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Headnote

Recently, there has been an increased awareness of the one-sided

nature of many econometric testing problems. For testing Ho : 0 = 0

against H
a 

0 * 0 where 0 is px1, SenGupta and Vermeire (1986)

introduced the class of locally most mean powerful (LMMP) unbiased

tests. They are constructed to maximize the mean curvature of the power

hypersurface in the neighbourhood of 0 = 0. Our interest is in testing

H
0 

against H
a 
: 0

1 
0, ..., 0 0 with at least one strict inequality.

We show how LMMP critical regions can be constructed and note that they

suggest a new form for the Lagrange multiplier test in one-sided testing

problems. Applications considered in the context of the linear

regression model include joint one-sided testing for non-zero regression

coefficients, autoregressive disturbances, heteroscedastic disturbances,

random regression coefficients and variance components.

KEYWORDS: Autocorrelation, heteroscedasticity, invariance, Lagrange

multiplier test, linear regression, locally most mean powerful test.



1. INTRODUCTION

In recent years, there has been an increased awareness of the

potential one-sided nature of many econometric testing problems. It is

recognised that economic theory frequently can provide information

regarding the signs of various parameters and that this information

should be used to improve the power of testing procedures. Also,

functional considerations such as variances always being positive can

give rise to natural one-sided testing problems. A good example of this

increased awareness is the development of tests for inequality

restrictions on regression coefficients; see for example Gourieroux,

Holly and Monfort (1982), Farebrother (1986), Hillier (1986), Judge and

Yancey (1986), King and Smith (1986), Kodde and Palm (1986), Rogers

(1986) and Wolak (1987). Much of this literature is concerned with

one-sided versions of the likelihood ratio, Wald and Lagrange multiplier

(LM) tests, the latter also being known as the Kuhn-Tucker test.

Unfortunately, the asymptotic distributions of these test statistics

under the null hypothesis are weighted sums of chi-squared distributions

and the degenerate distribution at zero which make them difficult to

apply. Also little is known of their small-sample performance - their

main justification being asymptotic. In the case of testing two and

three coefficient restrictions, Hillier (1986) has derived the exact

distribution of the likelihood ratio statistic. However, it is clear

that the complexity of deriving these distributions increases sharply

with the number of restrictions.

Many testing problems involving the linear regression model can be

reduced, either by conditioning on sufficient statistics or by

invariance, to one of testing a simple null hypothesis against

1



composite alternative.
2

Ideally we would then like to use a uniformly

most powerful (UMP) test but unfortunately such tests rarely exist. Cox

and Hinkley (1974, p.102) discuss three possible approaches to

constructing tests against composite alternatives when no UMP test

exists. They are: (i) using a test which maximizes power at a

"somewhat arbitrary 'typical'. point" in the alternative parameter space,

(ii) removing this arbitrariness by choosing the point to be close to

the null hypothesis which leads to the locally best (LB) test and (iii)

choosing the test which maximizes some weighted average of powers.

Option (i) is sometimes known as the point optimal solution and is

reviewed in some detail in King (1987b).

The LB solution has found some acceptance in the literature.

Suppose we wish to test Ho : 0 = 0 based on x which is an n x 1 random

vector whose distribution has probability density function f(x10) where

0 is a p x 1 .vector of unknown parameters. When p = 1, the LB test of

H
0 
: 0 = 0 against H

a 
: 0 > 0 is that with critical regions of the form

aEnf(x10)
ae > (1)

0=0 
c1

where c
1 

is a suitably chosen constant (Ferguson, 1967, p.235). It

should also be noted that this test is equivalent to the one-sided LM

test based on the square-root of the standard LM test statistic.

Against the two-sided alternative Ha : 0 * 0 when p = 1, critical

regions of the form

a2f(x10

ae2
c
2
f(x10)

0=0

af(x 0)
+ c

3 
0=0 

ae
0=0

2



yield unbiased (LBU) tests when the constants c
2 

and c
3 

are chosen so

that the critical region has the nominated size and is locally unbiased.

Regions of this kind were labelled type A regions by Neyman and Pearson

(1936).

For p 2, the main emphasis in the literature has been on

constructing LBU tests of Ho 0 = 0 against Ha : 0 # 0. Neyman and

Pearson (1938) suggested the use of type C LBU regions when k = 2.

These regions have constant power in the neighbourhood of 0 = 0 along a

given family of concentric ellipses. They require knowledge of the

relative importance of power in various directions in the neighbourhood

of 0 = 0. Isaacson (1951) introduced type D regions to rectify this

objection (also see Lehmann, 1959, p.342). Type D regions are obtained

by maximizing the Gaussian curvature of the power function at 0 = 0.

Recently, SenGupta and Vermeire (1986) introduced the class of locally

most mean powerful unbiased (LMMPU) tests which maximize the mean

curvature of the power hypersurface in the neighbourhood of 0 = 0 within

the class of unbiased tests. The locally most mean powerful (LMMP)

criterion is appealing because it incorporates both (ii) and (iii) of

Cox and Hinkley's suggestions. SenGupta and Vermeire show that LMMPU

tests have critical regions of the form

P 2
f(x 0
2

i=1 ae.1 0=0
0 
f(x10

ci0=0  aei

af(x10)

0=0

(2)

where the constants c c c are chosen so that the critical0' 1' •

region is locally unbiased and of the nominated size. While finding

these constants may not be particularly easy, at least we have a method

of test construction. In contrast, type D regions have to be guessed

3



and then verified.

Our interest in this paper is in the multivariate analogue of the

one-sided testing problem, i.e. H0 
0 = 0 against Ha 

: 0
1 

0, .

0 0 with at least one strict inequality.
3

There is always the

possibility that one may be able to find a test that is LB in all

directions from H
0 

in the p-dimensional parameter space. Neyman and

Scott (1967) call this property "robustness of optimality" while King

and Evans (1988) call such tests uniformly LB (ULB). Like UMP tests,

ULB tests may not always exist. In such cases, one may wish to consider

a weaker optimality criterion. Our aim in this paper is to explore the

option of constructing LMMP critical regions.

The plan of this paper is as follows. The next section gives the

general method of constructing a LMMP test of H0 
against H

a 
and a proof

of this central result is given in the appendix. The test suggests a

new form for the LM test which takes into account the one-sided nature

of the alternative hypothesis. Because it has a N(0,1) asymptotic

distribution under H0' 
the new LM-type test can be readily applied in

contrast to the Kuhn-Tucker test. It has the additional attraction of

having a small-sample optimal power property when no nuisance parameters

are present. In section 3, the method is used to construct a LMMP

invariant (LMMPI) test for inequality restrictions on linear regression

coefficients. We find that the LMMPI test is identical to King and

Smith's (1986) additive t-test. In section 4, the method is used to

construct a general LMMPI test of the error covariance matrix in the

linear regression model. Applications of this test considered in

section 5 include testing for joint first-order and fourth-order

autoregressive (AR) disturbances, quarter-dependent AR(4) disturbances,



heteroscedastic disturbances including heteroscedasticity arising from

random regression coefficients and autocorrelation generated by variance

components. Some concluding remarks are made in the final section.

2. THEORY

Assume we have observed the n x 1 random vector x which has

probability density function f(x10) where 0 is a p x 1 vector of unknown

non-negative parameters. We are interested in testing

against

H
0 

0 
=

H
a 
: > 0 .

A proof of the following result is given in the appendix.

Theorem: Suppose f(x10) is a density function which has at

least one non-zero first-order derivative at 0 = 0 with

respect to 0i,i = 1,
• • .I _ p and whose second-order

derivatives at 0 = 0 all exist and are continuous. Then a

LMMP test of H
0 

against H
a 

is given by the critical region

s = a0.i=1
aEnf(x10)

0=0

>c (3)

where c is an appropriate constant chosen to give the test the

required significance level.

Observe that when p = 1, (3) reduces simply to (1). Also (3) is a

much simpler critical region to construct than (2) given that it

requires only one constant (critical value) to be determined while (2)

5



requires the simultaneous determination of p+1 constants. Furthermore,

s is the sum of the LB test statistics which each test H
0 

against

for i = 1,

H 0. > 0 and 0. = 0, j # i , j = 1, p
a

p. This is advantageous in that if a calculated test

statistic suggests Ho should be rejected, we can look at the individual

componentsofthestatistictoseewhich0.are contributing most to

this outcome. Unfortunately, under H
a 

it is extremely unlikely that

the component statistics will be mutually independent and this should

be taken into account when interpreting the results. The form of (3)

also implies that a LMMP test is a LB test in the direction given by

0
1 
=0

2 
= = 0 >0. (4)

In other words, a LMMP test is the test with the steepest sloping power

function at H
0 

in the direction (4). This can be verified by replacing

0 by Tt, where t is the p x 1 vector of ones and T is a nonnegative

scalar. By using (1) to construct a LB test of T = 0 against T > 0, one

gets (3). Also note that if a ULB test exists, then the LMMP test is

also ULB. This follows from the LMMP test being a LB test in the

direction (4) and therefore being LB in all directions due to the

existence of a ULB test. As SenGupta and Vermeire (1986) note, LMMP

tests are not, in general, invariant under reparameterization. This is

a weakness which in some circumstances can be a strength. For example,

it may be desirable to have good power in certain directions from Ho.

So far, we have assumed the distribution of s is known, thus

allowing an appropriate critical value to be found. For applications in

which this is not the case, large-sample asymptotic critical values can

6



be derived by the simple adaptation of the asymptotic theory of the LM

test. Observe that s is the sum of the elements of the score vector

evaluated under H
o
. Under standard regularity conditions (see for

example, Godfrey (1988, pp.6-7)) but without a requirement that the true

parameter value be an interior point of the parameter space, it follows

that

-1/2 a
n s N(0,i'VO

•where V = lim n
-
 
1
j and j is the information matrix (minus the expectedn4co

value of the Hessian matrix) evaluated at 0 = 0. Therefore, a LMMP

critical region of approximately the desired size, can be obtained by

rejecting Ho for large values of

1/2

which is assumed to haveia N(0,1) distribution under H0.

Clearly, a test based on s* can also be viewed as an LM-type test

which takes into account the joint one-sided nature of the alternative

hypothesis and which maximizes the mean slope of the power function at

H0. This is assuming there are no nuisance parameters present. In the

presence of nuisance parameters that cannot be eliminated by

conditioning on sufficient statistics or by invariance arguments, the

following analogous LM-type test suggests itself.

Suppose 0 is partitioned as 0 = (011,E)' where 01 is p1x1, 02 is

p
2
x1 and p

1
+p
2 

= p. Our interest is in testing Ho : 0
1 
= 0 against

H : 0 > 0 when 0
2 

is unknown. If the value of 0
2 

was known, then aa 1

LMMP test of H
0 

is given by

7



st
131 3tnf(x10)
E  
1=1 ae.

The LM approach suggests that the unknown 02 should be replaced by its

maximum likelihood estimate under Ho, denoted 82. Let j
11 

denote the

upper pixpi block of the inverse of the information matrix and let ;t

^
and j 

11
 denote st and j

11
, respectively, evaluated at Ô = (0',6')'. The

2

asymptotic theory of the LM test implies that rejecting Ho for large

values of

-11 -1 1/2
st (ti t) (5)

assuming a N(0,1) distribution under H
0' 

is an asymptotically valid

test.
4

It can be viewed as an LM-type test which takes into account the

joint one-sided nature of the alternative hypothesis. In contrast to

the Kuhn-Tucker test, this new LM-type test can be readily applied,

because of its N(0,1) asymptotic distribution. It has the additional

attraction of having a small-sample optimal power property when no

nuisance parameters are present.

3. INEQUALITY TESTING OF RESTRICTIONS ON LINEAR REGRESSION COEFFICIENTS

Consider the classical linear regression model

y = xp + u (6)

where y is n x 1, X is an n x k nonstochastic matrix of rank k < n, p is

a k x 1 vector of unknown parameters and u is an n x 1 error vector. It

is assumed that u N(0,T
2
I
n
) where T

2 
is unknown.
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We are interested in testing

against

H
0 

RR13= r

H
a 
: Rg > r

where R is a known p x k matrix of rank p < k and r is a known p x 1

vector. Without loss of generality, we assume

[0 I ] and r = 0

because, as King and Smith (1986, p.369) show, if this is not the case,

the testing problem can be reparameterized to one in which it is true.

Partition (6) as

+ u

where Xi is n x q, X2 is n x p such that q + p = k, X = [Xi : X2], pi is

q x 1 and g2 is p x 1 such that g' = ((31 : 13). Our problem is now one

of testing Ho : g2 = 0 against Ha : 62 > 0.

This problem is invariant under the class of transformations

Y -4 Y0 
X17

where 70 is a positive scalar and 7 is a q x 1 vector. Let M1 =

I - X
1 
(X/X

1 
)
-1
X' and let P

1 
be an (n-q) x n matrix such that P P' =

1 1 1

In-$:1 and P1P1 =M
1
. Then

=P1
y(Y'PlP

1
Y)1/2

is a maximal invariant. Because P
1
y N(P

1
X
2
(3
2' 

c
2
I
n-q

), v has density

9



g(v)dv =

co

(2w2)
-(n-q)/2 

exp
f_71

— (A
2
-2Av'P

1 
X
2 
0
2 
+ 
gixim1 

x
22 

)1x
n-q-1

dAdv
2 2

0 20.
2

where dv denotes the uniform measure on the surface of the unit

m -sphere.

that

Making use of the fact that g(v)

atnev)
ap2

(32' [ 1  3g(v)1
g(v) ag2

is a constant, one can show
p
2
=0

132=0
= aX'P'v

2 1

where a is a positive constant. The theorem of the previous section

implies that rejecting Ho for large values of

E'X'M y
2 1

Y)
1/2

1

yields a LMMPI test where t is a p x 1 vector of ones.

This test is equivalent to the additive t-test proposed by King and

Smith (1986). To see this, note that their test is applied as a

one-sided t-test of H
0 
. a = 0 against Ha : a > 0 in the regression

+ oz + u (7)

where z = X
2
t. The ordinary least squares (OLS) estimator of a in (7) is

a = (zi M
1 
z)

-1 
1
y

and the unbiased OLS estimator of the error variance is

10



^2
= yi(Mi - Miz(eMiz) leyy (n-q-1).

Thus the test statistic is

t = a / f;.(z'M z)-1/21

f(n-q-1)z1M1 z1-1/2z'M y fy'M
1 
y - y'Miz(z/Miz)

-1
z'Mly

11/2

f(n-q-1)z/M1 
4-1/2

s / 
{

1 - z'M
1
z)-1s21

which is clearly a monotonic increasing function of the test statistic

S.

This is an interesting example of a LMMPI test because King and

Smith's test was originally constructed as a point-optimal test which

optimizes power along the ray p
q+1 

= g
q+2 = 

. = pk > O. For a range

of testing situations involving p = 2,3 and 4, King and Smith compared

the power of their additive-t test with the power envelope, the power of

the F test and, for p = 2 only, the exact likelihood ratio test. Under

H
a
, they found their test is typically more powerful than the F test

and, more often than not, also the likelihood ratio test. Their study

also indicated that the additive-t test can have power within five per

cent of the power envelope over a wide range of the parameter space,

especially when the X
2 

regressors are multicollinear. In contrast, the

power of the F test was almost never found to be within five per cent of

the power envelope.

4. TESTING THE ERROR COVARIANCE MATRIX OF THE LINEAR REGRESSION MODEL

Consider the normal linear regression model (6) with non-spherical

11



disturbances, i.e. u 1\1(0,T
2
0(0)), where T

2 
is an unknown scalar and

0(0) is a symmetric matrix that is positive definite for 0 in a subset

of ({0}uR
+
)
k 

which is of interest. Without loss of generality, it is

assumed that 0(0) = I
n
.

We are interested in testing Ho : 0 = 0 against Ha : 0 > 0. This

problem is invariant under the group of transformations

y 
-4 

7
0
y + X7

where T is a positive scalar and T is a k x 1 vector. Let
0

M = I
n 
- X(X'X) 1X' and e = My be the OLS residual vector from (6). In

the case of p = 1, King and Hillier (1985) showed that a LB invariant

(LBI) test against H
a 

is to reject H
o 
for small values of

where

e'A
0 
e e'e ,

A0 = -ao(e)/ae
0=0

= an-1(e)/ao
0=0

For p > 1, the theorem of section 2 can be applied to construct a

LMMPI test. Let m = n - k and let P be an m x n matrix such that

PP' = I
m 
and M = P'P. The vector

= Pe / (e'P'Pe)
1/2

is a maximal invariant under the above group of transformations. As

King and Hillier note, the density of v can be shown to be

1
f(v)dv = r(m/2)n

-m/2
PO(0)P'

-1/2( 
v/(1)0(0)P')-lvym 2 v (8)

where dv denotes the uniform measure on the surface of the unit

12



m-sphere. Let

= -ao(o)/ao.1
0=0

= ao-1(0)/a0.
0=0

From (3) and (8), the LMMPI test is based on critical regions of the

form

1 atnIPQ(0)Pil
E - 2 ao.i=1 1

m 8tn(v1(P0(0)P')-1v)
- 2 ao.o=o i=1 0=0

> c .

".
The first summation on the left is simply a Scalar constant. Evaluating

the second summation gives

1

or

cl 2 E v'PA.P'v > c
i=1 1

= E s. E; e'A.e/e'e = e'Ae/e'e < c
2

i=1 i=1
(9)

where A = A. and c
2 

is a suitably chosen constant. Note that (9) is
i=1

also a LBI test of H
o 

in the direction (4).

The form of s is analogous to the Durbin-Watson (DW) statistic.

This means that the critical value, c2, may be found by standard

numerical techniques used to calculate critical values of the DW

statistic.
5

Unfortunately, the distribution of s is a function of the

design matrix X through M. However, bounds for c2 that are independent

of X but dependent on A can be calculated in an analogous way to the

familiar DW bounds (see King, (1987a, pp.28-29)). Also, methods of

approximating the critical values of the DW statistic can.also be used

to approximate c2 (see King (1987a, pp.25-27) and Evans and King

13



(1985)). Given that under suitable regularity conditions, the test

statistic has an asymptotic normal distribution under the null

hypothesis, the normal approximation has some appeal. 
This involves

rejecting Ho for small values of (s-p)/v assum
ing a N(0,1) distribution

under H
0 

where

= tr(MA) m

v
2

= 2[m tr(MAMA) - ftr(M
A)}2] / fm2(m+2)1

and tr(-) denotes the trace of the matrix.

5. EXAMPLES OF TESTS OF THE ERROR COVARIANCE 
MATRIX

5.1 Joint First-Order and Fourth-Order Autocor
relation 

Among other things, the error term is inc
luded in the regression

model to capture the effects of omitted or 
unobservable regressors and

functional approximations. These are often expected to lead to -

autocorrelated disturbances and for quarterl
y econometric models, there

is a recognition that this autocorrelation 
may possess a fourth-order

component because of seasonal effects. For example, one would expect

the omission of relevant variables with season
al components to lead to

both first-order and fourth-order effects in the disturbances.

Consequently, one may wish to test whether
 the errors, ut' 

have been

generated by the stationary seasonal-autoregr
essive process

where

(1 - p1L)(1 - p4L
4
)ut = ct 

(10)

14



0 5- pi < 1 and 0 5- p4 < 1

are unknown parameters, L is the lag operator such that Lut = ut_i and

c = (c c
n
)' N(0,(7.

2
I
n
). Note that (10) is the AR(5) process

= P1ut-1 4ut-4 P1P4ut-5 4. et •

We wish to test

against

= p4 = 0

H : p > , p 0, p
2 
+ p

2 
> 0.

a 1 4 1 4

For this problem, the LMMPI test is given by (9) where

so that

O 1 0 0 1 0

1 0 1 0 0 1

O 1 0 1 0 0

O 0 1 0 1 0

1 0 0 1 0 1

O 1 0 0 1 0

O 1 0 0 1

1 0 1 0 0

O 1 0 1 0

O 0 1 0 1

1 0 0 1 0

2 2
- 2 E e.ei_i E ei - 2 E e.e. E e.

1-4
i=2 1 i=1 i=5 i=1

- 2 (r
1 + 4

)

15



wherer.is the i
th 

order residual autocorrelation coefficient. Hence

H
0 

should be rejected for large values of r
1 
+ r

4
.

It follows that a test which rejects Ho for small values of the sum

of the DW statistic and Wallis's (1972) test statistic is approximately

LMMPI.

5.2 Quarter-Dependent Fourth-Order Autocorrelation

Through the work of Thomas and Wallis (1971) and Wallis (1972)

among others, there has been much interest in the simple fourth-order

error process

ut = put_4 + et

as a model for seasonal autocorrelation in quarterly data. It can be

viewed as separately generating March-quarter, June-quarter,

September-quarter and December-quarter errors from their own AR(1)

processes. Largely for parsimonious reasons, all four AR(1) processes

are assumed to have the same coefficient. Clearly it may be more

realistic to allow the coefficient to vary and to model the error

process by

ut = plut_4 + et ,

= P2ut-4 4. et '

= p3ut_4 + et ,

for t from quarter 1 ,

for t from quarter 2 ,

for t from quarter 3

P4ut4 
+ , for t from quarter 4- et

where 0 -.5- pi < 1, i = 1, ..., 4. It is straightforward to show that a

LMMPI test of

16



P = (P1, .." P4)' =
0

against Ha : p > 0, rejects H
0 
for large values of

2E etet_4 E et •
t=5 t=1

Consequently, Wallis's test for simple AR(4) disturbances is an

approximately LMMPI test of H against Ha.

5.3 Heteroscedasticity and Random Coefficient Variation

Suppose the regression errors, ut, are normally and independently

distributed with mean zero and variance

2 2
= ch(ez

t(rt

where h is a monotonic-increasing positive function whose second

derivative at zero is continuous, is a p x 1 vector of nonnegative

parameters and z
t 

is a p x 1 vector of nonconstant observations on p

exogenous variables. The exact form of h need not be known although its

first derivative at zero is assumed to be positive.

natural example comes from the Hildreth-Houck (1968) random

coefficient model which assumes the regression coefficients at time t

are generated as

= g + vt

2 wherev.-IW 
. 

O,TA, = 1, . , k, and v
t 
is independent of v

s
, t # S.it

Also, assuming xlt = 1, t = 1,

v
1t. 

Thus

n, the error term u
t 

is now part of

17



Yt 
= x'tpt

= x'g + x'v
t t

= xig + w
t

where x
t 
= (x

1t' ' 
x
kt

)1 is the k x 1 vector of observations at time

t on the k regressors. Thus we have a regression model whose error term

is w
t 
with E(w

t
) = 0 and

k 22
Var(w

t
) =

1 it
i=1

which can be Written in the form of (11) in  1.filich the a., = 1, .. .P 13,
1

are ratios of variances and therefore nonnegative.

In general, we are hypothesising a heteroscedastic model in which

the variances are a function of some known exogenous variables. This is

similar to the approach of Breusch and Pagan (1979) except we are also

assuming knowledge of the signs of the derivatives

.30'2
t 
/ az. i = 1, .

To simplify the analysis, we assume these derivatives are all non-

negative. If for a particular i, the derivatives are non-positive, then

replace z with -z
it 

t = 1, n , before proceeding.
it '

When H
0 
: a = 0 holds, m

2 
= T

2
h(0) are constant. We therefore wish

to test H
0 

against Ha : a > 0. Now

ah(cezt) ah(x)
aa ax

i a=0 x=0

so that a LMMPI test for H
0 

against H
a 

is to reject H
0 

for large values

18



of

n p n
2

E E zitlet E eZ
t=1 i=1 t=1

In the special case of the Hildreth-Houck random coefficient model,

LMMPI test is to reject Ho for large values of

n k
2

E E )(def. E e2
t=1 i=2 

t •
t=1

5.4 Testing for Variance Components

A general representation of the linear model with variance

components (see Searle and Henderson, (1979)) is as

y = X3+ E
i=0

(12)

where y, X and g are as in (6), v. is a vector of q
i 

random effects and

Z. is a known n x qi matrix with vo = u being the n x 1 error vector as

in (6) (i.e., v
0 
- N(00T2I

n
)) and Z

0 
= I

n
. The random effects are such

that

and

2
v. N(003-.I ) = 1, .

E(vv) = i * j = 0 ,
j

Then (12) can be written as

19



X + w

where w is an n x 1 error term such that E(w) = 0 and

where T.
1

2 2
Var(w) = T I +

n 
 E
j.=1 111  

2=
1

0.21 E 111
1=1i=1

0. In many applications (see Searle and

Henderson), each of the Z.Z: matrices will be capable of being expressed

as Kronecker products of identity matrices and square matrices of ones.

We may wish to test for variance components since their presence

causes the OLS estimator and its associated predictor to be inefficient

and standard OLS-based tests of the regression coefficients to be

misleading. The null hypothesis is

0 
T = (T

1' 
T
2' 

...,
p
) 0i

and the alternative is H
a 
: T > 0. The LMMPI test for this problem is

to reject Ho for large values of

6. CONCLUDING REMARKS

In this paper we have constructed a LMMP test of a simple null

hypothesis against a multiparameter one-sided alternative. The

resultant test statistic is the sum of the elements of the score vector

20



evaluated at the null hypothesis. This makes it easy to apply and

suggests a new form for the LM test which takes into account the

. one-sided nature of the alternative. In contrast to the Kuhn-Tucker

test, this new LM-type test is readily applied because of its asymptotic

normal distribution. It has the additional attraction of having a

small-sample optimal power property when no nuisance parameters are

present. The principle of invariance was used to eliminate nuisance

parameters in multiparameter one-sided testing problems in the context

of the linear regression model. This allowed the construction of LMMPI

tests. For inequality testing of linear restrictions on regression

coefficients, • the LMMPI test is found to be equivalent to King and

Smith's additive-t test which, as a result of an empirical power

comparison, King and Smith (1986, p.382) conclude has "power very close

to the power envelope over a wide range of parameter values". In the

case of testing for spherical regression disturbances, the LMMPI test is

of a form similar to the well-known DW test. Its critical values can

therefore be calculated by standard numerical techniques used to

calculate DW significance points, thus allowing it to be applied as an

exact test. This is an option that currently popular tests such as the

standard LM, likelihood ratio or Wald test generally not allow.

Furthermore, such tests are typically applied ignoring information

concerning the signs of the parameters under test.

Monash University

21



REFERENCES

BREUSCH, T. S., AND A. R. PAGAN (1979): "A Simple Test for

Heteroscedasticity and Random Coefficient Variation," Econometrica,

47, 1287-1294.

COX, AND D. V. HINKLEY (1974): Theoretical Statistics. London:

Chapman and Hall.

EVANS, M. A., AND M. L. KING, (1985): "Critical Value Approximations for

Tests of Linear Regression Disturbances," Australian Journal of

Statistics, 27, 68-83.

FAREBROTHER, R.W. (1986): "Testing Linear Inequality Constraints in the

Standard Linear Model," Communications in Statistics A, 15, 7-31.

FERGUSON, T.S. (1967): Mathematical Statistics: A Decision Theoretic

Approach. New York: Academic Press.

GODFREY, L. G. (1988): Misspecification Tests in Econometrics.

Cambridge: Cambridge University Press.

GOURIEROUX, C, A. HOLLY, AND A. MONFORT (1982): "Likelihood Ratio Test,

Wald Test and Kuhn-Tucker Test in Linear Models with Inequality

Constraints on the Regression Parameters," Econometrica, 50, 63-80.

HILDRETH, C., AND J.P. HOUCK (1968): "Some Estimators for a Linear

Model with Random Coefficients," Journal of the American

Statistical Association, 63, 584-595.

HILLIER, G.H. (1986): "Joint Tests for Zero Restrictions on Non-

Negative Regression Coefficients," Biometrika, 73, 657-669.

HILLIER, G.H. (1987): "Classes of Similar Regions and Their Power

Properties for Some Econometric Testing Problems," Econometric

-22



Theory, 3, 1-44.

ISAACSON, S. L. (1951): "On the Theory of Unbiased Tests of Simple -

Statistical Hypotheses Specifying the Values of Two or More

Parameters," Annals of Mathematical Statistics, 22, 217-234.

JUDGE, G. G., AND T. A. YANCEY (1986): Improved Methods of Inference in

Econometrics. Amsterdam: North-Holland.

KING, M.L. (1987a): "Testing for Autocorrelation in Linear Regression

Models: A Survey," in Specification Analysis in the Linear Model,

ed. by M.L. King and D.E.A. Giles. London: Routledge and Kegan

Paul, 19-73.

KING, M.L. (1987b): "Towards a Theory of Point Optimal Testing,"

Econometric Reviews, 6, 169-218.

KING, M.L., AND M.A. EVANS (1988): "Locally Optimal Properties of the

Durbin-Watson Test," Econometric Theory, 4, 509-516.

KING, M.L., AND G.H. HILLIER (1985): "Locally Best Invariant Tests of

the Error Covariance Matrix of the Linear Regression Model,"

Journal of the Royal Statistical Society B, 47, 98-102.

KING, M.L., AND M.D. SMITH (1986): "Joint One-Sided Tests of Linear

Regression Coefficients," Journal of Econometrics, 32, 367-383.

KODDE, D.A., AND F.C. PALM (1986): "Wald Criteria for Jointly Testing

Equality and Inequality Restrictions," Econometrica, 54, 1243-1248.

LEHMANN, E.L. (1959): Testing Statistical Hypotheses. New York: John

Wiley.

NEYMAN, J., AND E. S. PEARSON (1936): "Contributions to the Theory of

Testing Statistical Hypotheses. I. Unbiased Critical Regions of

23



Type A and Type Al," Statistical Research Memoirs, 1, 1-37.

NEYMAN, J., AND E. S. PEARSON (1938): "Contributions to the Theory of

Testing Statistical Hypotheses. II," Statistical Research Memoirs,

2, 25-57.

NEYMAN, J., AND E. L. SCOTT (1967): "On the Use of C(a) Optimal Tests of

Composite Hypotheses," Bulletin of the International Statistical

Institute, 41, 477-497.

ROGERS, A.J. (1986): "Modified Lagrange Multiplier Tests for Problems

with One-Sided Alternatives," Journal of Econometrics, 31, 341-361.

SEARLE, S. R., AND H. V. HENDERSON (1979), "Dispersion Matrices for

Variance Components Models," Journal of the American Statistical

Association, 74, 465-470.

SENGUPTA, A., AND L. VERMEIRE (1986): "'Locally Optimal Tests for

Multiparameter Hypotheses," Journal of the American Statistical

Association, 81, 819-825.

SHIVELY, T. S., C. F. ANSLEY, AND R. KOHN (1989): "Fast Evaluation of the

Distribution of the Durbin-Watson and Other Invariant Test

Statistics in Regression," mimeo, University of New South Wales.

THOMAS, J.J., AND K.F. WALLIS (1971): "Seasonal Variation in Regression

Analysis," Journal of the Royal Statistical Society A, 134, 57-72.

WALLIS, K.F. (1972): "Testing for Fourth Order Autocorrelation in

Quarterly Regression Equations," Econometrica, 40, 617-636.

WOLAK, F.A. (1987): "An Exact Test for Multiple Inequality Constraints

in the Linear Regression Model," Journal of the American

Statistical Association, 82, 782-793.

24



APPENDIX

Proof of Theorem

Consider a test of H
0 
: 0 = 0 whose significance ,level is a, whose

critical region is w and whose power curve over the parameter space,

0 E ({0}UR+)13, is denoted by g(0) so that g(0)

swf(xle)dx. Let

: (0/0)
1/2 

5- r, 0 E ({0}UR+)13

= and g(0)

be the region in 0-space which is within a radius of r from 0 = 0. We

are interested in the limit of the average volume between the power

curve and p(o) = a above S
r 
as r tends to zero. This average volume is

given by

F(r) =

where if p is even

L+0) (o- a) d01 dO

... deI
s 

del

2
p
V
-1

1 (i3(e) - a) de
1 
... de

P S+

. p/2 p
V = it r (p/2)! ,

while if p is odd,

v
p 

= n (p-1)/2f(p-1)/21! (2r )P p! ,

being the volume of a p-dimension hypersphere of radius r.
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Consider the Taylor's series expansion of gu9 about 0 = 0,

0(0) a 4. 0.813(z)
az

a2g(z)
+ 1 o'
2 azaz'

z=0

where 0 < h(0) < 1. We can write (A.1) as

F(r) = 2
p
V
-11

+ 

0'
8g(z)
az

S

+ 2
p
V
-11

S
r

dO ... de

z=0

1 w a2R(z)
azaz'

= F
1 
(r) + F

2
(r) .

0 de dO
1 
... 

p
z=h(0)0

0

z=h(0)0

Transform 0 to spherical coordinates in p-dimensional space as

follows:

0.
j-1

P fi
i=1

p-1
0 =p fl

i=1

sin

sin Oi

1
1

cos 00. = .(
PliJ

=

1 j p -1 ,

subject to 0 p < 0 5. 0i n/2 , j = 1, . -1 , where 0 =

Also let

)1. Then 0 = pµ(0) where µ(0) = (µ
1
(0), µ (0))/ and

' p-1

dO
1 
... dO

p 
= p

p-lp2
sin

13-1-i
Oidpd01 4 1 .

i=1

13
ag(z)
az.1

z=0

and
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F
1 
(r) = 2

p
V
-1

where

and

n/2 n/2

...f pP E IT sin Oi dpd0
1 p-1

i=1 i=1

p-2

0 0

[
2PV (p+1) 

( )  1  P2 j  
(p-1)!!

E pi if p is odd

p-1)
r
p+1  .

P i=1

ip-21

r
p+1 

1  
P2PV 

.
-1

(p+1) 2
( n )1 2 ) 

(p-1)!! E Pi
P i=1

P .
• r G E pi

P i=1

p!
2

213-1[(131)!] (134-1)

)!]
2

n(p+1)!

if p is odd

if p is even

(p-1)(p-3) • 2 if p is odd

(p-1)!!

(p-1)(p-3) ▪ 1 if p is even .

r u/2 u/2

• 2
p
V
-1 1 2 ,a2

P 
azaz' 

(z) 
F
2
(r) 11(0)P A ̀ wj 

0 0

if p is even

z=h(0)0

1 P-2p- 
ri sin')

-1-i 
Oi dpd01 dO

p-1
i=1
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2 V   

n/2 n/2

p (p+2) J A "" azaz'
p-1 -1 r

13,) 
-1- 

i
` (,1 32(3(z)

0 0

A(0)
z=h(0)0

p-2

fl sin
-1-i
P Oi dO

p-1 
.

i=1

There exists a sufficiently small 8 such that for 0 < r < 8 ,

a2g(z)
azazi

is bounded and

z=h(0)0

< r
2 
A

a
2
f(xlz)
azaz'

dx

z=h(0)0

where A is a sufficiently large constant. Then

F
1
(r) F

2
(r)

Urn
F(r) 

- lim   + lim
r40 r40 r-40

P .
G
p

i=1

Thus the problem of finding a LMMP test reduces to one of choosing a

p .
critical region which maximizes j3. . Given that

i=1

P .
E gi =
i=1 - I P.

E fi dx ,
CL) 

i=1

the generalized Neyman-Pearson lemma implies that the critical region

which rejects Ho for

P .
E f. > cf(x10)
i=1 1

(A.2)

where c is an appropriate constant, is a LMMP test. Alternatively,

(A.2) can be written as (3).
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4 Footnotes

•

1. This work was supported by a grant from the Australian Research Council.

We are grateful to Grant Hillier and Adrian Pagan for their constructive

suggestions.

2. For examples of reduction by conditioning see Hillier (1986, 1987).

King and Hillier (1985), King and Smith (1986) and King (1987b) provide

examples of reduction by invariance.

3. If a and b are vectors of the same dimension then a .?..- b will denote

. for every i with at
1 1 1 1

least one strict inequality.

4. Just as for the standard LM test statistic (see for example Godfrey

(1988, section 3.4)), alternative methods for computing (j
11
)
-1 

can be

used in (5).

5. See King (1987a, p.27) for a review and Shively, Ansley and Kohn (1989)

for a recent development.
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