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1. Introduction

Parametric tests of specification of the linear regression model generally assume nor-

mally distributed disturbances. A growing number of econometricians are questioning this

assumption; on which the validity of standard hypothesis tests and confidence intervals is

based, and are concerned with the effect of non-normality, particularly in small samples

which are characteristic of econometric analysis. Tests on regression coefficients appear

to be reasonably robust to non-normal disturbances, but whether this is so for tests of

disturbance behaviour is less clear. Studies, so far, are not comprehensive and their results

are sometimes in conflict.

This study attempts to evaluate thoroughly the effect of assuming normality on the

size of parametric tests of the disturbance covariance matrix, by including a wider range

of tests, alternative distributions and regressors than in previous empirical studies. A

Monte Carlo comparison of actual and nominal sizes of various test statistics for first-

and fourth-order autocorrelation and heteroscedasticity is made. Particular emphasis

is on more recent tests, which are based on small sample properties, rather than on an

asymptotic justification.

2. Background

Consider the linear regression model

y = X [3 u,

where y is n x 1, X is n x k and non-stochastic, /3 is k x 1, and u (0, 2/) is n x

1. = (X' X)-1X'y is the Ordinary Least Squares (OLS) estimate of fl, 11 = (I —

X(X1.2C)-1X1)y = My the OLS residual vector, and 32 = fiiii/(71 k), the estimate
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of the disturbance variance a2. ig and 32 are unbiased and consistent and :6' is the best

linear unbiased estimator. For normally distributed disturbances: is the maximum

likelihood estimator, and hence efficient; 52 is asymptotically efficient; 'd has a normal, and
(n k)32/(72 a x2, distribution; and classical methods of statistical inference are valid.

Evidence is accumulating which suggests that the assumption of normally distributed

disturbances is often inconsistent with the behaviour of many economic variables. The

generation process may follow laws other than normal, the disturbances may be a mixture

of distributions, or the occurence of a few outliers also can produce 'fat' tails. Non-

symmetric distributions can occur in the modelling of frontier production functions and

residual security returns. Teptokurtic', 'fat-' or ̀ long-tailed' distributions, characterised

by a high kurtosis measure, are relevant to the study of financial and commodity markets.

Symmetric stable laws, which have no finite moments, have been used to describe stock

market prices, although mixtures of distributions have been preferred more recently.

With non-normal disturbances, the size of the t and F tests of regression coeffi-

cients appears to be reasonable (Box and Watson (1962), Pearson and Please (1975)),

though some adjusments for kurtosis may be warranted, and these tests are asymptotically

valid. These tests have the correct size for spherically symmetric disturbance distributions

(Kariya and Eaton (1977), Kariya (1977) and King (1979)), and for normal regressors

(Cavanagh and Rothenberg(1985)).

The t and F tests are invalid if serially correlated or heteroscedastie disturbances

are ignored. Optimal power properties of tests for such disturbance behaviour, which

hold under normality, also hold for any spherically symmetric disturbances (King(1979)),
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but the only spherically symmetric distribution with independent components is the nor-

mal distribution. Empirical examination of tests of correlated disturbances under non-

normality include the very limited study of the Durbin Watson (DW) and Geary runs

test by Gatswirth and Selwyn (1980), who found the DW test reasonably robust. Bar-

tels and Goodhew (1981) used extreme error distributions, with three sets of "smoothly

evolving" regressors and considered positive autocorrelation. They found the DW test size

reasonably robust at the 5% significance level, but at lower levels it had higher rejection

rates, and argued that this potential overcorrection for autocorrelation was not a problem.

Knight (1985), by applying the Davis technique to non-normal distributions which can be

characterised by an Edgeworth expansion, found the DW statistic very robust. However,

using numerical methods for disturbances formed from mixtures of normal distributions,

he found its sensitivity depended on the regressors used. Smith (1987) (extending Hillier

and Smith (1983)), also using the Davis technique and moderate non-normality, found that

disturbances with zero skewness and extreme kurtosis had the greatest effect on the mean,

variance and kurtosis of the DW statistic, but that these were relatively robust whereas

with extreme skewness and moderate kurtosis, the skewness measure was not robust. For

some X matrices, the test sizes were markedly affected, leading to fewer (more) rejections

of the null hypothesis in favour of positive (negative) correlation than desirable. This re-

sult is in conflict with Bartels and Goodhew. In contrast to each, McCabe (1989), using

generalisations of the Tukey-lambda distributions, found the von-Neumann ratio extraor-

dinarily robust to both skewness and kurtosis. Bera and Jarque (1981) also found the DW

and Lagrange Multiplier (LM) tests very robust.

For large samples, Box (1953) showed that the Type I error of Bartlett's test, a mod-

ification of the Likelihood Ratio (LR) test of equality of variances in several independent
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normal populations, depends heavily on kurtosis. Small sample examination of, the ro-

bustness of some traditional tests for equality of variances, based on Bartlett's test and

modifications of the F test, have been made by Gartside (1972), Brown and Forsythe

(1974), Conover, Johnson and Johnson (1981) and Rivest (1986) in the context of the

analysis of variance model. Examining tests of heteroscedasticity in the linear regres-

sion model, Barone-Adesi and Talwar (1983) found those of Bartlett, Glesjer, Kendall

and Goldfeld and Quandt sensitive to the xi, t4 and double exponential distributions, but

Johnston's rank and Bickel's tests reasonably robust. Ali and Giacotto (1984) examined

the robustness of non-parametric rank tests, Bickel's robust tests, and the parametric tests

of Goldfeld and Quandt (GQF), Ramsey, Glesjer, White, and Breusch and Pagan, as well

as the LR test. For disturbances from the skewed lognormal distribution, most of the

non-parametric tests and the Glesjer, LR and Breusch and Pagan tests were either robust

or moderately so, but the Ramsey and GQF tests were not. For long-tailed distributions,

the non-parametric tests were reasonable with t3, but not with the Cauchy distribution,

and the Glesjer, White and Bickel tests were at best moderately robust with the Cauchy

distribution. They considered the Bartlett and GQF tests sensitive to both skewness and

kurtosis. In contrast, again, McCabe (1989) found the GQF test to be 'quite good' for the

skewed case but not robust to light or heavy tails.

Several gaps appear in this literature. In particular, very little is known of the robust-

ness of recent parametric tests of autocorrelation and heteroscedasticity, which are based

on small sample properties. Further, some conclusions of past studies are in conflict. The

following is an attempt to rectify these problems.
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3. Outline of the Empirical Evaluation

In order to evaluate the accuracy of the normal critical values under alternative error

distributions, empirical sizes were computed in a Monte Carlo simulation, and compared

with the nominal size for a variety of tests and X matrices. These were computed in the

context of the general linear regression model for testing against first-order autoregres-

sive (AR(1)) and simple fourth-order autoregressive (AR(4)) disturbances, and additive

heteroscedasticity of the form

var(ut) = ut2= cr2 f(1 )zt), (1)

where f is an unknown monotonically increasing non-negative function and zt is a non-

stochastic variable. The methodology reflects that of Evans and King (1985a), in which

the accuracy of standard approximations to the critical values of a variety of tests for such

disturbances was evaluated.

The actual and artificial X matrices considered are designed to reflect a range of

behaviour characteristic of economic variables, as well as extreme behaviour to highlight

any differences which may occur. All have been used previously in experiments con-

cerning tests of autocorrelation and heteroscedasticity (see King (1985) Evans and King

(1985a,1985b,1988), Griffiths and Surekha (1986)), and most in the empirical studies just

discussed which examine the robustness to non-normality of these tests. The three real

• design matrices contain a constant term and two other regressors which are reasonably

typical economic time series data, with various degrees of trend and seasonality. These

regressors were: the annual spirit income and price data of Durbin and Watson (1951), as

used by Smith (1987) and Knight (1985); the weakly seasonal quarterly Australian Con-

sumer Price Index (CPI), and also lagged one quarter (as in Smith); and the quarterly

6



Australian capital movements, private and government, which are highly seasonal and sub-

ject to large fluctuations. Four artificial regressor matrices, each comprising a constant

and a regressor determined from a time trend and the normal, lognormal and uniform

distributions respectively, were used. These artificial data sets represent a range of alter-

native behaviour: a time trend is used often to characterise slowly evolving non-seasonal

economic time series and was used by Bartels and Goodhew (1981) and Barone-Adesi and

Talwar (1983); the lognormal distribution is employed in heteroscedasticity experiments

to represent skewed data characteristic of cross-sectional data (see Griffiths and Surekha

(1986) and McCabe (1989)); and the results of Cavanagh and Rothenberg(1985) suggest

the inclusion of normal regressors, which are also used by Smith. Uniform data has been

used by Ali and GiacottO (1984). Small (n = 24) and relatively large (n = 64) sample sizes

were examined for each set of regressors.

• Some invariance results simplify the analysis and extend the applicability of the con-

clusions reached. All tests considered depend on least squares residuals, which depend on

the true (here known) disturbances and the X matrices, and not on the y or 3 vector.

Hence there is no need to specify parameter values for the simulations. Further, as a con-

stant term was included in each regressor matrix, the least squares residuals summed to

zero, such that the tests were invariant to the mean of the error distribution. Invariance

also applied to the disturbance variance, (72, as most of the test statistics considered can

be expressed as a ratio of quadratic forms in disturbances. The others involved ratios of

squared residuals. It is reassuring to know that these tests are invariant to transforma-

tions, considered by Durbin and Watson (1971), of the form y -Toy X-y, (where 70 is

a scalar, and 7 a k x 1 vector). As a consequence, they are invariant to a change in scale

of the data and to multicollinearity (Evans (1985)).
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approximate version (s a). These tests reject Ho N(0, 'Li) for small values of the

ositive autotorretation. Against

negative autocorrelation, Ho is rejected for large values, except for the point optimal tests,

for which the analogous sl(-.5) and s4(-.5) tests are usesd.-

The tests against AR(1) disturbances considered were the first-orcier Durbin and Wat-

son. (1950) test (DW1), its Locally Best Invariant (LBI) alternative (DW1alt) of King

(1981), the Berenblut and Webb (1973) test (BW1) and King's (1985) point optimal test

(s1(.5)). For AR(4) disturbances the fourth order analogues of these first-order tests con-

sidered were the Wallis (1972) (DW4) test, the alternative LBI test (1)W4alt) Webb's

(1973) test (BW4) and King's (1984) s4(.5) test. The tests of heteroscedasticity included

Szroeter's (1978) bounds test (SZ) and the Evans and King (1985b,1988) point optimal

s(5.0) and approximate sa(2.5) tests, the one-sidedLM test (LM1), which is LBI, and its

test statistic in the case of heteroscedastici.

These tests can be classified into two classes, and can be expressed as a ratio of

quadratic forms in residuals and in disturbances. - Tests which are based on OLS residuals

include DW1, DW1alt, DW4, DW4alt, LM1, SZ and a"and can be written in the form

r = i2l.A.11/11111 = (2)

where A is a real symmetric n x n matrix, M = I — X(X1X) 1X' and B = MAM. Tests

also based on Generalised Least Squares (GLS) residuals include sic 5) BW1 4(.5) BW4,

s(5.0) and 2.5), which can be written in t

where E is a positive definite n x n matrix; ./.1 is, the.

covariance matrix E, and here B =E-1 —

vector of GLS residuals, assuming

From Durbin and



Watson's (1950) lemma, under normality, the a significance level critical value can be

obtained by solving for r* in

Pr(r <r*) = Pr[u1(B — r*.nu < O] = a.

The Breusch and Pagan (1979) LM test (BPtrue) was also used to test heteroscedasticity

of the form (1). Here the true a level significance points are obtained by solving

Pr(BPtrue > r*) = Pr(ieDfilieft)> 7,012)-1- Pr(feRalleil < —r*112)— a

/ for r*, where D = diag{n(zt — 2)1[2E( — i-)2]h12},t 1, n. True critical values

were computed for each of these tests at significance levels a = 0.01, 0.05, 0.10, assuming

normally distributed, disturbances, using an approach analogous to that of Koerts and

Abrahamse (1969) for the Durbin-Watson test, with maximum integration and truncation

errors set to 10-6.

The other five tests for heteroscedasticity studied used tabulated critical values, based

on the assumption of normality, such that the nominal Type I error was a. These tests

were: the Goldfeld and Quandt (GQF) (1965) test which used F(n—c-20/2,(n—c-20/2,

with c = mod(nI5) omitted central observations; the asymptotic version (SZasym) of the

Szroeter test using N(0,1) recommended by Griffiths and Surekha (1986); White's (1980)

asymptotic test using X2k(k+i)/2-1., • the Breusch and Pagan test (BPasym), and its modified

`studentised' version (BPmod), each using the asymptotic x critical value.

Breusch and Pagan, Godfrey (1978) and Griffiths and Surekha found the asymp-

totic Breusch-Pagan test rejected the null hypothesis less frequently than indicated by

its nominal size. Bickel (1978), Koenker (1981), Koenker and Bassett (1982) suggested



this test is sensitive to slight departures (particularly kurtosis) from normality and pro-

posed a ̀studentised' version, with the correct size for any disturbance law. The Breusch

and Pagan test is given by the explained sum of squares of a regression of the vector of

squared OLS residuals, 4, on an intercept and the postulated deflator zt in (1), divided

by 23-4 = 2(111 II n)2 . The modified test (BPmod) substitutes an estimate of the variance

of the squared disturbances in the denominator, based on the fact that var(u) = 2.74

under normality. The two tests are asymptotically equivalent and the modified version

can be obtained as nR2, where R2 is the multiple correlation coefficient of the regression

of ü on an intercept and zt. White's (1980) statistic is also of the form nR2, where

now R2 corresponds to the regression of ft on all products and cross products of the X

regressors. Note that the modified BP and White's test require only second and fourth

moments, not normality. Szroeter's asymptotic test (SZasym) is simply the approximately

LBI test of King (sa), transformed by a function of the sample size (see Judge, Griffiths,

Hill, Lutkepohl and Lee (1985)).

Knowledge of the deflator zt is required for some of the heteroscedasticity tests, and

for the purpose of this experiment, this variable was assumed to correspond to the first non-

constant regressor. For all the heteroscedasticity tests, regressors were ordered according to

increasing values of zt. The accuracy of these "normal" critical values against non-normal

distributions was investigated with 2000 replications, such that the sampling standard

error was (a(1 a)/2000)1/2. (Some experiments were conducted with 10000 replications

also, but the results did not differ significantly from those using only 2000).

The experiment was undertaken in four stages, each examining a different range of

alternative error distributions which are specified below. The first consisted of standard
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statistical distributions, reflecting a range of 'typical' and extreme behaviour, as well as

those of other robustness studies. The later stages all considered distributions designed

for Monte Carlo studies by Ramberg, Dudewicz, Tadikamalla and Mykytica (1979). These,

denoted the RST family of distributions by McCabe, are a generalisation of Tukey's lambda

distributions. In these e3cperiments, each had a zero mean and unit variance and were

characterised by the skewness and kurtosis coefficients. Departures from normality have

generally been considered in terms of kurtosis and skewness, though for some distributions

3 this may not be sufficient. Skewness is generally measured by fes-, p3 / 2/p2 , where pi is

the ith moment about the mean, and symmetric distributions have a value zero. Kurtosis is

measured by 02 = [L4/ p, and the normal distribution has a value 3, with longer (shorter)

tailed distributions having larger (smaller) values.

The first stage of the experiment considered a range of empirically relevant as well as

extreme disturbance distributions generated from IMSL subroutines:

. standard N(0,1) variates, a benchmark with ,82 = 3, generated by the inverse normal

transformation from routine GGNML.

. Variates from a symmetric short-tailed uniform (0,1) distribution with P2 = 1.8.

Variates from a symmetric Student's t distribution (t(5)) with 5 degrees of freedom,

generated as the ratio of N(0,1) and the square root of a A/5 variate. This distribution

is near normal, but with heavier tails, with /62 = 7.

. Variates from a skewed exponential distribution (Exptl) with scale parameter 2, such

that V73-1 = 2, and /62 = 9, generated from GGEXN.

. Skewed non-negative xl variates (Chisql), with \1,61 = 23/2, and 162 = 15, generated

from G G CHS.

. Symmetric heteroscedastic normal variates, as used by White and MacDonald (1980),
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generated by transforming N(0,1) variates to have a variance equal to that of a xl variate,

with 162 = 8.6.

. Skewed lognormal variates (Lognor), generated as the exponent of N(0,1) variates, with

6,132 = 82.

. Stable errors, generated using GGSTA, with a characteristic exponent of 1.1, and skewed

with parameter 1 (as in Bartels and Goodhew).

. Variates from a fat-tailed symmetric Cauchy distribution, with no finite moments, gen-

erated by GGCAY with zero location, unit scale, and unit shape parameter.

An attempt was then made to isolate systematically the effects of skewness and kur-

tosis by considering the RST distributions used by McCabe. These were: symmetric

(figi = 0) with light ([32 = 2), medium (/32 = 4) and heavy (f32 = 10) tails; right

= 0.5) and heavy right (V-gi = 0.8) skewed, but with 'normal' (132 = 3) kurtosis;

right skewed combined with medium and heavy tails: and heavy right skewed with medium

and heavy tails. Note that the distribution with fig]. = 0,102 = 3 is the approximation to

the normal from the RST distributions. The effect of kurtosis alone was then examined by

considering symmetric distributions, from this same RST family, with increasing degrees

of kurtosis, namely 132 = 2 (light tail), 2.6, 3 ('normal'), 3.4, 4 (medium tail), 5, 6, 7, 8, 9

and 10 (heavy tail), respectively. The distributions for the final experiment reflected these

with systematically increasing kurtosis, except that each was also skewed with = .7.

4. Results

For each of the seven data sets and nineteen tests and under each alternative error

distribution, the tail probabilities for the nominal significance levels, a = .01, .05 and .10,

were determined. Robustness was evaluated in terms of the number of sampling standard

12



errors difference between the empirical and nominal size. With ,2000 replications, these

computed standard errors were .222, .487, .671 for significance levels of 1%, 5% and 10%,

respectively.

Ali and Giacotto declared a test robust at the 5% nominal level if its rejection rate did

not exceed this value by 2. standard errors, and moderately robust if it was less than 7.5%

plus this. value. For Conover, Johnson and Johnson a robust test had a maximum Type I

error rate less than 10% at the 5% level. Neither considered cases of underrejection of the

null hypothesis, which may be more serious. The Pearson and Please (1975) criterion of

"acceptable", requires that the size is in the range 3 - 7% at 5% nominal level and 0 - 2%

at the 1% level, which corresponds to a deviation of just over +4 standard errors. In the

following analysis, the criteria for "robustness" is 2 standard errors, and for "acceptable"

is 4 standard errors, at the relevant significance level.

A sample of results of empirical sizes is given in the accompanying tables for three

data sets, with 64 observations, for tests of positive autocorrelation and heteroscedasticity

with a nominal size of 5%. To relieve congestion, rarely used tests such as 1,11,11, and some

distributions have been deleted. Complete results are available on request.

Table I presents selected results for alternative distributions of a known type. For

tests of autocorrelated disturbances, the size was generally robust for all significance levels

under mild non-normality, as represented by the symmetric, uniform and t(5) distribu-

tions. For the skewed and increasingly kurtotic exponential, heteroscedastic-normal and

A. distributions, results were often within 2 standard errors and, with the exception of

DW4 (and occasionally BW4), the sizes were within the "acceptable" range of 4 standard

errors. Sensitivity increased with increasing departures from normality, especially for lower
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significance levels. With the more extreme lognormal, Cauchy and Stable distributions, all

but the fourth-order tests DW4 and BW4 were "moderately robust", by the Ali and Gia-

cotto standard. For distributions with no finite moments, such as the Stable and Cauchy,

the least-squares assumptions break down. Even then, test sizes were acceptable by the

Conover, Conover and Johnson criterion, for the Cauchy distribution, and (with D1N4 a

borderline case) for the Stable distribution. Tests of negative correlation were similarly

robust to moderate deviations from normality. However, their sizes were more susceptible

to the extreme distributions, with variations of up to 10 standard errors for the extreme

Stable and Cauchy distributions. As expected, sensitivity was heightened for smaller a

values. There did not appear to be significant differences between the results for different

data sets.

As Table I demonstrates, all the tests of heteroscedasticity are highly susceptible to

non-normal disturbances, with the exception of the White and moClified Breusch-Pagan

(BPmod) tests, which are not based on the assumption of normality. The latter appears

the more robust, as the White test was affected by extreme non-normal distributions for

low a values for some data sets. The empirical size of all other tests was too small for the

light tailed uniform distribution, and too large for the heavy tailed distributions, increasing

dramatically and consistently with deviations from normality. None of the tests, derived

under the assumption of normality, could be considered robust or "acceptable", by any

of the two-sided criteria cited above, and the sizes of all but the light tailed uniform

distribution, exceeded even the Conover, Conover and Johnson criterion of 10% at the

5% significance level. The Breusch-Pagan test, with either a true or asymptotic critical

value, was the most afflicted by deviations from normality, with sizes exceeding 50% for the

extreme Stable and Cauchy distributions, and less than 1% for the uniform distribution at

the 5% nominal level.
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Under normality, the empirical size of the White test, using the asymptotic x2 critical

value, was usually too low, and the x2 critical values of the modified BP test did not always

give a reasonable size. Our results also support the previous findings that, under normality,

the Breusch-Pagan test using the asymptotic critical value rejects the null hypothesis less

frequently than indicated by the nominal size.

Tables 2 and 3 display selected results from the examination of the implications for

the tests of different combinations of skewness and kurtosis. The RST distributions were

symmetric, right (11-3-1 = .5) or heavy right (V7-3.1 = .8) skewed, with each of these degrees

of skewness combined with increasing kurtosis, including light (/32 = 2), medium (/62 = 4)

and heavy (132 = 10) tails, respectively. Examples of results for distributions with both

skewness and kurtosis are shown in Table 2, and for symmetric but increasingly kurtotic

distributions in Table 3.1 The distribution denoted normal*, with = 0,/32 = 3, is the

approximation to the normal from the RST family.

As demonstrated in Table 2, autocorrelation tests appeared robust to both skewness

and kurtosis, the size generally being within the 2 standard errors range. The few excep-

tions, all within 3 standard errors and hence quite "acceptable", were generally for tests of

negative autocorrelation, for the more marked departures from normality, i.e. with either a

heavy skew, a heavy tail, or both, suggesting a slight underrejection of the null hypothesis.

Similarly, for symmetric distributions (see Table 3), with kurtosis measures ranging from

2 to 10, the empirical sizes of tests for autocorrelation generally lay within 2 standard

errors of the "normal" size for all data sets. Occasionally the sizes for some AR(1) tests

lay within 3 standard errors, being slightly too high with light-tailed distributions against

positive correlation, and slightly low for fat-tailed distributions and negative correlation.
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Skewness did not appear to be a significant determining factor in 'the size of tests for

heteroscedasticity. With the exception of the White and modified Breusch-Pagan tests,

which were robust to the effect of both skewness and kurtosis, in each comparison, signif-

icant variation corresponded to a change in the kurtosis, rather than skewness. As can be

seen in Table 2, the combination of skewness and kurtosis was similar to that of kurtosis

alone, certainly with respect to the "acceptable" 4 standard error criterion, and usually

within the robust measure of 2 standard errors. As further confirmation, when a skew-

ness factor of fig]. = 0.7 was combined with the RST distributions having systematically

increasing kurtosis, the results did not significantly alter from those shown in Table 3.

A minor exception was for a lighter tail distribution (/62 = 2.6) for some data sets, sug-

gesting a possible slightly counteracting effect, in that the empirical size was less of an

understatement of the nominal value.

A systematic exploration of the effect of kurtosis (see Table 3) highlighted the sen-

sitivity of tests for heteroscedasticity to this factor. Only the White and modified BP

tests were not vulnerable to increasing kurtosis. For all the other tests, the empirical size

was less than the nominal value for light-tailed distributions, and the reverse was true

for heavy tails. The heavier the tails, the greater the divergence from the value expected

under normality. Generally only distributions with small deviations (+ .4) from normal

kurtosis resulted in tests which could be considered "acceptable" and none were robust.

For example, at the 5% level, with 64 observations, the empirical size was generally 1-2%

for light tails, 8-9% for medium tails, and increased almost linearly between up to about

14% for /32 = 8. This effect was most marked for the Breusch-Pagan test with true or

asymptotic critical values, with empirical sizes approximating 20% for some data sets.
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Generally sensitivity of tests decreased for higher levels of significance, which is con-

sistent with other studies, and with intuition, as the tails of the distribution are likely to

be most vulnerable. A similar pattern of behaviour was observed for samples sizes of 24

and 64. In contrast to some other studies, such as Knight and Smith, our findings were

generally true of all X matrices considered, and no marked differences between the results

from the various data sets were apparent.

•• Our results overall suggest that tests against autocorrelated disturbances are usually

robust in the presence of non-normal disturbances, and always "acceptable", except with

very extreme distributions. In contrast, tests for heteroscedasticity appear to be highly

vulnerable to kurtosis, except for the White and modified Breusch-Pagan test, which specif-

ically allow for this factor in their construction. The original Breusch and Pagan test, using

either the asymptotic and true critical value, appears most susceptible of all tests to ex-

treme departures from normality. The heteroscedasticity tests which are based on a small

sample justification and which use true critical values, namely, LM1 sa, sa(2.5), s(5) and

SZ, all appear to behave in a similar fashion with respect to both skewness and kurtosis.

With normal disturbances, empirical sizes using asymptotic critical values were often poor

for the White test, the Breusch-Pagan test (BPasym) and its modification (BPmod), and

the asymptotic Szroeter (SZasym) tests, the first two usually being too low.

Overall we found that skewness was not a problem with tests for heteroscedasticity.

In this we concur with McCabe, who found that the GQF test was insensitive to skewness,

but not with the conclusions of Ali and Giacotto and Barone-Adesi and Talwar, who

chose the lognormal and xi distributions, respectively, to represent skewed distributions.

Each of these distributions also has a high kurtosis measure, so their conclusions do not
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necessarily follow. Finally the lack of robustness to kurtosis, found in traditional tests of

heteroscedasticity, is also shared generally by more recent tests based on a small sample

justification.

5. Concluding Results

This study has attempted a comprehensive examination of the effects of non-normal

error disturbances on the size of tests for non-spherical disturbances in the general linear

regression model. It is reassuring that tests for autocorrelated disturbances appear rela-

tively robust to departures of normality of the disturbances, except for the most extreme

distributions. This appears to be the case for data with a range of characteristics.

Previous findings that high kurtosis of the error distribution tends to lead to higher

rejection rates of the null hypothesis for tests of heteroscedasticity have been confirmed and

also apply to more recent tests based on small sample properties. This sensitivity is not

surprising: distinguishing between "normal" distributions with a2 generated randomly or

with a few outliers and thick-tailed "non-normal" distributions may be difficult. In contrast

to the conclusions of some other studies, skewness does not appear to be a critical factor

for tests of heteroscedasticity. Of course, solving the problem of the size of the test does

not guarantee high power, and this aspect will be the subject of future research.
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4

Table 1
Sizes of tests under alternative standard distributions
64 observations, nominal size 5%, standard error .5

/Trj3= Uniform Normal t(5) Expt1 Chisql Lognor Stable Cauchy
V 1 2 0,1.8 0,3 0,7 2,9 2.8,15 6,82

Lognormal data
DW1 5.5 5.2 5.4 5.7 5.8. 6.7 5.8 4.5
DW1alt 5.6 5.2 5.0 5.14.9 6.2 4.1 2.4
s1(.5) 5.5 5.0 5.2 5.3 5.4 6.1 5.1 3.1
BW1 5.5 5.0 5.1 5.6 5.8 .6.7 5.8 4.5
DW4 5.1 5.3 6.3 7.0 7.2 8.6 10.5 9.9
DW4alt 5.8 5.7 5.5 6.2 4.9 5.4 3.5 1.9
s4(.5) 5.7 5.6 5.7 6.2 5.8 6.3 .6.1 ' 5.1
BW4 5.7 5.9 6.3 6.8 6.5 7.8 7.7 6.2
sa 1.3 5.1 10.8 16.8 21.3 26.2 33.7 35.7
sa(2.5) 1.2 5.0 11.1 18.0 23:4 30.1 38.9 40.6
s(5.0) 1.7 5.0 10.0 17.8 23.5 29.6 40.0 40.9
SZ 1.2 5.0 11.0 16.9 21.8 27.4 34.9 37.1
SZasym 1.4 5.3 11.3 17.3 21.7 26.9 33.9 35.9
GQF 1.4 4.7 11.7 17.2 23.7 30.0 37.5 40.5
BPtrue .7 5.0 13.3 21.0 29.5 39.4 51.6 54.4
BPasym .3 3.8 11.1 17.1 26.3 35.6 49.9 52.5
BPmod 5.8 3.6 3.7 4.6 5.1 5.3 5.9 5.6
White 4.0 3.9 4.9 5.2 6.2 6.0 5.5 4.4

DW1
DW1alt
s1(.5)
BW1
DW4
DW4alt
s4(.5)
BW4
sa
sa(2.5)
s(5.0)
SZ
SZasym
GQF
BPtrue
BPasym
BPmod
White

DW1
DWialt
s1(.5)
BW1
DW4
DW4alt
s4(.5)
BW4
sa
sa(2.5)
s(5.0)
SZ
SZasym
GQF
BPtrue
BPasym
BPmod
White

5.7
5.7
5.7
5.8
5.1
5.7
5.5
5.5
1.4
1.2
1.1
1.4
1.2
1.4
.5
.5
5.6
5.3

Trend data
5.3 5.2 5.4
5.4 5.0 4.9
5.2 5.0 5.1
5.3 5.2 5.4
5.4 6.0 6.5
5.5 5.5 6.0
5.2 5.7 6.3
5.2 5.9 7.1
4.8 10.9 17.3
4.9 11.2 17.9
4.9 11.2 18.2 .
4.7 10.9 17.2
4.7 10.6 16.9
4.8 11.0 16.9
4.7 15.4 25.0
4.0 14.8 24.0
4.6 3.8 5.1
4.4 4.5 4.8

5.9
5.3
5.7
6.0
7.7
5.3
6.2
6.6
21.5
23.6
25.0
22.1
21.1
23.5
34.2
33.4
5.0
5.3

7.1
6.0
6.5
7.1
8.3
5.2
.6.4
7.4
26.6
30.4
31.0
27.5
26.4
29.4
46.1
45.8
4.7
6.0

6.1 4.4
4.2 2.4
5.2 3.3
6.1 4.4
10.2 9.5
3.8 1.6
6.3 5.6
7.5 6.0
34.0 36.0
39.3 41.1
41.3 43.3
35.1 37.2
33.9 35.8
37.4 40.2
62.8 66.1
61.7 65.7
3.3 2.4
6.5 6.0

5.4 5.4
5.3 5.1
5.5 5.0 5.2
5.6 5.3 5.1
5.3 4.9 6.3
5.5 5.7 5.6
5.7 5.5 6.2
5.8 5.4 6.5
1.4 4.7 11.1
1.2 4.7 11.1
1.3 4.6 11.1
1.4 5.0 10.9
1.2 4.4 10.6
1.4 4.8 10.9
.6 4.9 14.1
.5 4.4 13.6
5.5 4.4 3.6
5.6 4.4 4.4

Uniform data
5.1 4.8
5.2 4.5

4.8
5.0
6.6
5.8
6.0
6.4
17.1
18.0
18.0
17.1
16.6
16.9
25.0
24.3
5.1
5.1

5.9
5.0
5.5
6.1
7.8
5.0
6.3
6.7
21.6
23.5
23.9
22.2
20.7
23.7
33.8
32.7
5.6
5.3

7.3
5.9
6.2
7.0
8.3
5.0
6.0
7.2
26.6
30.4
30.6
27.4
26.2
29.5
45.4
44.8
5.2
6.1

6.0 4.7
4.2 2.4
5.2 3.2
6.0 4.7
10.2 9.6
3.8 1.9
5.7 4.6
7.3 6.1
34.1 36.1
39.2 41.3
39.8 41.9
35.2 37.1
33.6 35.7
37.4 40.3
62.6 65.5
61.8 64.9
5.3 4.1
7.4 7.4



Table 2
Sizes under distributions with right skewness and tail kurtosis

64 observations, nominal size 57,, standard error .5

2=

normal tail medium tail
normal* skew heavyskew skew heavyskew
0,3 .5,3 .8,3 .5,4 .5,10

heavy tail
skew heavyskew
.8,4 .8,10

Lognormal data
DWI 5.6 6.1 5. 5.6 5.8 5.3 5.4
DW1alt 5.5 6.0 5.7 5.6 5.7 5.2 5.2

si(.5) 5.4 5.5 5.6 5.6 5.5 5.1 5.2

BW1 5.5 5.7 5.7 5.5 5.7 5.3 5,4

DW4 4.9 4.9 4.9 5.0 5.0 5.1 5.5

DW4alt 4.6 4.7 4.5 4.5 4.6 4.6 4.7

s4(.5) 4.4 4.4 4.6 4.4 5.0 4.5 4.5

BW4 4.3 4.2 4.5 4.5 4.7 4.6 4.5

sa 6.1 6.0 6.0 9.3 9.1 14.5 14.0

sa(2.5). 6.1 6.0 6.3 9.5 9.1 14.7 14.6

s(5..0) 5.7 6.0 6.5 7.9 8.2 12.6 12.1

SZ 6.3 5.7 6.0 9.3 9.1 15.2 14.6

SZasym 6.4 6.4 6.2 9.7 9.6 14.9 14.4

GQF 6.1 6.1 5.9 9.3 8.9 14.3 14.5

BPtrue 6.0 6.6 6.3 9.7 10.2 17.8 17..4

BPasym 4.6 4.9 4.8 7.9 8.0 15.6 15.3

BPmod 4.2 5,4 6.0 4.9 5.0 4.5 4.9

White 4.4 5.1 5.6 4.5 5.2 5.0 5.2

Trend data

DW1. 5.8 5.8 5.8 5.8 5.7 5.5 5.5

DW1alt 5.9 5.8 5.9 5.7 5.6 5.0 5.3

s1(.5) 5.7 5.9 6.1 5.7 5.5 5.2 5.4

BW1 5.8 5.8 5.8 5.7 5.6 5.5 5.5

DW4 4.8 4.7 4.8 4.8 5.1 5.4 5.6

DW4alt 4.9 4.7 4.9 4.8 5.0 4.6 4.5

s4(.5) 4.7 4.6 4.9 4.9 4.5 4.6 4.8

8W4 4.5 4.6 4.8 4.7, 4.8 4.4 4.4

sa 6.1 6.1 6.1 9.7 9.4 14.3 14.0

sa(2.5) 6.1 5.9 6.7 9.4 9.1 14.5 14.3

s(5.0) 6.0 6.1 6.3 8.7 8.8 14.2 13.9

SZ 6.2 5.9 6.2 9.1 8.9 151 14.5

SZasym 5.9 5.9 5.9 9.4 9.3 14.0 13.7

GQF 6.3 6.0 5.9 9.1 8.7 14.7 14.5

BPtrue 5.8 5.9 6.9 10.6 11.0 21.3 21.1

BPasym 5.6 5.3 6.3 10.2 10.3 20.6 20.5

BPmod 5.4 6.0 6.8 5.8 5.8 4.7 4.9

White 4.9 5.7 6.5 5.1 5.6 4.9 5.4

Uniform data
DW1 6.0 6.0 5.8 6.2 5.9 6.0 6.0

DW1alt 6.0 6.0 6.2 6.0 5.8 5.9 6.0

s1(.5) 6.0 5.8 6.0 6.0 6.0 5.7 5.7

BW1 5.9 5.8 5.8 5.8 5.8 5.7 5.8

DW4 4.8 5.0 4.8 4.9 5.0 5.2 5.3

DW4alt 4.6 4.9 4.7 4.7 4.6 4.8 4.8

s4(.5) 4.4 4.9 5.0 4.7 5.0 4.6 4.6

BW4 4.6 4.8 5.0 4.9 4.9 4.6 4.9

sa 6.0 6.2 6.2 9.7 9.5 14.3 13.9

sa(2.5) 6.1 5.9 6.8 9.2 9.4 14.3 14.5

s(5.0) 6.2 5.9 6.6 9.1 9.2 14.5 14.6

SZ 6.0 5.8 6.4 9.1 9.0 15.1 14.4

SZasym • 5.6 5.7 5.7 9.0 . 9.0 13.6 13.3

GQF 6.3 6.2 6.2 9.1 8.7 14.7 14.6

BPtrue 5.4 5.7 6.6 11.0 11.7 21.3 20.9

BPasym 4.9 5.3 6.2 10.1 11.1 20.4 19.9

BPmod 5.3 5.7 6.8 5.6 5.9 5.4 5.1

White 4.7 5.7 5.8 4.8 5.6 4.8 4.7

* This is the normal approximation from the RST distributions.



Table 3
Sizes under symmetric distributions with increasing tail kurtosis

64 observations, nominal size 57., standard error .5

iTng = light normal* medium --- increasing kurtosis --- heavy

v 1 2 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,10

Lognormal data
DWI 5.6 5.6 5.5 5.5 ' 5.4 5.4 5.3 5.3

DWialt . 5.5 5.5 5.5 5.3 5.2 5.3 5.3 5.2

31(.5) 5.4 5.4 5.4 5.2 5.3 5.3 5.3 5.3

BW1 .5.4 5.5 5.5 5.4 5.4 5.3 5.3 5.3

DW4 4.6 4.9 5.0 5.0 5.2 5.2 5.2 5.2

DW4alt 4.8 4.6 4.5 4.7 4.6 4.6 4.5 4.3

s4(.5) 4.7 4.4 4.3 4.3 4.3 4.2 4.2 4.3

BW4 4.3 4.3 4.4 4.4 4.4 4.3 4.3 4.4

sa• 1.9 6.1 9.4 11.3 12.3 13.1 13.6 14.3

sa(2.5) 2.1 6.1 9.2 11.3 12.9 13.6 14.0 14.8

s(5.0) 2.6 5.7 8.1 9.6 10.6 11.4 11.9 12.6

SZ 1.7 6.3 9.3 11.3 12.9 13.7 14.4 15.2

SZasym 2.0 6.4 10.0 11.6 12.6 13.3 14.3 14.8

GCIF 2.2 6.1 8.9 11.0 12.4 13.3 14.3 14.6

BPtrue 1.4 6.0 10.1 13.3 15.3 16.8 17.5 18.2

BPasym .9 4.6 8.0 10.5 12.6 14.2 14.9 15..5

BPmod 5.5 4.2 4.4 4.2 4.3 4.3 4.2 4.3

White 4.6 4.4 4.6 4.7 4.7 4.7 4.7 4.8

Trend data
DW1 5.7 5.8 5.6 5.5 5.4 5.6 5.7 5.7

DW1alt 5.6 5.9 5.5 5.4 5.3 5.4 5.4 5.2

31(.5) 5.6 .5.7 5.5 5.3 5.2 5.4 5.5 5.4

BW1 5.6 5.8 5.6 5.5 5.4 5.6 5.7 5.7

DW4 4.4 4.8 4.9 5.2 5.1 5.2 5.5 5.5

DW4alt 4.7 4.9 5.0 4.7 4.7 4.7 4.7 4.7

s4(.5) 4.5 4.7 4.6 4.5 4.4 4.4 4.5 4.5

BW4 4.4 4.5 4.5 4.5 4.5 4.5 4.5 4.5

sa 1.7 6.1 9.2 11.0 12.3 13.4 13.9 14.2

sa(2.5) 2.0 6.1 9.1 11.0 12.6 13.1 13.7 14.3

s(5.0) 2.0 6.0 8.8 10.9 12.2 13.2 13.9 14.6

SZ 1.7 4.6 9.2 11.2 12.6 13.4 14.3 15.3

SZasym 1.5 5.9 8.9 10.8 12.1 13.0 .13.6 14.1

GC1F 2.2 6.3 9.0 10.9 12.3 13.4 14.4 14.8

BPtrue .9 5.8 10.4 14.8 16.9 18.3 20.1 21.2

BPasym .8 5.6 10.0 14.3 16.5 18.1 19.3 20.6

BPmod 5.3 5.4 5.2 4.9 4.9 4.8 4.6 4.6

White 5.2 4.9 4.5 4.7 4.4 4.4 4.4 4.3

Uniform data

DW1 5.7 6.0 5.9 5.75.7 5.8 6.0 6.0

DW1alt 5.9 6.0 5.9 5.9 5.7 5.7 5.7 5.7

s1(.5) 5.8 6.0 5.8 5.7 5.8 5.7 5.6 5.6

BW1 5.9 5.9 5.6 5.7 5.6 5.6 5.5 5.5

DW4 4.5 4.8 4.8 4.8 4.9 4.9 4.9 5.0

DW4alt 4.7 4.6 4.6 4.7 4.7 4.6 4.6 4.6

s4(.5) 4.8 4.4 4.3 4.3 4.4 4.2 4.1 4.1

BW4 . 4.5 4.6 4.6 4.5 4.5 4.5 4.7 4.6

sa 1.6 6.0 9.1 11.0 12.1 13.2 13.9 14.4

sa(2.5) 2.1 6.1 9.1 11.1 12.7 13.2 13.8 14.3

s(5.0) 2.1 6.2 8.9 11.3 12.4 13.2 13.9 14.3

SZ 1.6 6.0 9.2 11.2 12.8 13.5 14.1 15.4

SZasym 1.5 5.6 8.7 .10.4 11.8 12.5 13.5 13.9

GqF 2.3 6.3 9.2 10.9 12.4 13.4 14.3 14.7

BPtrue 1.1 5.4 10.7 15.0 17.2 19.1 20.5 21.3

BPasym .9 4.9 9.8 14.1 16.6 18.3 1E5 20.6
BPmod 5.3 .5.3 4.8 4.9 4.9 4.9 4.8 4.8

White 5.1 4.7 4.9 4.6 4.7 4.6 4.7 4.8

* This is the normal approximation from the RST distribution.
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