), (III) a more complex structure

for the covariance matrix (e.g. non-constant variances and/or

non-independence), (iv) more complicated structures for both the mean

and covariance matrix induced by lag relationships.

If, as seems natural, we regard any diagnostic procedure as a test

of H
0' 

the parameters g and m2 are nuisance parameters. However, the

statistics 14 = (X'X) 2-1X'y and s = 171(I
n
-X(X'X)

-1
X')y are jointly

sufficient for (6,m
2
), and are boundedly complete under H

0. 
Hence (see

Cox and Hinkley (1974), Kendall and Stuart (1969), or Hillier (1987))

every similar test of H
0 

must have constant size in the conditional

distribution of y given I§ and s
2
, so that the conditional distribution

^ 
pdf(y113,s

2 
) characterizes the class of similar tests of H

0 
against any

alternative whatever. Rather than working with this conditional

distribution, however, we prefer to use a particular statistic to

characterize the class of similar tests, and we next construct this

statistic.

Let C (n x m; m = n - k) be such that CC' = I
n 
- MIX)

-1
X' and

C'C = I
m
. Define w = Cm x 1), and note that the transformation y 4

w) is one-to-one and that, under H
0' 

w is independent of p, and
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w N(0, c
2

m
). Now let v = w(w'w)

-1/2
and s

2 
= w'w. The

transformation w 4 (V, s2) is one-to-one almost everywhere in Rm (the

exceptional point being the origin, which is clearly of measure zero), v

is a point on the surface of the unit m-sphere

S
m 
= fv; v e R

m
, viv = 11,

and s
2 

> 0. Lebesgue measure, (dw), on R
m 
transforms as

(dw) .2-1(s2)m/2-1 
(ds2)(vidv)

where (ds
2
) denotes Lebesgue measure on R, and (v'dv) denotes invariant

(Haar) measure on S
m 

(cf Muirhead (1982), pp.67-72). Because

w N(0,T
2
I
m
) under H v and s

2
are independent under 

0' 
H0,

s
2
lc
2 
- x

2
Cm), and v is uniformly distributed on Sm under Ho (pdf(v) =

where A(m) = 2n
m/2

/r(m/2) is the surface content of S ).

We have thus established a transformation y 4 (A, , v) which is

almost surely one-to-one, and with the property that, in particular, v

is independent of A and s2 under 
110 

The following result now follows
'

immediately:

Theorem 1: The class of similar tests of H
0 

against any alternative

whatever is characterized by the vector v, a point on Sm, and under Ho v

is uniformly distributed on S. That is, a critical region for testing

Ho has size independent of and c
2 

if and only if it is defined in

terms of v alone.

Note that the vector of OLS residuals U = y - XA can be expressed

in terms of v, s, and C as CI = sCv. Any scale-invariant test statistic

computed from the OLS residuals (hence, almost all commonly used

diagnostics for this model) therefore yields a test that, in principle
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at least, is exact. This result therefore provides a theoretical basis

for the otherwise intuitively reasonable practice of basing diagnostics

for H
0 

on scale invariant functions of the OLS residuals. Andrews

(1971) comes close to stating this result, and also uses much the same

kind of geometrical approach that we shall rely on below.

Let u = fi/s = Cv denote the vector of scaled OLS residuals. If c'

denotes the i-th row of C, we have u
i 
= i=1,... ,n. In terms of v,

1

the critical regions for four commonly used diagnostics are:

(i) F-tests for additional variables

The standard F-test for T = 0 under y - + zz, 0- , where Z

is n x p, say, rejects H when
0

d
F 

= v/2(2'2)-12'v > c
1

where 2 = c'z x p) .

(ii) The Durbin-Watson Test (Durbin and Watson (1950))

(2)

This rejects Ho against positive first-order autocorrelation when

d
DW 

= v'Av < 
2' 

where A = C'AiC, with Al the usual Durbin-Watson first-

differencing matrix.

(3)

(iii) The Breusch-Pagan Test for Heteroscedasticitv 

The score test of H against heteroscedasticity generated by a0

scalar function of (a + a
1
W + + a W .), where (W ...,W .),0 ii r ri ri

i=1,...,n, are known, rejects Ho when

d
H 

= f'W(W'W) 1141f >c3 . (4)

.thwhere W (n x (r + 1)) has 1 row (1, Wii,...Wri), and f (n x 1)

-2has i
th 

element f = nu - 1 (Breusch and Pagan (1980)).
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(iv) The Jarque-Bera Test for Non-Normality 

The score test of H against non-normal alternatives in the Pearson0

family rejects Ho when

-3 -4
d
N 

= n(E)2 + (n Eu - 3)
2
/4 > c

1 i 4

(Jarque and Hera (1987)).

(5)

In (2)-(5) the positive constants c
1' 

c
2' 

c
3' 

c
4 

are chosen to give

critical regions of the required sizes. Since each statistic is a

function of v alone, and v is uniformly distributed on Sm under Ho,

c
1
-c
4 

can, in principle, be chosen to give exactly the size required.

In practice, however, c
3 

and c
4 

are usually chosen on the basis of

asymptotic arguments.

Each of these tests and, in general, any similar test of Ho against

a specific alternative, has as its critical region some subset of the

surface of the unit sphere S. The same is true, of course, of any

exact test of H against a family of alternatives that departs from H00 

in several respects (e.g., the Bera-Jarque (1982) test of Ho against

non-normal, heteroscedastic, and serially dependent alternatives ), and

also of tests against a specific alternative that are 'robust' to

departures from Ho in other directions, provided only that the critical

region is defined in terms of scale-invariant functions of the OLS

residuals.

We shall say that a multiple diagnostic procedure is an exact MDP

if the overall probability of rejecting Ho when it is true is free of

unknown parameters, and we shall refer to the probability content of the

overall critical region when Ho is true as the size of the MDP. It

follows from Theorem 1 that any exact MDP for Ho in (1) has as its

critical region a collection of subsets of the surface Sm. As
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diagnostic procedures are currently practised these subsets are defined

by inequalities (2)-(5) and, increasingly, others like them.

3. THE DESIGN OF MDPs AND REMARKS ON CURRENT PRACTICE

Suppose, for simplicity, that just two families of densities are

regarded as plausible or interesting alternatives to Ho, and that the

intersection of these two families is also admitted as a possibility.

There are then three families of alternatives to H which we denote by
0

H H
10' 02' 

and H
12' 

respectively. Ideally we would like to design an

overall rejection region - for Ho that meets (in some sense) the two

requirements mentioned in the introduction, but before that can be done

we need to define more precisely what constitutes a 'serious attempt' to

discredit a model, and what sort of procedure (critical region) is

capable of providing complete information about the direction of the

alternative if H is rejected.
0

Taking the second question first, it seems reasonable to suggest

that the overall critical region will be fully informative about the

direction of the alternative only if it consists of three disjoint,

non-empty, parts w
10' 

w
02' 

and w
12' 

say, that can be identified with the

alternatives H
10' 

H
02' 

and 
1112 

respectively. Within the class of exact

MDPs for the linear model, these will be disjoint subsets of the

surface S
m
, but in general they could be thought of simply as subsets of

the natural sample space. In the case of r alternatives *this

requirement entails a partition of the overall critical region into 2r-1

disjoint, non-empty parts. We shall call a diagnostic procedure with

this structure a complete diagnostic procedure of order r. If it is

agreed that MDPs should be complete in this sense, and the overall

critical region is given, the problem becomes one of partitioning the
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overall region into its constituent parts w10 
w
02' 

and w
12. 

A natural

objective here is to seek a partition that minimizes the probabilities

of incorrect decisions, and this is the criterion we shall adopt in the

example below.

One obvious problem with piecemeal MDPs consisting simply of a pair

of tests for the separate sub-hypotheses involved is that such a

procedure is evidently incomplete in this sense, because, even if the .

critical regions for the two tests overlap, the region of overlap .

cannot, in general, be interpreted as favorable to 1112.

Remark 1: Piecemeal MDPs consisting simply of a set of tests for

separate hypotheses are incomplete.

Nor does the addition of an 'omnibus' test (such as those suggested by

Bera and Jarque (1982), White (1980, 1987), and White and Domowitz

(1984)) to the overall procedure render it complete, because failing the

omnibus test suggests only that at least one of the families of

alternatives of interest holds, not necessarily both (i.e.,

Omnibus tests are considered further below.

Turning to the question of how to define a 'serious attempt' to

discredit the null model, it seems clear that this idea can only be made

precise by reference to the families of densities for v under H H
10'  02'

and H
12' 

in the same way that, in the Neyman-Pearson theory of

conventional testing, a 'good test' is defined by reference to the

probabilities of Type I and Type II errors. Loosely speaking, it seems

reasonable to suggest that a MDP constitutes a 'serious attempt' to

discredit H only if the overall rejection region includes all points
0

v E S
m 

for which pdf(v) can be 'large' relative to pdfo(v) Me null

density of v). Unfortunately, but not surprisingly, pdf(v) can often be

'large' relative to pdf (v) virtually anywhere on Sm 
depending on the

•
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values of the parameters that index the family of alternatives. Thus,

as in conventional testing, compromises must be made in opting for a

particular procedure, and the compromises that are appropriate depend

upon the context. In particular, as the example below will show, the

problem of designing a complete diagnostic procedure may call for quite

different compromises than are traditionally used to justify tests of Ho

against a single family of alternatives.

The strategy we are suggesting, then, consists of two parts: (1) a

choice of the overall rejection region based on an attempt to include

all points for which the non-null density can be 'large' relative to the

null density, and then (ii) a partition of this overall region into

subsets corresponding to the families of alternatives that are

entertained, with the objective of minimizing the probabilities of

incorrect decisions.

The remainder of this section consists mainly of some remarks on

current practice, which I interpret as consisting of a set of tests for

the separate hypotheses of interest, and, possibly, an 'omnibus' test

for the alternative formed from the intersection of the separate

hypotheses. Some of discussion to follow would need to be modified if

deliberate decisions to avoid the problems discussed were made by

adjusting the sizes of the tests used. However, since this is typically

not done, I shall assume throughout that the separate tests are carried

out at the sizes commonly used in practise.

To provide a focus for the discussion I shall consider in detail the

simple and familiar case in which:

9



H
10
: y N( xg + zizi, T2In), (6)

H
02
: y N( XR + 7z

'
o'
2
I), (7)

1112 
N( xp + rizi + r2z2, (72In) (8)

:

That is, the problem is to decide whether one or both of the additional

variables z and z
2 

should be included (linearly) in the model for E(y).
1

Most of the points that arise in more complex situations can be

illustrated with this problem, and it also serves to illustrate the

nature, if not the complexity, of the problem of designing suitable

MDPs. Also, in the light of Pagan (1984), this problem can serve as

a model for more general specification tests.

It is straightforward to check that, under 1112 in (8), the density

of v is given by

j
pdf

12
(v) = A

-1
(m) expi-A/21 E a (j)

j=0 m

where Z = (z
1
,z
2
) = C'(z

1
,z
2
), r =

a (j) = [2
j/2

r((j+m)/2)/(j!I(m/2))].

A = 712'27/0-2,

(9)

and

~
Under H

10 
( 7

2 
= 0) the term (v'2.7) in (9) becomes (7

1
v'z

1
), and

under H02 ( 71 = 0) it becomes (72v/z2), so that the densities pdflo(v)

and pdf02(v) are identical to (9) except that these terms replace (v1Z7)

in the power series. The (two-sided) t-tests for 7 = 0 in (6) and for

7
2 
= 0 in (7) have critical regions:

- -
: 

(v'z1 
)
2 
/(z'z

1 
) = cos

2
1 

> c
10' 

(10)
10 1 

and

- 
02 

-
: (v'z

2
)
2 
/( 

2
z/z ) = cos

2
0
2 

> c
02' 

(11)
2 

10



respectively, where Oi is the angle between v and the point

-1/2Ei = ( ) 
e S

m' 
= 1,2, and clo and c02 are constants chosen to

determine the sizes of 0 and 0
10 02.

These two t-tests correspond to what, in a general diagnostic

problem, would be the separate diagnostic statistics for the two

families of alternatives H
10 

and H
02
. Geometrically, tolo consists of

two circular 'caps' on the unit sphere Sm, one centered on El, the other

on E
-1. 

w*
2 

has exactly the same structure with E
1 

replaced by
2' 

If
0 

the two tests have the same size (c
10 

= c
02
) these four 'caps' are all

the same size. The critical region (10) ((11)) is the region that

maximises the average power among tests of Ho against Hio (1102) that are

based on v (i.e., among similar tests), the average being taken over

sign(71) = +1 and sign(T1) = -1 (sign(72) = +1 and sign(72) = -1).

Now, unless and E2 are coincident 010 and q2 cannot coincide,

even if they are of the same size. However, the two regions certainly

can, and in general do, overlap, and the extent of this overlap can be

considerable. In this example this occurs for almost all values of m of

practical relevence, or, if m is very small, if
1 

and E
2 

are close

together (see section 4 for details on this and other assertions about

this example). This situation can evidently occur with the critical

regions defined by any pair of diagnostic test statistics that are

chosen in a piecemeal fashion, and clearly leads to difficulties in

interpreting the pair of tests.

Remark 2: The separate critical regions defined by several diagnostic

1
test statistics can have substAr&W stibregions in common. Moreover, if

the tests have different sizes, it is possible for the critical region

for one test to be a subset of that for another.
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The important point here is that the fact that a pair of regions may

overlap is fortuitous, not intentional, and would often go unnoticed -

unless, of course, the model fails both diagnostic tests, for this

obviously implies that the critical regions overlap. Thus, such

region of overlap cannot, in general, be interpreted as a region

favorable to the intersection of the two families of alternatives (i.e.,

to H12), at least not without further evidence. Such a situation can

arise when the separate critical regions are obtained from local

arguments that ignore the global behaviour of pdf(v).

It can clearly also happen that the critical regions defined by two

diagnostic tests are disjoint, although in the present example this can

only occur if m is very small (< 5).

Remark 3: The critical regions defined by several diagnostic test

statistics can be disjoint. In this case it is impossible for the

procedure to reject Ho in favor of more than one alternative.

Again, the problem is that this circumstance can arise unintentionally,

rather than by design, and I doubt very much whether most applied

workers would regard such a procedure as satisfactory were it drawn to

their attention: such a procedure is certainly incomplete and, without

detailed evidence on the properties of the families of densities, would

probably not be regarded as a 'serious attempt' to discredit the null

model (since only one unfavorable outcome can occur).

The analog of an 'omnibus' test in the context of (6) - (8) is, of

course, the standard F-test for 7 = 0 in (8), the critical region for

which is:

:
12

vi2(2'2)-12iv > c
12
. (12)

12



This region again maximises the average power among tests of Ho against

H
12 

that are based on v, but in this case the average is over values of

- 
7 for which T''Zy/c

2
- = constant. The statistic on the left in (12) may

be interpreted as the squared cosine of the angle between v and the unit

vector along the orthogonal projection of v onto the plane spanned by z
1

and z
2
. The region (12) is thus a 'strip' around the surface S

m 
that is

near this plane. Since the mode of the density (9) must be somewhere on

this plane, the region (12) includes all points v for which 
Pdf12(v) 

can

be 'large' for some 7, and it clearly intersects both of the regions 0
10

and w;2.

In this example the critical region for the 'omnibus' test includes

points in the critical regions associated with the alternatives H
10 

and

1102' 
and also points that are in neither of these regions. However, in

general it is not necessarily true (of a procedure consisting of an

omnibus test and two tests of the separate sub-families involved) that

the critical region for the omnibus test intersects the critical regions

for the separate sub-hypotheses, nor is it necessarily the case that the

'omnibus' critical region contains points that are not already included

in one or both of the critical regions for the separate sub-hypotheses.

Remark 4: The critical region for an 'omnibus' test may (i) have no

points in common with the critical regions for the separate families of

hypotheses embedded within the more general family of alternatives, or

(ii) have no points thatare not also included in the critical regions

for the sub-hypotheses, or (iii) intersect one or both .critical

regions for the sub-hypotheses, but neither wholly contain those

regions nor be wholly contained within them.

The first of these possibilities obviously renders the procedure as

a whole logically inconsistent, but it can occur in finite samples if

13



the basis for the omnibus test (which might be, for instance, an

Eicker-White information matrix test) is quite different from that used

to obtain the critical regions for the separate sub-hypotheses (which

might be based on the local behaviour of the likelihood function (LM

tests), or the local behaviour of the power function). This situation

cannot occur asymptotically if all three tests are consistent, but this

is of little comfort in finite samples. The second possibility arises

if the omnibus critical region is a subset of the union of the critical

regions for the two sub-hypotheses. This circumstance can arise if (as

is usually the case in practice) the size of the omnibus test is less

than the size of the union of the critical regions for the separate

tests, and obviously means that rejection of the null model by the

omnibus test implies rejection by at least one of the separate tests.

However, if the critical region for the omnibus test is a proper subset

of the union of the critical regions for the two separate tests, the

converse is not true (that is, the model can fail one or both of the

separate tests and yet pass the omnibus test), so that a procedure with

this structure can also lead to apparently inconsistent results.

Moreover, an outcome that favours 
1112 

but neither H
10 

nor 
1102 

cannot

occur, so again such a procedure would be incomplete.

The third possibility in Remark 4 seems closest to meeting the

requirements discussed earlier, but here the model can fail an

individual test yet pass the omnibus test, or fail the omnibus test yet

pass one or both of the separate tests, leading again to the possibility

of an inconsistent outcome. Clearly, all of these difficulties arise

because the procedure as a whole has not been designed in a coherent

fashion. Before considering the problem of designing an appropriate

procedure in this example, we shall .round off the discussion of current

14



practice by considering the analog of robust tests for this problem.

13

The region (11) for testing H against 
1102 

has size independent of
0

and a
.2 

under 
110' 

but under H
10 

its size depends on 7
1 
(and 0

2
). The

analog of a 'robust' test for 7
2 
= 0 in this example would be a test

whose size is free of parameters under both 
110 

and 
1110 

But, the class
'

'2of regions whose size is independent of 0, 7
l' 

and T under both H and
0

H
10 

can be obtained by applying Theorem 1 in (6), and is characterized

by a vector w
1 
E S

m-1 
that is defined in exactly the same way for (6) as

has been defined earlier for (1). This vector is uniformly

distributed on S
m-1 

under both H
o 

and H
10'

and its distribution under

H
02 

is identical to its distribution under 1112
. Averaging

Priw1 E 
W111

021 (= Prfw1 
E121) over sign(72) = +1 and sign(72) = -1

yields a best 'robust' region for testing 72 = 0 w
r 

say, which is
02

simply the critical region for the two-sided t-test of 72 = 0 in (8).

An exactly analogous result holds for the 'robust' region for testing

71 = 0. We shall see shortly that, like W10 and w;2, the two regions

w
10 

and w
r
02 

have extensive subregions in common, that they intersect the

critical region 0
12 

for the 'omnibus' test, but also that these regions

contain points that are not in 
w412' 

and that 0 contains points that
12

are in neither w
r 

nor w
r

10 02.

Remark 5: All of the earlier discussion of piecemeal multiple

diagnostic procedures continues to hold if the critical regions for the

separate sub-hypotheses are replaced by 'robust' critical regions.

The fact that pdf02(w1) 
Pdf12(w1 

) clearly implies that the class

of robust procedures for testing 72 = 0 in this example is incapable of

distinguishing between H02 and H12, and a similar conclusion holds for

robust tests for 7
1 
= 0. As long as the question of interest is simply

whether or not 7
2 
= 0 (or 7

1 
= 0), this is not a weakness, but if

15



distinguishing between 1110' 1102' 
and 1112 

is part of the purpose of the

procedure it most certainly is. Of course, in , more complex problems

this conclusion is unlikely to be so clear cut, but it seems clear that

imposing the requirement of invariance to a parameter on a family of

densities under a parametric constraint must, by continuity, impose

something close to that invariance on the family for which the

constraint does not hold, at least locally.

Remark 6: ‘Robustification' of the separate tests within a HDP may

make it more difficult to distinguish between H
10' H02' 

and H
12' 

rather

than easier.

One motive for 'robustification' seems to be that a departure from

the null model in a particular direction may be more serious, in some

sense, than a departure in the other. This seems to me to imply (if

7
2 
# 0 represents the 'serious' departure), not that the probability of

wrongly concluding that 72 # 0 should be small whatever the value of 7

but rather that the probability of correctly concluding that 72 # 0

should be large, whatever the value of 71. In our example it is not

difficult to show that Pr{v E w
02

I11
02
} ( = Pr{v E w

02
1 1112

}), while free

of 7
l' 

does depend on 11
10 

through z
l' 

and can in fact be smaller than

both Prfv E 
to*2 

IH02 1 and Prfv E 02 Pi12 
1. Thus, grobustification' for0 

size can diminish the probability of correctly rejecting a false

hypothesis, but this is an aside to our main line of argument. In fact,

a properly designed diagnostic .procedure would make the (size)

robustness issue irrelevant, so we turn to that question for our example

now.
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4. DETAILS AND DENOUEMENT FOR THE EXAMPLE

Before considering the problem of designing a suitable procedure

for the problem (6)-(8), it is convenient at this point to introduce a

set of coordinates for points v E Sm that will enable us to define

critical regions in a two-dimensional Euclidean space, rather than on

the surface S
m
. This will also clarify some of the statements made in

section 3 about the various critical regions defined there. Let

L = EEl'2 - p 1)/(1 - p2)1/2] (mx2), where
P

so that

cos
-1
(p) is the angle between and The columns of L are an

orthonormal basis for the two dimensional space spanned by z
1
 and z2.

Also, let E (mx(m-2)) be such that E'L = 0 and L'L = Im_2. Then we can

represent v uniquely in the form

-
= b

1/2
Lg + (1-b)

1/2 
Lh, (13)

where g E S2, h E S
m-2' 

and 0 < b < 1. In this representation of v,

b = v'2(2'2) -12'v = /s2, and 
g = 

T/("'')1"2, 
A

where T is the

OLS estimate of T in (8),

Si,s2p

0 s (1-p
2
)
1/2 '

' 2

2 -
with s. = ZZ., i = 1,2, so that T'T = Z'Z, and h E S

m-2 
is defined for

1 ii

(8) as v is defined for (1). Thus, g is a statistic indicating the

'direction' of the vector TT. The invariant measure (vidv) on S
m

factorizes under (13) as

-
(v'dv) = 21(1 - b)

(m-2)/2-1
(db)(g'dg)(h'dh)

where (g'dg) ((hidh)) denotes the invariant measure on S2 (Sm_2).

(14)
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Next, since g E S2, we can represent g in polar coordinates:

g = (cose, sin0)', where 0 ( -n < 0 < it ) is the angle between g and

(say) the first coordinate axis, el. The invariant measure (gidg)

becomes simply do under this transformation. The statistics (b,O,h)

provide an alternative characterization of the class of regions whose

size is free of parameters under Ho. Transforming v 4 (b,O,h), we find

that h is independent of b and 0 and is uniformly distributed on Sm_2

under H
12 

and therefore also under 
H' 

H
10 

and H02. Since h contains
0'

no information about the alternatives it can be ignored, and all regions

of interest can be described in terms of b and O. Under H the joint
12

density of b and 0 becomes

03

pdf
12
(b,0) = c(m)(1-b)

(m-2)/2-1
expf-A/21 E a (j)[(Ab)1/2g11i]i (15)

j=0 m

-
y74where c(m) = [2nr((m-2)/2)/r(m/2)]

1 
and µ = T/( /T'1)

142 
is an

indicator of the direction of TT. Note that we have continued to use

to denote the vector (cose, sinO)' to simplify the notation, and that p

can also be expressed in polar coordinates as p = (cosO, sin0)', where 0

is the angle between p and the first coordinate axis. Under H
1/2

10'

is replaced by (solo-) and g'p by cos() in (15), while under H A
1/2

02'

is replaced by (s
2
T
2
/17) and gI p by cos(0-0 ), where 0 = cos

-1
(p)

P P

(0 < 0 < n) is the angle between i and 2. In terms of these
P

coordinates the regions 
0' 

w
02' 
* and w* are:

10 12

0 : bcos
2
0 > c

10 
EH
0 

against 1110]10 

0 : bcos
2
(0-0 ) > c

02 
[H
o 
against 110202 P

* : b > c
12 

CH
o 
against 1112

]w12
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The 'robust' tests for 71 = 0 and 
'2

= 0 (i.e., the two-sided t-tests

for 71 = 0 and 72 = 0, respectively, in (8)) have critical regions

w
r 

: b(1-cos
2
(0-0 ))/(1-bcos

2
(0-0 )) > c' [11 against 1112] (19)10 10 02

w
r 

: b(1-cos
2
0)/(1-bcos

2
0) > c [H

0 
against H

1 
] (20)02 02 1 

The critical regions (16)-(20) are subsets of the rectangle

R = e; 0 < b < 1, -Tr < 0 < Tr},

and are depicted in Figures 1(a) and 1(b) for m = 22, p = .766, and a

case where each test has the same size (.05). If we append to each of

the inequalities (16)-(20) the phrase "and all h E Sm_2", each of these

regions is in one-to-one correspondence with a subset of the surface Sm,

the sample space for v. Hence, Figures 1(a) and 1(b) confirm the

assertions made in section 3 about the relationships between these

regions.

In the remainder of the paper I suggest a procedure for this

problem that meets both of the requirements discussed earlier. The

reader should be forewarned, however, that, just as in conventional

testing, there is no 'best' procedure even •in this simple problem,

because the 'best' procedure depends on unknown parameters. Thus,

certain aspects of the solution offered below are necessarily ad hoc and

may not appeal to some readers. The argument makes both the need for,

and the role of, the compromises that are made, obvious.

It will be helpful in what follows to write (15) as the product

with

pdf(b,0) = pdf(01b)pdf(b) (21)
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pdf(b) = [r(m/2)/r((m-2)/2)1(1-b)
(m-2)/2-1 

expf-A/21
1
F
1
(m/2, 1; Ab/2)

(22)

and

to
-

pdf(01b) = (2n)
1
 E a (j) [(Ab)

1/2
gig]

j
1
F
1
(m/2, 1; Ab/2). (23)

j=0 m

where 
1
F
1
(a, b; x) = E m (b) with (a)

j 
= a(a+1)...(a+j-1),

j=0 J

denotes the confluent hypergeometric function. Now, it is clear from

(23) that, for each fixed b, the mode of pdf(01b) occurs at 0 = 0, and

this can be anywhere in (-n, n). Hence, the only way to ensure that the

overall rejection region for Ho contains all points (b,0) for which

pdf(b,0) can be large is to include, for each b, the entire interval -n

< 0 < it. In other words, the overall rejection region must be of the

form b > c, the critical region for the F-test of T = 0 in (8), if it is

to satisfy our 'serious attempt to discredit' criterion. Obviously, the

size of the overall rejection region is easily determined in this case.

It remains, therefore, to partition the region b > c into three

disjoint subsets w
0' 

w and w
12' 

corresponding to H
10' 02' 

H and 1112.1 02' 

Ideally, we would like to be able to choose these regions in such a way

as to minimise the probabilities of incorrect decisions. As we shall

see shortly, however, this cannot be done without first making a number

of simplifying assumptions.

Under 
1110' 

pdf(Olb) has a mode at 0 = 0 and an antimode at 0 = ±n

when 71>0, but the mode is at 0 = ±n and the antimode at 0 = 0 when

7 <O. Likewise, under 
1102 

the mode is at 0 = 0 (0 = 0 -it) and the. 1

antimode at 0 = 0 -n (0 = 0 ) when 7
2
>0 (7

2
<0). Under H

12 
the mode is

at 0 = 0 and the antimode at 0 = 0 ± it. In the absence of information

about the likely signs of 71 and 72 it seems reasonable, as before, to
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work with the averages of the conditional densities pdflo(elb) and

pdf
02
(Olb) over sign(y1) = ±1 and sign(72

) = ±1, respectively. That is,

with

p
10
(01b) = 1

F
1
(m/2, 1/2; A10

bcos
2
(8)/2)pn1

F
1
(m/2, 1; X10

b/2) (24)

p
02
(01b) = 1F1(m/2, 1/2, A02

bcos
2
(0-0 )/2)pn1

F
1
(m/2, 1; A02

b/2) (25)_
P

2 2 2 2 22
where A10 

= s
1
7
1
/a. and A

02 
= s

2
7
2
Ar . Similarly, we shall work with

the average of pdf12(01b) over 41. That is, with the average value of

pdf
12
(elb) over the pair of points 0 and 0 ±

 n:

p
12
- (01b) = 

1 
F
1 
(m/2, 1/2; Ab(cos

2
(0-0))/2)/2n1

F
1
(m/2, 1, Ab/2). (26)

Note that the positions of the modes an
d antimodes of P10(°113) 

and

p
02
- (01b) are known, but the points at which 

they cross depend on A10 
and

A02' 
and are therefore unknown (see Fig. 2). Both the position and

shape of P12(° 
lb), on the other hand, are unknown, the f

ormer depending

on 0, the latter on A, and it is this that ma
kes it difficult to devise

a reasonable strategy for distinguishing betw
een Hio, H02, and H12.

The general shapes of the averaged condition
al densities (24) and

(25) are illustrated in Figures 2(a) and 2(b). In Figure 2(a)

A = 
10 

A while in Figure 2(b) 
02' A10 < A02 

It seems clear that,

whatever criteria are used to define a 'good' procedure for

distinguishing between Hi0' 
H
02'

and H
12' 

the appropriate choices for

w 
10 w02 

and w
12 

will depend on A10' 
A
02' 

and A. Thus, little progress

' '

can be made without making assumptions abou
t these parameters, and we

shall here confine ourselves to procedures 
that are appropriate when the

alternatives are 'balanced' in the sense th
at A

10 
= A

02 
= A. Somewhat
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different procedures would no doubt be appropriate under different

assumptions.

.Figure 2(a) relates to this 'balanced' situation, and 
P12(°1b)

looks exactly like the densities shown there except that the modes can

be anywhere in -n < 0 < n. Thus, 
P12(9 

lb) can be very close to either

of the other averaged conditional densities, depending on 0. This

clearly means that it is impossible to choose regions  and w
12u w02'

that uniformly minimise the probabilities of incorrect decisions for all

values of 5. To overcome this difficulty it seems reasonable to suggest

that the regions chosen should perform well when 1112 is, in some sense,

most unlike either 11
10 

or H 
02' 

and Fig. 2(a) suggests that this is so

_
when 5 . (0 + n)/2 if 0 < n/2, and when 0 = 0 /2 if 0 > n/2. For the

P P P P

purposes of choosing 
w10' w02' 

and wwe shall therefore take o in

p
12
- (01b) to be equal to (0 4. n)/2 if p > 0, and equal to 

O/2
 if p <0.

We denote the averaged density P 
12(elb) 

evaluated at either of these two

_
values of 0 by 1)1'2(0lb).

If, now, we revert to the averaged joint densities

p10" 
- (b e) p

02" 
(b 0) and 

p*12' 
(b 0) defined by P 

10(b'e) = P 10
(01b)pdf(b)

etc., the problem becomes one of discriminating between three

possible densities for (b,0). But, according to a generalization of the

Neyman-Pearson Lemma due to C. R. Rao ( quoted, without reference, by

Kendall and Stuart (1976), p. 337), the regions that minimize the

probabilities of incorrect decisions are, in the case where the three

candidates are equally likely a priori, defined by:
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w : p
10' 
- (b 0) 2-- p

02' 
(b 0) and p

10 
(b
' 
0) ..›.: 1-

12
;* (b

' 
0) (27)10 

_ - - -w : p
10 
(b
' 
0) Is p

02 ' 
(b 0) and p

02' 
(b 0) --. 

p*12' 
(b 0) (28)02 

w
12 

p
10
- (b,0) -5- p*

2 
(b,0) and p

02
(b,0) p*

12 
(b,0). (29)1 

Using the expressions given earlier for the averaged conditional

densities, and the fact that the confluent hypergeometric function is a

monotonic function of its argument, it is easy to see that (27)-(29) are

equivalent to, in the case p > 0,

w
10 

: bcos
2
0 bcos

2 
(0-0 and bcos

2
0 bcos

2
(0-(0 +n)/2) (30)

w
02 

: bcos
2
0 bcos

2
(0-0 ) and bcos

2
(0-0 ) bcos

2
(0-(0

p
+)/2) (31)

w
12 

: bcos
2 
0 r-s bcos

2
0 +n)/2 and bcos

2
(0-0 bcos

2
(0-(0

p
+n)/2).

( 32 )

To each of these, of course, the condition b > c should be appended. In

the case p < 0 (0 +n)/2 is replaced by 0/2 throughout.

Note that b can be eliminated from (30)-(32), so that these

inequalities simply define a partition of the interval -n < 0 < it into

strips whose intersections with the region b > c define the subregions

w10 
and w12. However, the regions (30)-(32) can also be expressed' w02'

in terms of much more familiar and easily calculated statistics. To do

2so, first note that bcos
2 
0 = (t

1
/m-1)/(1+t

2
/m-1) and
1

bcos
2
(0-0 ) = (t

2
/m-1)/(1+t

2
/m-1), where t

1 
and t

2 
are the t-statisticsP 2 2 

associated with 7 and 7
2 

in (6) and (7) respectively. In a similar1

way, bcos
2
(0-(0 +n)/2), and, in the case p < 0, bcos

2
(0-0 /2), can beP P

expressed as functions of the t-statistics associated with the vectors

z
+ 

= ZT
-1

µ
+ 

and -1-
= ZT u , respectively, in the regressions of y

on X and z
4. 

and y on X and z. Here,
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[
- ( 1 -0

1 / 2

(144))1/2 '
and 11

(1+01/21

(1-01/2j.
(33)

Using these three t-statistics, and noting that the region b>c

corresponds to the region F > Fc(2,m-2), where F is the usual

F-statistic for testing 7=0 in (8), and Fc(2,m-2) (=(m-2)c/2(1-c)) is

the critical value for F (chosen to determine the size of the procedure),

the regions w 
' w02' 

and w
121 

are, finally:
10 

: t2 - t2 ->_- 0 t2 - t2 ->-- 0 F ?-- F
c
(2,m-2), (34)

w10 1 2 ' 1 * '

: t
2 
- t

2 
--5 0 t

2 
- t

2 
?.-- 0 F ->: F

c
(2,m-2), (35)

w02 1 2 ' 2 * '

: t
2 

t
2 

- 0 t
2 
-
. 

t
2 

--5 0 F ?.- F (2,m-2), (36)
w12 1 

- 
* 

5- 
' 2 * ' c 

where t* denotes the t-statistic based on µ
+ 

or ii as appropriate.

The regions (34)-(36) provide an optimal partition of the overall

critical region under the assumptions, and in the sense, discussed

above. Whether or not the procedure defined by these regions would

perform well generally remains a subject for further study.

5. CONCLUDING REMARKS

We have shown that a piecemeal approach to designing multiple diagnostic

procedures falls far short of meeting the needs of applied researchers.

On the other hand, our simple example reveals that much detailed

information is needed about the densities under the families of

alternatives that are entertained before one can hope to design suitable

procedures. In more complicated situations - for instance, a case in

which H
10 

is (8)
' 

H
02 

corresponds to the linear model with

autocorrelation, and H
12 

to both additional variables in the mean and

autocorrelation - it is unlikely that the arguments that were successful
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for the simple example used here will be enough. Clearly, much needs to

be done even in relatively simple problems before the needs mentioned in

the introduction can fairly be said to be met.

For problems in which the null model is given by (1), the result in

section 2 should serve to both unify the treatment of more complex

diagnostic problems, and to provide geometric insights that are helpful

in choosing appropriate procedures. However, the relatively simple

coordinates used in section 4 will not necessarily be appropriate for

other problems.
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Figure 2(a): Averaged Conditional Densities of 4 
(X10 = X02)
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Figure 2(b): Averaged Conditional Densities of 4 
(X10 X02)
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