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Headnote

Recently, there has been an increased awareness of the one-sided
nature of many econometric testing problems. For testing HO : 86 =0
against Ha : @ # 0 where 6 is pxl, SenGupta and Vermeire (1986)
introduced the class of locally most mean powerful (LMMP) unbiased

tests. They are constructed to maximize the mean curvature of the power

hypersurface in the neighbourhood of 6 = 0. Our interest is in testing

H. against H; : 6 o, ..., Gp = 0 with at least one strict inequality.

(0]

We show how LMMP critical regions can be constructed and note that they

1

suggest a new form for the Lagrange multiplier test in one-sided testing
problems. Applications considered in the context of the linear
regression model include joint one-sided testing for non-zero regression
coefficients, autoregressive disturbances, heteroscedastic disturbances,

random regression coefficients and variance components.

KEYWORDS: Autocorrelation, heteroscedasticity, invariance, Lagrange

multiplier test, linear regression, locally most mean powerful test.




INTRODUCTION

In recent years, there has been an increased awareness of the

potential one-sided nature of many econometric testing problems. It is
recognised that economic theory frequently can provide information
regarding‘ the signs of various parameters and that this information
should be used to improve the power of testing procedures. Also,
functional considerations such as variances always being positive can
give rise to natural one-sided testing problems. A good example of this
increased awareness is the development of tests for inequality
restrictions on regression coefficients; see for example Gouriéroux,
Holly and Monfort (1982), Farebrother (1986), Hillier (1986), Judge and
Yancey (1986), King and Smith (1986), Kodde and Palm (1986), Rogers
(1986) and Wolak (1987). Much of this literature is concerned with
one-sided versions of the likelihood ratio, Wald and Lagrange multiplier
(LM) tests, the latter also being known as the Kuhn-Tucker test.
Unfortunately, the asymptotic distributions of these test statistics
under the null hypothesis are weighted sums of chi-squared distributions
and the degenerate distribution at zero which make them difficult to
apply. Also little is known of their small-sample performance - their
main Jjustification being asymptotic. In the case of testing two and
three coefficient restrictions, Hillier (1986) has derived the exact
distribution of the 1likelihood ratio statistic. However, it is clear
that the complexity of deriving these distributions increases sharply

with the number of restrictions.

Many testing problems involving the linear regression model can be
reduced, either by conditioning on sufficient statistics or by

invariance, to one of testing a simple null hypothesis against a




composite alternative.2 Ideally we would then like to use a uniformly
most powerful (UMP) test but unfortunately such tests rarely exist. Cox
and Hinkley (1974, p.102) discuss three possible approaches to
constructing tests against composite alternatives when no UMP test
exists. They are: (i) using a test which maximizes power at a
"somewhat arbitrary ‘typical’ point" in the alternative parameter space,
(ii) removing this arbitrariness by choosing the point to be close to
the null hypothesis which leads to the locally best (LB) test and (iii)
choosing the test which maximizes some weighted average of powers.
Option (i) is sometimes known as the point optimal solution and is

reviewed in some detail in King (1987b).

The LB solution has found some acceptance in the 1literature.
Suppose we wish to test HO : 8 = 0 based on x which is an n x 1 random
vector whose distribution has probability density function f(x|6) where
@ is a p x 1 vector of unknown parameters. When p =1, the.LB test of

H0 : 8 = 0 against H; : & > 0 is that with critical regions of the form

62nf(x|6) > o

ae 0=0 1

where ¢, is a suitably chosen constant (Ferguson, 1967, p.235). It
should also be noted that this test is equivalent to the one-sided LM
test based on the square-root of the standard LM test statistic.

Against the two-sided alternative Ha : ® # 0 when p = 1, critical

regions of the form

2
a f(x|6) N sz(x|9) + e af(xle)

26> |e=0 p=0 S 98 6=0




yield unbiased (LBU) tests when the constants c2 and ¢y are chosen so
that the critical region has the nominated size and is locally unbiased.

Regions of this kind were labelled type A regions by Neyman and Pearson

(1936).

For p =z 2, the main emphasis in the literature has been on

constructing LBU tests of H 6 = 0 against Ha : 8 # 0. Neyman. and

0
Pearson (1938) suggested the use of type C LBU regions when k = 2.
These regions have constant power in the neighbourhood of 6 = 0 along a
givgn family of concentric ellipses. They require knowledge of the
relative importance of power in various directions in the neighbourhood
of & = 0. Isaacson (1951) introduced type D regions to rectify this
objection (also see Lehmann, 1959, p.342). Type D regions are obtained
by maximizing the Gaussian curvature of the power function at é = 0.
Recently, SenGupta and Vermeire (1986) introduced the class of locally
most mean powerful unbiased (LMMPU) tests which maximize the mean
curvature of the power hypersurface in the neighbourhood of 6 = 0 within
the class of unbiased tests. The 1locally most mean powerful (LMMP)
criterion is appealing because it incorporates both (ii) and (iii) of
Cox and Hinkley’s suggestions. SenGupta and Vermeire show that LMMPU
tests have critical regions of the form

af (x|0)

i a6,
i

_ azf(xle) 5

2 o)

P
f(x|8) + Y ¢
i=1 661 6=0 i=1

where the constants CO’ Cl’ ..., c_ are chosen so that the critical
region is locally unbiased and of the nominated size. While finding
these constants may not be particularly easy, at least we have a method

of test construction. In contrast, type D regions have to be guessed




and then verified.

Our interest in this paper is in the multivariate analogue of

one-sided testing problem, i.e. H0 : 8 = 0 against H; : 61 o, ...,

ep z 0 with at least one strict inequality.3 There is always the

possibility that one may be able to find a test that is LB 1in all
directions from H0 in the p-dimensional parameter space. Neyman and
Scott (1967) call this property "robustness of optimality" while King
and Evans (1988) call such tests uniformly LB (ULB). L;ke UMP tests,
ULB tests may not always exist. In such cases, one may wish to consider

a weaker optimality criterion. Our aim in this paper is to explore the

option of constructing LMMP critical regions.

The plan of this paper is as follows. The next section gives the
general method of constructing a ILMMP test of H0 against H; and a proof
of this central result is given in the appendix. The test suggests.a
new form for the LM test which takes into account the oﬁe—sided naturé
of the alternative hypothesis. Because it has a N(0,1) asymptotic
distribution under HO’ the new LM-type test can be readily applied in
contrast to the Kuhn-Tucker test. It has the additional attraction of
having a small-sample optimal power property when no nuisance parameters
aré present. In section 3, the method is used to construct a LMMP
invariant'(LMMPI) test for inequality restrictions on linear regression
coefficients. We find that the LMMPI test is identical to King and
Smith’'s (1986) additive t-test. In section 4, the method is used to
construct a general LMMPI test of the error covariance matrix in the
linear regression model. Applications of this test considered in
section 5 include testing for Jjoint first-order and fourth-order

autoregressive (AR) disturbances, quarter-dependent AR(4) disturbances,




heteroscedastic disturbances including heteroscedasticity arising from
random regression coefficients and autocorrelation generated by variance

components. Some concluding remarks are made in the final section.

2. THEORY

Assume we have observed the n x 1 random vector x which has

probability density function f(x|9) where 6 is a p x 1 vector of unknown

non-negative parameters. We are interested in testing

against

A proof of the following result is given in the appendix.

Theorem: Suppose f(xle) is a density function which has at
least one non-zero first-order derivative at 6 = 0 with
respect to 61, i =1, ..., p, and whose second-order
derivatives at 6 = 0 all exist and are continuous. Then a
LMMP test of HO against Ha is given by the critical region

aﬂnf(xle) (3)

ae,
i

where c is an appropriate constant chosen to give the test the

required .significance level.

Observe that when p = 1, (3) reduces simply to (1). Also (3) is a
much simpler critical region to construct than (2) given that it

requires only one constant (critical value) to be determined while (2)




requires the simultaneous determination of p+1 constants. Furthermore,

s is the sum of the LB test statistics which each test H, against

0]

ei > 0 and Oj =0, jJ=1i, j=1,

for i =1, ..., p. This is advantageous in that if a calculated test

statistic suggests H_ should be rejected, we can look at the individual

0
components of the statistic to see which ei are contributing most to
this outcome. Unfortunately, under Ha it is extremely unlikely that
the component statistics will be mutually independent and this should

be taken into account when interpreting the results. The form of (3)

also implies that a LMMP test is a LB test in the direction given by

(4)

In other words, a LMMP test is the test with the steepest sloping power

function at Hd in the direction (4). This can be verified by replacing
6 by T, where ¢ is the p x 1 vector of ones and T is a nonnegative
scalar. By using (1) to construct a LB test of T = 0 against T > 0, one
gets (3). Also note that if a ULB test exists, then the LMMP test is
also ULB. This follows from the LMMP test being a LB test in the
direction (4) and therefore being LB in all directions due to the
existence of a ULB test. As SenGupta and Vermeire (1986) note, LMMP
tests are not, in general, invariant under reparameterization. This is

a weakness which in some circumstances can be a strength. For example,

it may be desirable to have good power in certain directions from HO.

So far, we have assumed the distribution of s 1is known, thus
allowing an appropriate critical value to be found. For applications in

which this is not the case, large-sample asymptotic critical values can




be derived by the simplé adaptation of the asymptotic theory of the LM
test. Observe that s is the sum of the elements of the score vector
evalua£ed under HO' Under standard regularity conditions (see for
example, Godfrey (1988, pp.6-7)) but without a requirement that the true

parameter value be an interior point of the parameter space, it follows

that

n~1/zs 2 N(0,2'Ve)

where V = %%g n_lj and } is the information matrix (minus the expected

value of the Hessian matrix) evaluated at 6 = 0. Therefore, a LMMP
critical region of approximately the desired size, can be obtained by

rejecting HO for large values of
s* = s/ (nE’VE)l/Z

which is assumed to have.a N(0,1) distribution under HO'

Clearly, a test based on s* can also be viewed as an LM-type test
which takes into account the joint one-sided nature of the alternative
hypothesis and which maximizes the mean slope of the power function at
HO. This is assuming there are no nuisance parameters present. In the
presence of nuisance parameters that cannot be eliminated by

conditioning on sufficient statistics or by invariance arguments, the

following analogous LM-type test suggests itself.

Suppose 6 is partitioned as 6 = (ei,eé)' where 06, is p1x1, 0, is

2

p2x1 and p1+p2 = p. Our interest is in testing HO : 61 = 0 against

1

Ha : 61 > 0 when 92 is unknown. If the value of 62 was-known, then a

LMMP test of HO is given by




P1 aenf (x|6)
st = Z _—
i=1 69i
6 = (0°,6;)
The LM approach suggests that the unknown 62 should be replaced by its
maximum likelihood estimate under HD’ denoted éz. Let }11 denote the
ﬁpper P, xP, block of the inverse of the information matrix and let s+

and 311 denote st and }11, respectively, evaluated at 6 = (O’,éé)’. The

for large

asymptotic theory of the LM test implies that rejecting HO

values of

st/ @ @hel?, (5)

assuming a N(0,1) distribution under HO’ is an asymptotically wvalid
test.4 It can be viewed as an LM-type test which takes into account the

Jjoint one-sided nature of the alternative hypothesis. In contrast to

the Kuhn-Tucker test, this new LM-type test can be readily applied

because of its N(0,1) asymptotic distribution. It has the additional
attraction of having a small-sample optimal power property when no

nuisance parameters are present.

3. INEQUALITY TESTING OF RESTRICTIONS ON LINEAR REGRESSION COEFFICIENTS

Consider the classical linear regression model
y = XB +u : (6)

where y is n x 1, X is an n x k nonstochastic matrix of rank k < n, B is

a k x 1 vector of unknown parameters and u is an n x 1 error vector. It

is assumed that u ~ N(O,GZIn) where 02 is unknown.




We are interested in testing

HO :RB =T

M ng > I
a

where R is a known p x k matrix of rank p < k and r is a known p x 1

vector. Without loss of generality, we assume

R = [0: I and
P

because, as King and Smith (1986, p.369) show, if this is not the case,

the testing problem can be reparameterized to one in which it is true.

Partition (6) as
y = %Ry X8y +u
where X, is n x q, X, is n x p such that q + p =k, X = [X1 : XZ]’ 31 is

1 2

g x 1 and BZ is p x 1 such that B’ = (Bi : Bé). Our problem is now one

of testing HO : 32 = 0 against Ha : 82 > 0.

This problem is invariant under the class of transformations
y = vy *+ X7

where % is a positive scalar and ¥ is a g x 1 vector. Let M1
’ -1, _ s ’

In Xl(X1X1) X1 and let P1 be an (n-q) x n matrix such that P1P1
7 -

In—q and P1P1 = Ml' Then

- ey 172
v = Py / (y PiP,y)

. X . . 2 .
is a maximal invariant. Because Ply ~ N(P1X232, c In—q)’ v has density




g(v)dv =

00
2 "(n—q)/Z i 2_ ’ 1Ny
IO(ZHG ) exp{z(r2 (A™=-2Av P1X262 + BZXZMlszz)

}An_q_ldAdv

where dv denotes the uniform measure on the surface of the unit

m-sphere.

‘Making use of the fact that g(v) is a constant, one can show

B,=0

dlng(v) _ 1 ag(v)
36, 6,- gv) "B,

B,=0
where a is a positive constant. The theorem of the previous section

implies that rejecting H, for large values of

0]

L X2M1y

(y,Mly)l/Z

yields a LMMPI test where € is a p x 1 vector of ones.

This test is equivalent to the additive t-test proposed by King and
Smith (1986). To see this, note that their test is applied as a

one-sided t-test of HO : &« = 0 against Ha : & > 0 in the regression
y = X13 + oz + U (7)
where z = X2£. The'ordinary least squares (OLS) estimator of « in (7) is

- -1
-— ’ ’
a = (z MIZ) z Mly

and the unbiased OLS estimator of the error variance is




"2 _ ’ - ’ -1_, . e
o =y (M M, z(z M z) "z M )y / (n-gq-1).

Thus the test statistic is

o/ {&(z'ulz)‘l/z}

- =172 _, / o . -1, 1/2
{(n-q—l)z Mlz} z'My / {y My -y Mlz(z Mlz) z Mly}
{(n~q—1)z’Mlz}_1/2s {1 - (z'Mlz)_lsz}

which is clearly a monotonic increasing function of the test statistic

S.

This is an interesting example of a LMMPI test because King and

Smith’s test was originally constructed as a point-optimal test which

2

of testing situations involving p = 2,3 and 4, King and Smith compared

optimizes power along the ray Bq+1 = Bq+ = ... = Bk > 0. For a range

the power of their additive-t test with the power envelope, the power of
the F test and, for p = 2 only, the exact likelihood ratio test. Under
Ha’ they found their test is typically more powerful than the F test
and, more often than not, also the likelihood ratio test. Their study
also indicated that the additive-t test can have power within five per
cent of the power envelope over a wide range of the parameter space,
especially when the X2 regressors are multicollinear. In contrast, the
power of the F test was almost never found to be within five per cent of

the power envelope.

4. TESTING THE ERROR COVARIANCE MATRIX OF THE LINEAR REGRESSION MODEL

Consider the normal linear regression model (6) with non-spherical




disturbances, i.e. u ~ N(O,GZQ(G)), where 02 is an unknown scalar and
Q(8) is a symmetric matrix that is positive definite for 8 in a subset
of ({0}UR+)k which is of interest. Without loss of generality, if is

assumed that Q(0) = In.

We are interested in testing H 6 = 0 against Ha

0

problem is invariant under the group of transformations

y — woy+Xa'

where yo is a positive scalar and ¥ is a k x 1 vector. Let

1X’ and e = My be the OLS residual vector from (6). In

M= In - X(X'X)
the case of p = 1, King and Hillier (1985) showed that a LB invariant

(LBI) test against Ha is to reject HO for small values of

e’AOe /e'e,

A, = -0Q(8)/80 = aa l(e)/00
- le=0 0=0

For p > 1, the theorem of section 2 can be applied to construct a

LMMPI test. Let m = n - k and let P be an m x n matrix such that

PP’ = Im and M = P’P. The vector
v = Pe/ (e’P’Pe)l/2

is a maximal invariant under the above group of transformations. As

King and Hillier note, the density of v can be shown to be

dv ,

f(v)dv = % F(m/2)n—m/2\PQ(6)P’l_l/z[v’(PQ(e)P’)_lv]_m/z

where dv denotes the uniform measure on the surface of the unit




-80(6)/80 = aQ_l(e)/aei
9=0 8=0

From (3) and (8), the LMMPI test is based on critical regions of the

form

1 8in|PQ(8)P" | . 3 _moam (Pa(e)P’ )" 1v)
2 oe, . 2 a8,
i 6=0 i=1 i

TheififStﬁSdmmétibn on the left is simply a Scalar constant. Evaluating

the second summation ‘gives

e’Aie/e’e = e’Ae/e’e < c,

p
where A ) A, and ¢
i=1

> is a suitably chosen constant. Note that (9) is

also a LBI test of HO in the direction (4).

The form of s is analogous to the Durbin-Watson (DW) statistic.

This means that the critical value, c¢ may be found by standard

2
numerical Atechniques used to calculate critical values of the DW
statistic.5 Unfortunately, the distribution of s is a function of the
design matrix X through M. However, bounds for c, that are independent
of X but dependent on A can be calculated in an analogous way to the
familiar DW bounds (see King, (1987a, pp.28-29)). Also, methods of

approximating the critical values of the DW statistic can . also be used

to approximate c

> (see King (1987a, pp.25-27) and Evans and King




(1985)). Given that under suitable regularity conditions, the test
statistic has an asymptotic normal distribution under the null
hypothesis, the normal approximation has some appeal. This involves
rejecting H0 for small values of (s-p)/v assuming a N(0,1) distribution

under H0 where

tr(MA) / m,

Z[m tr (MAMA) - {tr(MA)}Z] // {mz(m+2)}

and tr(-) denotes the trace of the matrix.

5. EXAMPLES OF TESTS OF THE ERROR COVARIANCE MATRIX

5.1 Joint First-Order and Fourth-Order Autocorrelation

Among other things, the error term is included in the regression
model to capture the effects of omitted or unobservable regressors and
functional approximations. These are often expected to lead‘ to
autocorrelated disturbances and for quarterly econometric models, there
is a recognition that this autocorrelation may possess 2a fdurth—order
component because of seasonal effects. For example, one would expect
the omission of relevant variables with seasonal components to lead to
both first-order and fourth-order effects in the disturbances.
Consequently, one may wish to test whether the errors, U, have been

generated by the stationary seasonal-autoregressive process

(1-p,L)0 - p4L4)ut = ¢

t




are unknown parameters, L is the lag operator such that Lut = Uy and

ceey sn)’ ~ N(O,wzln). Note that (10) is the AR(5) process

u = + €

t PiUi_q * Pgltg ~ P1PgY-5 T & -

We wish to test

against

= 0, p? + pi > 0.

" For this problem, the LMMPI test is given by (9) where

so that




where ri is the ith order residual autocorrelation coefficient. Hence

HO should be rejected for large values of Ty + Ty

It follows that a test which rejects HO for small values of the sum
of the DW statistic and Wallis’s (1972) test statistic is approximately

LMMPI.

S.2 Quarter-Dependent Fourth-Order Autocorrelation

Through the work of Thomas and Wallis (1971) and Wallis (1972)
among others, there has been much interest in the simple fourth-order
error process

g T PUig T8
as a model for seasonal autocorrelation in quarterly data. It can be
viewed as separately generating March-quarter, June—quarter;
September-quarter and December-quarter errors from their own AR(1)
processes. Largely for parsimonious reasons, all four AR(1) processes
are assumed to have the same coefficient. Clearly it may be more
realistic to allow the coefficient to vary and to model the erfor

process by
for t from quarter 1 ,
for t from quarter 2 ,
for t from quarter 3 ,

for t from quarter

where 0 = Py i e . It is straightforward to show that a

LMMPI test of




Ho:p = (pl,

against Ha : p > 0, rejects H0 for large values of

Consequently, Wallis’s test for simple AR(4) disturbances 1is an

approximately LMMPI test of H. against Ha'

0

5.3 Heteroscedasticity and Random Coefficient Variation

Suppose the regression errors, u,, are normally and independently

distributed with mean zero and variance

2 2 ., .
op = ¢ h(« zt) (11)

where h is a monotonic-increasing positive function whose second
derivative at zero is continuous, « is a p x 1 vector of nonnegative
parameters and zt is a p x 1 vector of nonconstant observations on P
exogenous variables. The exact form of h need not be known although its

first derivative at zero is assumed to be positive.

A natural example comes from the Hildreth-Houck (1968) random
coefficient model which assumes the regression coefficients at time t

are generated as

where Vig © IN(O,t?), i ..., k, and vy is independent of Vo t # s.

Also, assuming Xip = 1, ..., n, the error term u, is now part of

vlt’ Thus




= XiBy
XiB * xpvy

xtB + wt

where x, = ( )’ is the k x 1 vector of observations at time

R TR
t on the k regressors. Thus we have a regression model whose error term

is w, with E(wt) = 0 and

Var(w,) = r?x?
t . ivit
i=1

which can be written in the form of (11) in which the @, i=1,

are ratios of variances and therefore nonnegative.

In general, we are hypothesising a heteroscedastic model in which
the variances are a function of some known exogenous variables. This is
similar to the approach of Breusch and Pagan (1979) except we are also

assuming knowledge of the signs of the derivatives

. 2 .
aot / 62it R 1,

To simplify the analysis, we assume these derivatives are all
negative. If for a particular i, the derivatives are non-positive,

replace zit with “Ziyo t=1, ..., n, before proceeding.

When HO : a = 0 holds, o% = ozh(O) are constant. We therefore wish

to test H0 against Ha : > 0. Now

Shla’z,) 8h(x)

————————— —4 2. —
aai it oa8x %=0

so that a LMMPI test for HO against Ha is tb reject H0 for large values




n(p
Y [ Y zit]ei / e% .

t=1|i=1 t=1

In the special case of the Hildreth-Houck random coefficient model, a

LMMPI test is to reject H

0 for large values of

n k

2| 2 2
Y| Lxi.ler/ Tel.
t=1|iz2 YT St

5.4 Testing for Variance Components

A general representation of the linear model with variance

components (see Searle and Henderson, (1979)) is as

P
= XB + .2 Zivi ,
i=0

where y, X and B are as in (6), vi is a vector of qi random effects and
2i is a known n x q matrix with Vg T U being the n x 1 error vector as

in (6) (i.e., Vg N(O,ozln)) and Z0 = In. The random effects are such

that

E(vivj) = 0,

Then (12) can be written as




y = XB+w

where w is an n x error term such that E(w) = 0 and

p
Var (w) o’ + Y ?Z.Zf
n 21T

2 p
o (I + ¥ T.Z.Zf]
n . i7ivi

i=1

where T, = 0? / 02 = 0. In many applicatioﬁs (see Searle and
Henderson), each of the 2123 matrices will be capable of being expressed

as Kronecker products of identity matrices and square matrices of ones.

We may wish to test for variance components since their presence
causes the OLS estimator and its associated predictor to be inefficient
and standard OLS-based tests of the regression coefficients to be

misleading. The null hypothesis is

T) =0

H. : 1Tt = (Tl, Tos oo b

0

and the alternative is Ha : T > 0. The LMMPI test for this problem is

to reject H, for large values of

0

p
e’| L2,Z|e /e'e.
i=1

6. CONCLUDING REMARKS

In this paper we have constructed a LMMP test of a simple null
hypothesis against a multiparameter one-sided alternative. The

resultant test statistic is the sum of the elements of the score vector




evaluated at the null hypothesis. This makes it easy to apply and
suggests a new form for the LM test which takes 1into account the
one-sided nature of the alternative. In contrast to the Kuhn-Tucker
test, this new LM-type test is readily applied because of its asymptotic
normal distribution. It has the additional attraction of having a
small-sample optimal power property when no nuisance parameters are
present. The principle of invariance was used to eliminate nuisance
parameters in multiparameter one-sided testing problems in the context

of the linear regression model. This allowed the construction of LMMPI

tests. For inequality testing of linear restrictions on regression

coefficients, the LMMPI test is found to be equivalent to King and
Smith’s additive-t test which, as a result of an empirical power
comparison, King and Smith (1986, p.382) conclude has "power very close
to the power envelope over a wide range of parameter values". In the
case of testing for spherical regression disturbances, the LMMPI test is
of a form similar to the well-known DW test. Its critical values can
therefore be calculated by standard numerical techniques wused to
calculate DW significance points, thus allowing it to be applied as an
exact test. This is an option that currently popular tests such as the
standard LM, 1likelihood ratio or Wald test generally not allow.
Furthermore, such tests are typically applied 1ignoring information

concerning the signs of the parameters under test.

Monash University
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APPENDIX

Proof of Theorem

Consider a test of HO : 8 = 0 whose significance.level is «, whose
critical region is w and whose power curve over the parameter space,
0 € ({0}R")P, is denoted by B(8) so that B(0) = « and B(0) =

I f(x]@)dx. Let

s: = { o : (0°0)% = r, 8 ¢ ({0}R")P }

be the region in 6-space which is within a radius of r from 6 = 0. We
are interested in the limit of the average volume between the power
curve and B(0) = o above S: as r tends to zero. This average volume is
given by

JS:(B(e) - ) do,

I de
st 1
r

py~1 -
2PV JS+ (B(6) - ) de,

r

where if p is even

'Vp = P/%P / (pr2)!

while if p is odd,

v.oo= P20 000 @) /pr

p

being the volume of a p-dimension hypersphere of radius r.




Consider the Taylor’s series expansion of B(8) about 6 = O,

2
8B(z) 1 _,07B(z2)
8z * 5 9 525z
z=0 z=h(0)6

Be) = a + 06’ 2]

where 0 < h(®) < 1. We can write (A.1) as

az 1

F(r) = va—l[ g<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>