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Abstract

Until recently, it was thought inappropriate to apply the

Durbin-Watson (DW) test to a dynamic linear regression model because of

the lack of appropriate critical values. Recently, Inder (1986) used a

modified small-disturbance distribution (SDD) to find approximate

critical values. This paper studies the exact SDD of statistics of the

same general form as the DW statistic and suggests some changes to

Inder's result. We show how to calculate true small-disturbance

critical values and bounds for these critical values that take into

account the exogenous regressors. Our results give a'justification for

the use of the familiar tables of bounds when the DW test is applied to

a dynamic regression model.



1. Introduction

Until recently, it was thought inappropriate to apply the

Durbin-Watson (DW) test to a dynamic regression model. As Durbin (1970)

observed, appropriate critical values could not be computed. He

suggested an adjusted DW statistic which, asymptotically, has a standard

normal null distribution and which has become known as Durbin's h test.

The adjustment is based on ordinary least squares (OLS) estimates and

can break down because of the need to take a square root of a negative

number. He also proposed an alternative test known as Durbin's t test.

Monte Carlo studies of the relative power properties of the DW, h and t

tests due to Kenkel (1974, 1975, 1976) and Park (1975, 1976) led to

conflicting claims concerning the relative merits of the tests with

Kenkel recommending the use of the upper bound as a critical value for

the DW test. Inder (1984, 1985) addressed this problem by empirically

determining critical values which allowed power comparisons of tests

with the same exact, rather than nominal, size. His results support the

use of the DW test if appropriate-critical values can be determined.

Inder (1985, 1986) suggested using the exact critical value from

the regression with the lagged dependent variables omitted. This has

an asymptotic justification because these critical values are

approximately those from the small-disturbance distribution (SDD) of the

DW statistic. The SDD, which is the limit of the statistic's

distributions as the disturbance variance tends to zero, has

considerable appeal. In contrast to the large-sample distribution, the

SDD of the DW statistic in the static model is the exact small-sample

distribution because of the statistic's invariance to the disturbance

variance. In a Monte Carlo comparison, Inder found that his
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approach generally yields sizes closer to the nominal size than do

Durbin's h and t tests.

Nankervis and Savin (1987) report a parallel finding for testing

linear coefficient restrictions in the dynamic regression model. They

find the SDD of the F statistic is the same as the small-sample

distribution of the statistic from the regression with the lagged

dependent variable replaced by its mean. This paper reconsiders Inder's

suggestion in the light of Nankervis and Savin's finding. In the next

section we derive the SDD of a statistic of the same general form as the

DW statistic, applied to the linear regression model with any number of

lagged dependent variables. This distribution is the same as the exact

distribution of the statistic applied to the analogous static model with

the lagged dependent variables replaced by their means. Implications

are explored in section 3. The final section observes that, contrary to

text-book advice, there is a justification for using the familiar tables

of bounds when applying the DW test to the dynamic model.

2. Theory

Consider the dynamic regression model

t = 1, .

Yt = alYt-1 "gt-2 
• +c

-2 xitf3 ut '
(1)

n, where yt is the dependent variable, xt is a k x 1 vector

of exogenous variables, a = (a1, ▪ ., a
p
)' and g are parameters and u

t

is a disturbance term. If there are n observations available on each

variable, the parameters are estimated using the last n-p observations.

The model for these observations can be written as

•
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y = Y
1 

+ Xj3 + u ,
-

(2)

where y and u are (n-p)x1 vectors and Y_1 and X are (n-p)xp and (n-p)xk

matrices, respectively.

Suppose u N(0,m
2
0(0)), where m

2 
is an unknown scalar and 0(0) is

a symmetric matrix which is positive definite for a subset of q x 1

parameter vectors„ of interest and is such that 0(0) = I
n-p

. We wish

to test H
0 
: 0 = 0. This parameterization covers a number of important

testing problems such as testing for, either separately or jointly,

autocorrelation, various forms of heteroscedasticity and various forms

of stochastic coefficients of the exogenous variables. King and Wu

(1989) have shown that, in the context of the static model,

y = Xf3 + u , (3)

a locally most mean powerful invariant (LMMPI) test against Ha : 0
1 

0,

0 a: 0, e * 0, is to reject H
0 
for small values of

= z'Az z'z

where z is the OLS residual vector from (3) and A = E A. in which
i=1 1

A. = -on(e) ae.
1 1

0=0
, q• •

(4)

When q = 1, this reduces to King and Hillier's (1985) locally best

invariant (LBI) test.

For testing Ho 0 = 0 in (2), one obvious approach is to use s as

the test statistic where z is the OLS residual vector from (2). A

difficulty is that the null distribution of s is unknown. As Inder

(1985, 1986) and Nankervis and Savin (1987) have suggested, a fruitful
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way to proceed is to compute critical values based on the SDD of s. We

now consider this distribution under each of the following assumptions.

Assumption A: y
1
, y

2
, y can be treated as constants.

Assumption B: The unobserved yi, i 0, have constant mean equal

to E(y1) and deviations from this mean following the stationary

AR(p) process

+ u
t

V
t 

= 
a1vt-1 a2vt-2 

apvt_p

in which u
t 

IN(0,T
2
) under H0.

(5)

Assumption A is appropriate if we wish to make an inference conditional

on the values taken by yl, y while assumption B is analogous to

the assumption made by Inder (1985, 1986).

m
t 
=

t
) can be determined recursively from

m
t 

= 
1 
am

t-1 
+a

2
m
t 2 

+ + a m
t 

+ x'g , t = p+1,...,n (6)
- • p -p t

where under assumption A,

m. = y i = 1, p (7)

while under assumpticm, B: and a. #: 1,
i=1

P )
m
1 

xig / (1 - E a
1=1=1

p
m
2 

= x'g + •E aimi ,
2

1=1

4

(8)

(9)
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i-2
m. = xig + E a.m. . + E asm

1 
, i = 3, ... p . (10)

_
j-1 j=i-1

Furthermore, subtraction of (6) from (1) yields the stationary AR(p)

process (5) under assumption B and the nonstationary AR(p) process given

by (5) together with vi = 0, i = 1, p, under assumption A.

Because yt = mt + v
t
, under both assumptions A and B we can write

Y-1 
= M

-1 
+ 0(T)

where M is the mean matrix of Y
-1 -1'

b < a, let P
B 
= I

a 
- B(B'B) iB'. Then

so that

Y
1-1
P
X
Y
-1 = Mi1PXM-1 0(T)

For any axb matrix B of rank

-
(YP

X
Y
-1
) 

= (ML1PXM-1
)1
 0(T)

A 1
+ 0(T) .

PP
X
Y
-1 -

Also note that
PXP

A 
P_M

-1
[ :X]

so that

where

s = u'P r, ,AP,„ .,,u u'P r,
"-1:1" "-FAI "-1:Aj

u'fP
[M

1
:X] 

+ 0(T)1 A 
{[M1:X 

I' + 0(T)1 u
- - 

••••

ut[14 :X] 
+ 0(T)1 u

-1
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S
0 

=

11113
[14 :X] 

A P
[M
-1
:X] u

-1

u'P
[14 :X] 

u
-1

which is of the form of s applied to the static regression

M
-1
7 + X8 + u ,

i.e., the original dynamic regression (2) with Y
-1 

replaced by its mean

matrix M_1. Thus the SDD of s applied to (2) is given by the

small-sample distribution of s applied to the static regression
1
 (11).

3. General Implications

The first obvious feature of the above result is that not all the

regressors in (11) are known; the elements of M 
1 

are functions of the

unknown parameters a and g through (6) and (7) under assumption A, and

through (6), (8), (9) and (10) under assumption B. We write M
-1 

as

M_1(a,g) to highlight this point. Thus the SDD of s depends on the

nuisance parameters, a and g, through P and by continuity

arguments we can infer that critical regions based on s are nonsimilar.
2

From Durbin and Watson's (1950) lemma it follows that

Pris
o 
= z'Az it ez <clu- N(007.

2
I
n-p

n-k-2p

Pri E (vi - c) < o]
i=1

(12)

where z is the OLS residual vector from (11), v
1' 

v
2' 

v
n-k-2p 

are

the eigenvalues of P other than k+p zeros and
[M....1(a,g):X]

A 

IN(0,1). Standard numerical methods such as those described by

King (1987, pp.27-28) can be used to calculate (12).
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How then should we set a critical value based on the SDD? The

standard approach in the case of nonsimilar tests (see for example

Lehmann and Stein, 1948), is to control the maximum probability of a

Type I error by ones choice of critical value. For our problem, this

involves finding a critical value c such that

n-k-2p
sup Pr[ E (v. - c) < o] a (13) '
a,g i=1 1

where a is the desired level of significance. We may wish to restrict a

to that part of the parameter space which makes (5) a stationary AR(p)

process. Even so, to solve for c is a complex numerical problem that

may require excessive amounts of computer time.

An alternative and simpler approach, is to control the probability

of a Type I error at a predetermined point in the nuisance parameter

space. This requires choosing a and g values, say a* and p*, at which

size is to be controlled and then finding the value of c that makes (12)

equal to the desired significance level where vi, i = 1, n-k-2p,

are the non-zero eigenvalues of

A third approach is to calculate bounds for the critical values of

s
o 

that are independent of the unknown M(a,g) regressors but which

take into account the known regressors, X. Based on King's (1981)

extension to the DW lemma, we have

s Ss 
oL 

s
oU

where

7
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n-k-2p 2 n-k-2p n-k-2p n-k-2p 
2

S L = E A.g. E , 
= 

2 
E A- g- /i=1 i soU
i=1 

i+p
i=1

in which A
1 

A
2 

...
n-k-p 

are the eigenvalues of 
PXAPX 

other than k

zero roots and under H
0' 

g 
i 

IN(0,1), i=1, n-k-2p. The first

(second) inequality of (14) is an equality if the column space of

M_1(a,13) is spanned by the eigenvectors associated with the p largest

(smallest) eigenvalues of PxAPx (excluding k zero eigenvalues).

If s* and s* denote the significance points of s
oL 

and
oL oU

soU' 
respectively, then we reject (do not reject) H

0 
if the calculated

value of s is below s* (above s* ). The test is inconclusive if s
oL oU

falls between sL and s'(13siu. The lower bound, sL, can be used as a

critical value for a conservative test of H
0' 

i.e. one whose size, at

least under the SDD, is below the desired significance level. Note that

it is very unlikely that s
oL 
* will be identical to the nonsimilar

critical value found by solving (13). This is because the elements of

M_1(a,g) are constrained by (6) and (7) or (6), (8), (9) and (10) making

equality in (14) improbable. Similarly, the upper bound, s'c')u, can be

used as a critical value for a liberal test of H
0' 

i.e. one whose size,

at least under the SDD, is above the desired significance level.

Tighter bounds could be found using (13) to compute the lower bound and

n-k-2p
2

inf Pr[ E cpi - < o]
a,g i=1

for the upper bound, ctj.

Inder's (1985, 1986) suggestion amounts to ignoring the M_ I.T term

in (11) when computing critical values and yields a critical value

between s
oL 
* and 

s*. 
His empirical evidence suggests that this works

oU 
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reasonably well when p = 1; its performance when p > 1 is less certain.

There are also implications for the power of the test. Under Ha,

the SDD of s is the distribution of s applied to the static regression

(11) in which u N(0,0(0)). This implies that approximate power can be

calculated in an obvious way assuming u N(0,0(0)) in (11). Note that

although so is of the form of a LBI test when q = 1 (or a LMMPI test

when q > 1), we cannot claim that the original test applied to the

dynamic model is a small-disturbance LBI (or LMMPI) test. This is

because of the nonsimilar nature of the test. Its small-disturbance

size is a function of the nuisance parameters through P
[M (a P):X] 

and
-1 '

so typically will differ from the desired significance level.

4. Implications for the Durbin-Watson Test

For the DW test applied to the dynamic model, (11) suggests a

justification for the use of tables of bounds computed for the static

model. Inder (1985, 1986) advocated the use of bounds which assume the

exogenous regressors, X, are the only regressors. It is clear from (11)

that account should also be taken of M_1(a,13). Thus tabulated bounds of

the DW test can be applied in the normal manner.

How then should the DW test be applied in practice to (2)? First

the calculated statistic should be compared with the appropriate bounds

from published tables for the static model. If this produces an

inconclusive result, tighter bounds, 5;k3.1., and s'(*)u, can be computed using

standard numerical methods. This may also produce an inconclusive

result, in which case, following the spirit of Kenkel's (1974, 1975)

suggestion and also noting that Inder's (1985, 1986) approach tends to

9



yield a lower than nominal probability of a Type I error, one might use

the upper bound, s*
' 

as the critical value. Alternatively, one could
oU 

decide on values of the nuisance parameters a, g and c2, at which a

desired level significance is required and then use the Monte Carlo

method, or the numerical methods outlined above based on

small-disturbance asymptotics, to estimate the critical value.
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Footnotes
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1. Nankervis and Savin (1987) proved their result concerning the F

test of linear restrictions on the coefficients of (2) for p = 1

and under assumption A. The above approach can be used to extend

their result to p 1 under either assumption A or B.

2. This confirms the findings of Monte Carlo studies of Inder (1985,

1986), among others, that the DW test is nonsimilar in the context

of (1).
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