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The focus of this paper is a computerized sales forecasting system for the control of automotive

spare parts. The logic of the forecasting method, a refinement of exponential smoothing, is

outlined together with a method for monitoring forecast errors. Experiences in developing,

implementing and operating the system are also described.
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1. INTRODUCTION

A spare parts distributor in Victoria owned by a major Japanese car manufacturer is the focus
of this paper. Its function was the maintenance of adequate stocks for about 60,000 automobile
parts to meet demand from local dealers and traders. Its situation was complicated by long
replenishment lead times and uncertainty in demand. Replenishment orders, placed once a
month with the parent company, took about two months to arrive in Australia where industrial
disputes at the docks could further cause delays. The local distributor was expected to maintain
a high service to customers with a minimal investment in stock under these rather difﬂéult

circumstances.

In 1985 the Parts Development Manager, who had overall responsibility for the inventory
system, decided that performance was far from satisfactory. There was an excess supply of
many inventories coupled with widespread stockouts of others. Practices current at the time
amounted to little more than rules of thumbdeveloped in the distant past by experienced
. employees using intuition and personal judgement rather than formal analysis. These rules

appeared to be failing quite badly in the conditions current at the time.

Having obtained an MBA in England, the Parts Development Manager was conversant with
basic scientific inventory theory (Plossl, 1985) and the possibilities it held for improving the

situation. He therefore assembled a small team of analysts and programmers from the data
processing department to develop and implement a computer system for controlling inventories
based on the theory that he had learnt during his studies. Part of the task required the

development of a subsystem for forecasting sales and estimating associated standard deviations

for the purpose of determining appropriate levels of safety stock. Feeling the need for external

assistance in this matter, the author was commissioned to investigate the situation and to
suggest an appropriate forecasting strategy. Over time this arrangement evolved into one

involving the development of the forecasting subsystem and the provision of advice during its




implementation. The purpose of this paper is to describe the experience and document the

associated methods.

2. SYSTEM OVERVIEW

A critical factor in the design of the forecasting subsystem was the question of scale. The sheer
size of the task of generating up to 60,000 forecasts on a monthly basis precluded the possibility
of extensive management involvement. No matter how desirable it is to bring management
experience and knowledge of market conditions to bear in the forecasting process, econorrﬁc
considerations dictated that this was impossible on any extensive scale. The only cost effective
approach was a computerized forecasting system based on methods from statistical time series

analysis.

It was recognized, however, that a total reliance on automated forecasts was not entirely

satisfactory. Structural changes, which can be quite common in the market place, diminish the

information value of historical data upon which time series approaches are based and hence can

create situations where automated forecasts are quite out of kilter with market conditions
current at the time. It was also recognized that there was a need to detect those annoying data
entry errors which inevitably occur in the daily operations of order entry systems so as to avoid
the distorting effects on the time series forecasts. Thus the system depicted in Figure 1 was
established with a subsystem to monitor forecast errors at the end of each month of operétion
and to indicate the need for manual intervention in cases with unduly large errors. The basic
idea is that an executive can investigate the causes of a large error and take what is seen to be
the best action in the circumstance. Data entry errors can be detected and corrected, returning
control to the computer once this is done. Manual forecasts can be generated where
appropriate, taking account of prevailing market intelligence, and bypassing the automatic
forecasting subsystem in the process. Either way, forecasts are then fed to the inventory control

subsystem for use in determining re-order quantities prior to the start of a new month of




operation.

3. FORECASTING SUBSYSTEM

3.1 Statistical Framework

For a system like this there are, potentially, a wide range of stétistiml time series methods from
which to choose. Seasonal methods were rejected because most automobile parts fail to display
significant seasonal effects. Growth curve approaches based on exponential, Gompertz and
logistics functions and their ilk were rejected because the particular path followed by the salc;,s
of a part over its life cycle of 10 years is not known a priori and is difficult to determine with
only partial sales histories. Leading indicators based on the sales of similar parts for earlier
models of cars also proved to be unreliable because of the unpredictable effects of design.
changes. Thus methods based on structural coﬁsiderations (Harvey and Todd, 1983; Harvey,

1984, 1985; Harvey and Durbin, 1985) seemed to be out of the question.

Given that a particular life cycle pattern will be oBserved in most cases by the end of 10 years
but that its form, particularly in the early stages, is difficult to detect, it seems sensible to adopt
a statistical model which assumes that the underlying level of the series changes over time, albeit
in an uncertain way. This leads to the concept of the following local level model, expressed for
convenience in a form of pseudocode:

sales[now] = level[now] + irreg[now] (1.1)
level[next] = level[now] + alpha * irregv[now] (1.2)
where next = now + 1 and where the primary source of randomness, namely the irregular
components, are normally and independently distributed random variables with a common mean
and standard. deviation of 0 and sigma respectively. Here alpha is a parameter which

determines the rate of change in the underlying level. When alpha = 0 there is no change so

that the associated series is stationary. In the case where alpha = 1, the model reduces to the




random walk sales[now] = sales[last] + irreg[now] where last = now - 1. Generally, larger

values of alpha are required for series with a more pronounced pattern.

The local level model has its counterpart in the Box and Jenkins (1976) framework. By
differencing (1.1) and eliminating the level variables with (1.2), the following ARIMA(0,1,1)
model is obtained
sales[now] - sales[last] = - delta * irreg[last] + irreg[now] (2.1)
where | |
delta = 1 - alpha. (22)
This model, as demonstrated by Muth (1960) and Box and Jenkins (1976), underpins simpler
exponential smoothing (Brown, 1959; Holt, 1957), a technique that has been quite widely used
in inventory control applications with considerable success (Gardner, 1985). Simple exponential
smoothing relies on the repetitive application of the following recursive scheme:
pred.error[now] = sales[now] - pred.sales[now] 3.1)
est.level[next] = est.level[now] + alpha * pred.error[now] 3.2)
' pred.sales[next] = est.evel[next] 3.3) .
Because alpha determines the extent to which the data is smoothed, it is commonly referred

to as the smoothing parameter.

The exponential smoothing predictor has the closed form solution
oldest
pred.sales[next] = alpha * } (delta) **age * sales[now - age]
-age=0
+ (delta)**(oldest + 1) * pmd;ales[now - oldest] 4

This indicates that the prediction is a geometrically weighted linear function of the observations

a
and §hi seed prediction. When - 1 < delta < 1 the weights decline with age and the impact of

the seed prediction declines. For this reason delta is sometimes referred to as the discount

factor. In semi-infinite samples (i.e. when oldest - =) the influence of the seed prediction




disappears and the current prediction becomes a genuine average of the datd (i.e. the weights

sum to one).

Exponential smoothing is an adaptive method for estimating the local level model. A
comparison of the closed form solutions for the level and its estimate suggests that any error
in the seed estimate perpetuates itself, albeit in discounted form, in later estimates. Apart from
this, both closed form expressions are identical, suggesting that in semi-infinite samples the level
and its estimate become identical. No other estimator can do better than this and so in semi-
. infinite samples exponential smoothing, despite its adaptive nature, can be viewed as optimal

for the local level model.

3.2 Kalman Filter

In reality, samples are finite. This was particularly true for the company concerned which,

because of the usual financial restrictions on the availability of storage media, could only at most
maintain three years of data in its data bases. Added to this, new cars were released annually,
' necessitating the introduction of new parts with no sales histories. In the year that this work
was undertaken, the release of its new range of cars was expected to result in the introduction
of 20,000 new parts to its system. In these circumstances it is necessary to employ a technique
which extracts as much information as possible from the limited available data. This rules out
exponential smoothing because, despite its satisfactory large sample properties, it is not optimal
in small samples. As indicated by (4), the predictions generated by exponential smoothing
ultimately depend on an arbitrary seed value, the influence of which declines exponentially with
larger sample sizes. In small samples, however, the seed value can dominate the sample
observations in forming the prediction and as a consequence a poor seed value can distort the

predictions quite markedly.

An alternative strategy is to seek a technique which minimizes the mean sqﬁared one step ahead




prediction error assuming that the data is generated by the local level model. It turns out that
this local level model is a special case of the state space framework outlined in Snyder (1985)
and that it can therefore be estimated in an optimal fashion by the Kalman filter. There is a
general perception in many circles that Kalrﬁan filtering is not a particularly easy technique and
its use has consequently been mainly restricted to technical applications. However, in the case
of the local level model it takes a particularly simple form not all that dissimilar from
exponential smoothing - see Snyder (1988) for derivation. The major change is that, in effect,
alpha becomes time dependent, and is generated by a formula which ensures that the mean

squared one step ahead forecast error is minimized. More specifically:

pred.error[now] = sales[now] - pred.sales[now] (5.1)
est.level[next] = est.level[now] + alpha[now] * pred.error[now] 52
pred.sales [xiext] = est.level[next] - (53)
delta[next] = 1/(delta + 1/delta - delta[now]) _ (54)
alpha[next] = 1 - delta[next] - (5.5)
" where delta[1] = 0. In effect alpha[now] and delta[now] are short-run smoothing and discount
parameters and it can be established that they converge to long run values of alpha and delta
respectively. Thus in large samples there is effectively no difference between this simple

Kalman filter and simple exponential smoothing, It is only in small samples that they differ and

they do so because this simple Kalman filter makes better use of the limited information in this

circumstance.

Examples

1. When alpha = 0 the local level model collapses to a stationary global level model. Here
delta = 1 so that (5.4) and (5.5) between them yield successive values of 1, 1/2, 1/3, 1/4,
.. for the short-run smoothing parameter alpha[now]. In this circumstance the Kalman

filter becomes a recursive method for calculating a simple average. Compare this with




simple exponential smoothing which fails to properly accommodate this special but

important case.

When alpha = 1 the local level model converts to a random walk. It can be established
that (3.4) and (3.5) then yield successive values 1,1,1,... for alpha[now]. The filter

reduces to the naive, but often powerful, forecast method pred.sales(next) = sales(now).

When alpha = 0.1 the successive values of alpha[now] are 1, 0.5028, 0.3395, ..., 0.1, 0.1,

This illustrates the convergence ‘of the Kalman gain to its long run value. In the
early stages it appears thét the Kalman filter places an approximately equal weight on
each observation and in this sense it can be viewed as a refinement of a method

proposed by Taylor (1981) for initializing exponential smoothing.

3.3 Standard Deviations

The inventory module not only required forecasts of sales but also estimates of standard
‘ deviations for safety stock calculations. In applications of exponential smoothing the one-step

ahead forecast errors are ofien used as the basis for estimating this parameter. However, it

should be recognized that one-step ahead forecast errors form a heteroskedastic series because

forecasts are less‘ reliable and hence errors tend to be larger in small samples. It can be

established that the mean square error of a forecast is given by

mse[now] = delta * sigma/delta[now] (6)

and so the best estimate of sigma must be

now

est.sigma = ()  delta[period] * error[period] *32/delta)/last
period=2

It was this estimate which was fed to the invehtory module.




3.4 Choice of Long Run Smoothing Parameter

The value of the parameter alpha or equivalently delta must be specified before employing the
Kalman filter. The choice of alpha affects the quality of the associated forecasts and is
therefore an issue also requiring attention. It is pertinent to note, along similar lines to
Burridge and Wallis (1988), that if |delta] > 1 then 1/delta can be used in place of delta in the
Kalman filter to yield exactly the same forecasts. Accordingly, it is sufficient to restrict the
choice of delta and hence alpha to the equivalent ranges |delta| < 1 and 0 < alpha < 2
respectively. (Note the strong similarity with the invertibility condition for an ARIMA(0,1,1)

model in Box and Jenkins (1976).)

Even within this range, however, there are further difficulties in finding a sensible value for
alpha. Evaluation criteria such as the likelihood function are hfghly nonlinear functions of alpha
and may often possess local minima. Accordingly, to find the best value of alpha, it is necessary
to use grid search methods where the Kalman filter is applied repetitively for a range of trial
values of alpha. Since the computational loads of a procedure like this are rather large for a
‘ single series, they are prohibitive for 60,000 lines. In these circumstances the decision was made
to expedite matters by using a single global value for alpha across the entire range of inventory.
To keep computational loads within acceptable bounds, the process of finding a value for this
global alpha was restricted to a small random sample of their inventories. Thé method involved
the estimated value of sigma and the simple average of each sales series to compute a measure
of relative risk reminiscent of a coefficient of variation i.e.

relrisk = est.sigma/av.sales v 8)

This measure was calculated for all items in the sample and aggregated for each trial value of

alpha. The associated program then selected the value of alpha with minimal aggregate relative

risk across the sample.




4. MONITORING FORECAST QUALITY

Tracking signals (Trigg 1964; McClain, 1988) are often used in inventory applications of
exponential smoothing to monitor forecast quality. However, the distribution theory is almost
non-existent for this approach and it is therefore not clear how the critical values of these
tracking signals should be selected. Instead an alternative approach, based on the current one-

step forecast error, was developed.

A consequence of the optimality prdperties of the Kalman filter is that the prediction errors are
not only normally distributed with a common mean of zero, but they are also statistically
independent. Furthermore, given that the estimated mean squared error last period, based on
(6) and (7), depends on only error[1]...error[last], it is statistically independent of error[now].
Hence, for given alpha, the ratio
t = error[now] /est.mse[last] ' 9)
has a t-distribution with last degrees of freedom. The absolute value of t in (9) was used as
the basis of a statistical test for monitoring the forecast quality. When the process is under
| control this statistic should be close to zero. However, beyond a critical value determined from
a t-distribution table after sﬁecifying the significance level of the test, the item forecasts are
- deemed to be out of control. This idea, or at least a simplified variation of it to expedite
matters, was incorporated into a computer program to generate an exception report of all those
items deemed to be out of control. The items were ranked in this list according to the size of
the absolute value of t. This was designed to enable the executive charged with the monitoring
function to rationally allocate his effort, given the scarcity and value of his time, so that priority

could be given to those items most out of control.

5. IMPLEMENTATION AND PERFORMANCE

The implementation of the forecasting modules was carried out with few hitches. The main

problem that arose occurred because of the use of different computer languages. The entire




system of the company was programmed in COBOL, a language quite unsuitable for scientific
applications, whereas FORTRAN 77 was used for the forecasting modules. Given that COBOL
does not contain conventional floating point arithmetic, linking became a problem. Many of the
difficulties that arose occurred because COBOL and FORTRAN programmers have
considerable difficulty talking to and understandmg each other. However, eventually, after
many unnecessary mishaps, a successful linkage was achieved. With hindsight, most of the
difficulties encountered along the way could have been avoided by employing the services of one

of those scarce individuals with a working knowledge of both languages.

Budget limitations meant that no formal means were used to evaluate the performance of the .
system once it became operational except for the compilation of some aggregate statistics on
stock levels and stockouts. By this time the development work had ceased, fhe contract had run
out, and so the contact with the company ceased. Matters had gone reasonably smoothly and

there was no apparent need for further advice.

" Two years later contact was renewed when the company took over some major distributors in
other States, effectively doubling the size of their market overnight. They now had to control
inventories in a number of geographically dispersed locations and were seeking advice on how
to best blend the new operations. It emerged‘ that they had been quite satisfied with the
performance of the system prior to the takeover but now felt that a reappraisal was required

~ in the light of their new circumstances.

On investigation it transpired that the company did have a serious problem. Soon after the
takeover, the exception report from the monitoring subsystem had suddenly exploded in size.
Instead of a few pages of printout containing a list of a few hundred lines for investigation, the

executive concerned was suddenly confronted with a massive printout the thickness of which

could be measured in centimetres. Something was clearly wrong. The executive concerned




understood this but feared that it might be perceived as a reflection of his own performance.
Furthermore, given his other duties, he quite simply did not have the time available to
investigate all the items in the report on an individual basis. His solution at the time was to ‘
shelve the printout and stay silent about the situation in the hope that the problem would
automatically resolve itself. Unfortunately, the same thing happened in the second month, the
executive continued to ignore the warning signs and senior management remained ignorant of
the impending disaster. Then about two weeks later the moment of truth arrived. Stocks right
across their range began to run out. It was only then, for the first time, that the Parts
Development Manager had become aware that the company had a problem. He was

unfortunately unable to identify its cause.

During the subsequent investigation by the author it transpired that no attempt had been made
~ to modify the forecasts to allow for their new situation. Ideally, sales histories should have been
obtained from the new subsidiaries, combined with the company’s existing sales records, and
the forecasts should have been regenerated with the revised data. Instead the system had
" operated with only the sales histories of Victoria to predict sales for the expandéd market.
Sales levels were consequently being seriously underestimated. In fairness to the company’s
management, differences in computer systems may have made it quite difficult and expensive
to collect and process the old sales. records of the new subsidiaries. But it would have been a
relatively simple matter to double the size of the old forecasts across the range of their
inventory to obtain more plausible results. Unfortunately management did not understand the
need for this at the time because they were under the reasonable but false allusion that the
forecasts would adjust automatically after a few months of operations in their new environment.
Exponential smoothing and its refined counterpart in this paper are to some extent adaptive
in nature. However, the rate at which forecasts adapt depends on the size of alpha. It
transpired that the process used to select the value of the smoothing parametér described earlier

in the paper had yielded a value of zero. In other words, the company had in effect been using

1




a classical simple average to compute their forecasts. Little adaption was possible with such a
low smoothing parameter.

This outcome highlighted a problem with the method for selecting the smoothing parameter.
As stated earlier, over the 10 year life of a part, it is possible to detect an underlying usage
pattern which may, in many cases, be quite pronounced. However, only a few years of data was
available at most, where such patterns in these restricted samples are less discernable.
Accordingly, there was a serious downward bias in the procedure for selecting the value of the
smoothing parameter. Given that there was still insufficient data at the time to do anything
differently, a recommendation was made to set the value of alpha to 0.1 or 0.2, a recipe
recommended by Brown (1959) from many years of experience with exponential smoothing in

the field. Possibly even higher values should have been contemplated.

With hindsight it was also possible to identify another potential problem with their system in
the area of safety stock determination. The author, at the time, had little involvement in the

development of the inventory module but became aware of the fact that they were determining

 their estimate of the standard deviation of lead time demand by taking the value of est.sigma

from the forecast routine and multiplying it by the factor sqrt(leadtime). This method depends
on the assumption that monthly demands are statistically independent, an assumption which is
incompatible with the local level model except when alpha = 0. It can be shown that the
standard deviation of lead time demand can be severely underestimated when the dependence
between monthly demand is ignored - see Johnston and Harrison (1986) and Harvey and Snyder
(1989). Consequently, since implementation, the company has probably operated with safety

stocks below those required to achieve its service level objectives.

CONCLUSIONS

In this forecasting project we encountered problems associated with the scale of the operations

and paucity of data. The response was to implement a simple but robust Kalman filter with low




computational requirements and good statistical properties. Despite some difficulties along the
way the resulting system proved to be a success and highlighted the point that Kalman filtering
has a viable and useful role in business forecasting. At the same time the project indicated the
need for an adaptive approach to forecasting and that a total feliance on manual approaches
to this problem can break down when users have an incomplete understanding of their system.
Accordingly, some automation of the adaptation process seems to be desirable. Just how this
could be done remains an open question but preliminary results with a multi-series approach
in Snyder, Shah and Lehmer (1988) is suggestive of one possible response to this problem.
Finally, we had succeeded in developing and implémenting a more statistically satisfactory
monitoring system ba#ed on the classical t-distribution, exploiting the orthogonality of the one- ‘
step ahead forecast errors from the Kalman filter. Overall then, the experience proved to be
of value in the sense that it stimulated new responses to an old problem and established the
viability of the developments, despite the limitations of budgets and consequent short-cuts

~ during the process.
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