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Abstract

The focus of this paper is a computerized sales forecasting system for the control of automotive

spare parts. The logic of the forecasting method, a refinement of exponential smoothing, is

outlined together with a method for monitoring forecast errors. Experiences in developing,

implementing and operating the system are also described.
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1. INTRODUCTION

A spare parts distributor in Victoria owned by a major Japanese car manufacturer is the focus

of this paper. Its function was the maintenance of adequate stocks for about 60,000 automobile

parts to meet demand from local \dealers and traders. Its situation was complicated by long

replenishment lead times and uncertainty in demand. Replenishment orders, placed once a

month with the parent company, took about two months to arrive in Australia where industrial

disputes at the docks could further cause delays. The local distributor was expected to maintain

a high service to customers with a minimal investment in stock under these rather difficult

circumstances.

In 1985 the Parts Development Manager, who had overall responsibility for the inventory

system, decided that performance was far from satisfactory. There was an excess supply of

many inventories coupled with widespread stockouts of others. Practices current at the time

amounted to little more than rules of thumb developed in the distant past by experienced

employees using intuition and personal judgement rather than formal analysis. These rules

appeared to be failing quite badly in the conditions current at the time.

Having obtained an MBA in England, the Parts Development Manager was conversant with

basic scientific inventory theory (Plossl, 1985) and the possibilities it held for improving the

situation. He therefore assembled a small team of analysts and programmers from the data

processing department to develop and implement a computer system for controlling inventories

based on the theory that he had learnt during his studies. Part of the task required the

development of a subsystem for forecasting sales and estimating associated standard deviations

for the purpose of determining appropriate levels of safety stock. Feeling the need for external

assistance in this matter, the author was commissioned to investigate the situation and to

suggest an appropriate forecasting strategy. Over time this arrangement evolved into one

involving the development of the forecasting subsystem and the provision of advice during its



implementation. The purpose of this paper is to describe the experience and document the

associated methods.

2. SYSTEM OVERVIEW

A critical factor in the design of the forecasting subsystem was the question of scale. The sheer

size of the task of generating up to 60,000 forecasts on a monthly basis precluded the possibility

of extensive management involvement. No matter how desirable it is to bring management

experience and knowledge of market conditions to bear in the forecasting process, economic

considerations dictated that this was impossible on any extensive scale. The only cost effective

approach was a computerized forecasting system based on methods from statistical time series

analysis.

It was recognized, however, that a total reliance on automated forecasts was not entirely

satisfactory. Structural changes, which can be quite common in the market place, diminish the

information value of historical data upon which time series approaches are based and hence can

create situations where automated forecasts are quite out of kilter with market conditions

current at the time. It was also recognized that there was a need to detect those annoying data

entry errors which inevitably occur in the daily operations of order entry systems so as to avoid

the distorting effects on the time series forecasts. Thus the system depicted in Figure 1 was

established with a subsystem to monitor forecast errors at the end of each month of operation

and to indicate the need for manual intervention in cases with unduly large errors. The basic

idea is that an executive can investigate the causes of a large error and take what is seen to be

the best action in the circumstance. Data entry errors can be detected and corrected, returning

control to the computer once this is done. Manual forecasts can be generated where

appropriate, taking account of prevailing market intelligence, and bypassing the automatic

forecasting subsystem in the process. Either way, forecasts are then fed to the inventory control

subsystem for use in determining re-order quantities prior to the start of a new month of
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operation.

3. FORECASTING SUBSYSTEM

3.1 Statistical Framework

For a system like this there are, potentially, a wide range of statistical time series methods from

which to choose. Seasonal methods were rejected because most automobile parts fail to display

significant seasonal effects. Growth curve approaches based on exponential, Gompertz and
•

logistics functions and their ilk were rejected because the particular path followed by the sales

of a part over its life cycle of 10 years is not known a priori and is difficult to determine with

only partial sales histories. Leading indicators based on the sales of similar parts for earlier

models of cars also proved to be unreliable because of the unpredictable effects of design

changes. Thus methods based on structural considerations (Harvey and Todd, 1983; Harvey,

1984, 1985; Harvey and Durbin, 1985) seemed to be out of the question.

Given that a particular life cycle pattern will be observed in most cases by the end of 10 years

but that its form, particularly in the early stages, is difficult to detect, it seems sensible to adopt

a statistical model which assumes that the underlying level of the series changes over time, albeit

in an uncertain way. This leads to the concept of the following local level model, expressed for

convenience in a form of pseudocode:

sales[now] = level[now] + irreg[now] (1.1)

level[next] = level[now] + alpha * irreg[now] (1.2)

where next = now + 1 and where the primary source of randomness, namely the irregular

components, are normally and independently distributed random variables with a common mean

and standard. deviation of 0 and sigma respectively. Here alpha is a parameter which

determines the rate of change in the underlying level. When alpha = 0 there is no change so

that the associated series is stationary. In the case where alpha = 1, the model reduces to the
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random walk sales [now] = sales[last] + irreg[now] where last = now - 1. Generally, larger

values of alpha are required for series with a more pronounced pattern.

The local level model has its counterpart in the Box and Jenkins (1976) framework. By

differencing (1.1) and eliminating the level variables with (1.2), the following ARIMA(0,1,1)

model is obtained

sales [now] - sales [last] = - delta * irreg [last] + irreg [now] (2.1)

where

delta = 1 - alpha. (2.2)

This model, as demonstrated by Muth (1960) and Box and Jenkins (1976), underpins simple

exponential smoothing (Brown, 1959; Holt, 1957), a technique that has been quite widely used

in inventory control applications with considerable success (Gardner, 1985). Simple exponential

smoothing relies on the repetitive application of the following recursive scheme:

pred.error [now] = sales [now] - pred.sales [now] (3.1)

estlevel[next] = est.level[now] + alpha * pred.error[now] (3.2)

' pred.sales [next] = estievel [next] (3.3)

Because alpha determines the extent to which the data is smoothed, it is commonly referred

to as the smoothing parameter.

The exponential smoothing predictor has the closed form solution

oldest
pred.sales[next] = alpha * E (delta) **age * sales[now - age]

age=0

+ (delta)**(oldest + 1) * pred.sales[now - oldest] (4)

This indicates that the prediction is a geometrically weighted linear function of the observations

and 'c seed prediction. When - 1 < delta < 1 the weights decline with age and the impact of

the seed prediction declines. For this reason delta is sometimes referred to as the discount

factor. In semi-infinite samples (i.e. when oldest .4 co) the influence of the seed prediction
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disappears and the current prediction becomes a genuine average of the data i.e. the weights

sum to one).

Exponential smoothing is an adaptive method for estimating the local level model. A

comparison of the closed form solutions for the level and its estimate suggests that any error

in the seed estimate perpetuates itself, albeit in discounted form, in later estimates. Apart from

this, both closed form expressions are identical, suggesting that in semi-infinite samples the level

and its estimate become identical. No other estimator can do better than this and so in semi

infinite samples exponential smoothing, despite its adaptive nature, can be viewed as optimal

for the local level model.

3.2 Kalman Filter

In reality, samples are finite. This was particularly true for the company concerned which,

because of the usual financial restrictions on the availability of storage media, could only at most

maintain three years of data in its data bases. Added to this, new cars were released annually,

necessitating the introduction of new parts with no sales histories. In the year that this work

was undertaken, the release of its new range of cars was expected to result in the introduction

of 20,000 new parts to its system. In these circumstances it is necessary to employ a technique

which extracts as much information as possible from the limited available data. This rules out

exponential smoothing because, despite its satisfactory large sample properties, it is not optimal

in small samples. As indicated by (4), the predictions generated by exponential smoothing

ultimately depend on an arbitrary seed value, the influence of which declines exponentially with

larger sample sizes. In small samples, however, the seed value can dominate the sample

observations in forming the prediction and as a consequence a poor seed value can distort the

predictions quite markedly.

An alternative strategy is to seek a technique which minimizes the mean squared one step ahead
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prediction error assuming that the data is generated by the local level model.. It turns out that

this local level model is a special case of the state space framework outlined in Snyder (1985)

and that it can therefore be estimated in an optimal fashion by the Kalman filter. There is a

general perception in many circles that Kalman filtering is not a particularly easy technique and

its use has consequently been mainly restricted to technical applications. However, in the case

of the local level model it takes a particularly simple form not all that dissimilar from

exponential smoothing - see Snyder (1988) for derivation. The major change is that, in effect,

alpha becomes time dependent, and is generated by a formula which ensures that the mean

squared one step ahead forecast error is minimized. More specifically:

pred.errodnow] = sales[now] - pred.sales [now] (5.1)

est.level[next] = est.level[now] + alpha[now] * pred.errodnow] (5.2)

pred.sales [next] = estlevel [next] (5.3)

delta[next] = 1/(delta + 1/delta - delta[now]) (5.4)

alpha [next] = 1 - delta[next] (5.5)

where delta [1] = 0. In effect alpha [now] and delta [now] are short-run smoothing and discount

parameters and it can be established that they converge to long run values of alpha and delta

respectively. Thus in large samples there is effectively no difference between this simple

Kalman filter and simple exponential smoothing. It is only in small samples that they differ and

they do so because this simple Kalman filter makes better use of the limited information in this

circumstance.

Examples

1. When alpha = 0 the local level model collapses to a stationary global level model. Here

delta = 1 so that (5.4) and (5.5) between them yield successive values of 1, 1/2, 1/3, 1/4,

... for the short-run smoothing parameter alpha [now]. In this circumstance the Kalman

filter becomes a recursive method for calculating a simple average. Compare this with



s,

simple exponential smoothing which fails to properly accommodate this special but

important case.

2. When alpha = 1 the local level model converts to a random walk. It can be established

that (3.4) and (3.5) then yield successive values 1,1,1,... for alpha[now]. The filter

reduces to the naive, but often powerful, forecast method pred.sales(next) = sales(now).

3. When alpha = 0.1 the successive values of alpha [now] are 1, 0.5028, 0.3395, ..., 0.1, 0.1,

  This illustrates the convergence of the Kalman gain to its long run value. In the

early stages it appears that the Kalman filter places an approximately equal weight on

each observation and in this sense it can be viewed as a refinement of a method

proposed by Taylor (1981) for initializing exponential smoothing.

3.3 Standard Deviations

The inventory module not only required forecasts of sales but also estimates of standard

deviations for safety stock calculations. In applications of exponential smoothing the one-step

ahead forecast errors are often used as the basis for estimating this parameter. However, it

should be recognized that one-step ahead forecast errors form a heteroskedastic series because

forecasts are less reliable and hence errors tend to be larger in small samples. It can be

established that the mean square error of a forecast is given by

mse[now] = delta * sigma/delta[now] (6)

and so the best estimate of sigma must be

now
est. sigma = ( E delta[period] * error[period] **2/delta)/last

period=2

It was this estimate which was fed to the inventory module.

(7)



3.4 Choice of Long Run Smoothing Parameter

The value of the parameter alpha or equivalently delta must be specified before employing the

Kalman filter. The choice of alpha affects the quality of the associated forecasts and is

therefore an issue also requiring attention. It is pertinent to note, along similar lines to

Burridge and Wallis (1988), that if I delta > 1 then 1/delta can be used in place of delta in the

Kalman filter to yield exactly the same forecasts. Accordingly, it is sufficient to restrict the

choice of delta and hence alpha to the equivalent ranges delta I < 1 and 0 < alpha < 2

respectively. (Note the strong similarity with the invertibility condition for an ARIMA(0,1,1)

model in Box and Jenkins (1976).)

Even within this range, however, there are further difficulties in finding a sensible value for

alpha. Evaluation criteria such as the likelihood function are highly nonlinear functions of alpha

and may often possess local minima. Accordingly, to find the best value of alpha, it is necessary

to use grid search methods where the Kalman filter is applied repetitively for a range of trial

values of alpha. Since the computational loads of a procedure like this are rather large for a

single series, they are prohibitive for 60,000 lines. In these circumstances the decision was made

to expedite matters by using a single global value for alpha across the entire range of inventory.

To keep computational loads within acceptable bounds, the process of finding a value for this

global alpha was restricted to a small random sample of their inventories. The method involved

the estimated value of sigma and the simple average of each sales series to compute a measure

of relative risk reminiscent of a coefficient of variation i.e.

rel.risk = est.sigma/av.sales (8)

This measure was calculated for all items in the sample and aggregated for each trial value of

alpha. The associated program then selected the value of alpha with minimal aggregate relative

risk across the sample.



4. MONITORING FORECAST QUALITY

Tracking signals (Trigg 1964; McClain, 1988) are often used in inventory applications of

exponential smoothing to monitor forecast quality. However, the distribution theory is almost

non-existent for this approach and it is therefore not clear how the critical values of these

tracking signals should be selected. Instead an alternative approach, based on the current one-

step forecast error, was developed.

A consequence of the optimality properties of the Kalman filter is that the prediction errors are

not only normally distributed with a common mean of zero, but they are also statistically

independent. Furthermore, given that the estimated mean squared error last period, based on

(6) and (7), depends on only error[1]—errodlast], it is statistically independent of error[now].

Hence, for given alpha, the ratio

t = error[now]/estinse[last] (9)

has a t-distribution with last degrees of freedom. The absolute value of t in (9) was used as

the basis of a statistical test for monitoring the forecast quality. When the process is under

control this statistic should be close to zero. However, beyond a critical value determined from

a t-distribution table after specifying the significance level of the test, the item forecasts are

deemed to be out of control. This idea, or at least a simplified variation of it to expedite

matters, was incorporated into a computer program to generate an exception report of an those

items deemed to be out of controL The items were ranked in this list according to the size of

the absolute value of t. This was designed to enable the executive charged with the monitoring

function to rationally allocate his effort, given the scarcity and value of his time, so that priority

could be given to those items most out of controL

5. IMPLEMENTATION AND PERFORMANCE

The implementation of the forecasting modules was carried out with few hitches. The main

problem that arose occurred because of the use of different computer languages. The entire
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system of the company was programmed in COBOL, a language quite unsuitable for scientific

applications, whereas FORTRAN 77 was used for the forecasting modules. Given that COBOL

does not contain conventional floating point arithmetic, linking became a problem. Many of the

difficulties that arose occurred because COBOL and FORTRAN programmers have

considerable difficulty talking to and understanding each other. However, eventually, after

many unnecessary mishaps, a successful linkage was achieved. With hindsight, most of the

difficulties encountered along the way could have been avoided by employing the services of one

of those scarce individuals with a working knowledge of both languages.

Budget limitations meant that no formal means were used to evaluate the performance of the

system once it became operational except for the compilation of some aggregate statistics on

stock levels and stockouts. By this time the development work had ceased, the contract had run

out, and so the contact with the company ceased. Matters had gone reasonably smoothly and

there was no apparent need for further advice.

Two years later contact was renewed when the company took over some major distributors in

other States, effectively doubling the size of their market overnight. They now had to control

inventories in a number of geographically dispersed locations and were seeking advice on how

to best blend the new operations. It emerged that they had been quite satisfied with the

performance of the system prior to the takeover but now felt that a reappraisal was required

in the light of their new circumstances.

On investigation it transpired that the company did have a serious problem. Soon after the

takeover, the exception report from the monitoring subsystem had suddenly exploded in size.

Instead of a few pages of printout containing a list of a few hundred lines for investigation, the

executive concerned was suddenly confronted with a massive printout the thickness of which

could be measured in centimetres. Something was clearly wrong. The executive concerned
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understood this but feared that it might be perceived as a reflection of his own performance.

Furthermore, given his other duties, he quite simply did not have the time available to

investigate all the items in the report on an individual basis. His solution at the time was to

shelve the printout and stay silent about the situation in the hope that the problem would

automatically resolve itself. Unfortunately, the same thing happened in the second month, the

executive continued to ignore the warning signs and senior management remained ignorant of

the impending disaster. Then about two weeks later the moment of truth arrived. Stocks right

across their range began to run out. It was only then, for the first time, that the Parts

Development Manager had become aware that the company had a problem. He was

unfortunately unable to identify its cause.

During the subsequent investigation by the author it transpired that no attempt had been made

to modify the forecasts to allow for their new situation. Ideally, sales histories should have been

obtained from the new subsidiaries, combined with the company's existing sales records, and

the forecasts should have been regenerated with the revised data. Instead the system had

operated with only the sales histories of Victoria to predict sales for the expanded market.

Sales levels were consequently being seriously underestimated. In fairness to the company's

management, differences in computer systems may have made it quite difficult and expensive

to collect and process the old sales records of the new subsidiaries. But it would have been a

relatively simple matter to double the size of the old forecasts across the range of their

inventory to obtain more plausible results. Unfortunately management did not understand the

need for this at the time because they were under the reasonable but false allusion that the

forecasts would adjust automatically after a few months of operations in their new environment.

Exponential smoothing and its refined counterpart in this paper are to some extent adaptive

in nature. However, the rate at which forecasts adapt depends on the size of alpha. It

transpired that the process used to select the value of the smoothing parameter described earlier

in the paper had yielded a value of zero. In other words, the company had in effect been using
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a classical simple average to compute their forecasts. Little adaption was possible with such a

low smoothing parameter.

This outcome highlighted a problem with the method for selecting the smoothing parameter.

As stated earlier, over the 10 year life of a part, it is possible to detect an underlying usage

pattern which may, in many cases, be quite pronounced. However, only a few years of data was

available at most, where such patterns in these restricted samples are less discernable.

Accordingly, there was a serious downward bias in the procedure for selecting the value of the

smoothing parameter. Given that there was still insufficient data at the time to do anything

differently, a recommendation was made to set the value of alpha to 0.1 or 0.2, a recipe

recommended by Brown (1959) from many years of experience with exponential smoothing in

the field. Possibly even higher values should have been contemplated.

With hindsight it was also possible to identify another potential problem with their system in

the area of safety stock determination. The author, at the time, had little involvement in the

development of the inventory module but became aware of the fact that they were determining

their estimate of the standard deviation of lead time demand by taking the value of est.sigma

from the forecast routine and multiplying it by the factor sqrt(leadtime). This method depends

on the assumption that monthly demands are statistically independent, an assumption which is

incompatible with the local level model except when alpha = 0. It can be shown that the

standard deviation of lead time demand can be severely underestimated when the dependence

between monthly demand is ignored - see Johnston and Harrison (1986) and Harvey and Snyder

(1989). Consequently, since implementation, the company has probably operated with safety

stocks below those required to achieve its service level objectives.

CONCLUSIONS

In this forecasting project we encountered problems associated with the scale of the operations

and paucity of data. The response was to implement a simple but robust Kalman filter with low
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computational requirements and good statistical properties. Despite some difficulties along the

way the resulting system proved to be a success and highlighted the point that Kalman filtering

has a viable and useful role in business forecasting. At the same time the project indicated the

need for an adaptive approach to forecasting and that a total reliance on manual approaches

to this problem can break down when users have an incomplete understanding of their system.

Accordingly, some automation of the adaptation process seems to be desirable. Just how this

could be done remains an open question but preliminary results with a multi-series approach

in Snyder, Shah and Lehmer (1988) is suggestive of one possible response to this problem.

Finally, we had succeeded in developing and implementing a more statistically satisfactory

monitoring system based on the classical t-distribution, exploiting the orthogonality of the one-

step ahead forecast errors from the Kalman filter. Overall then, the experience proved to be

of value in the sense that it stimulated new responses to an old problem and established the

viability of the developments, despite the limitations of budgets and consequent short-cuts

during the process.
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