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Abstract: The genesis of the work on this family of distributions

was the paper by Burr 1942, in which he aimed to generate

distributions that could take on a wide variety of shapes and yet

remain tractable to work with. Subsequent work with the family has

been sporadic and has concentrated on the univariate case. It is

also spread over a wide range of disciplines. Here we survey the

literature concerning the Burr family of distributions and

summarise and extend the results concerning two members of the

family, the Burr types II and XII. We also develop some new

univariate and multivariate Burr type II distributions, which

being a generalisation of the Logistic, may prove useful in future

applications.
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1. Introduction

The genesis of the work on this family of distributions was the

paper by Burr, 1942, in which he was interested in generating

distributions that could take on a wide variety of shapes and yet

remain tractable to work with. Subsequent work with this family

has been sporadic and has concentrated on the univariate case. It

is also spread over a wide range of disciplines. The purpose of

this paper is to pull together many of the strands of work with

these distributions and to propose some new forms of Burr

distributions.

The Burr family are defined by solutions to a differential

equation in the cumulative distribution fupction. One particular

solution, which gives rise to the Burr Type XII (B12)

distribution, has been applied in a variety of areas. Indeed the

B12 distributions are often simply called Burr distributions in

the literature. Burr introduced the family to fit histograms, but

since the B12 is a particularly flexible distribution the

applications have proved to be much wider. Applications may be

found in the areas of quality control, duration or failure time

modelling, income distribution modelling, bioassay and hypothesis

testing.

This paper surveys the properties and applications of the B12 and

Burr Type II (82) families of distributions in both the univariate

and multivariate cases. In contrast to B12 distributions,

relatively little attention has been paid in the literature to B2
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distributions except in the area of binary choice models. The B2

distribution is of considerable interest in these models because

it is a one parameter generalisation of the Logistic distribution.

It is a flexible distribution and has wide moment coverage. The B2

distribution may well be useful in many other univariate and

multivariate applications.

Useful summaries of the properties of the B12 distribution in the

univariate case may be found in Rodriguez 1977, 1982, Tadikamalla

04.0

1980b and Voda 1982. Comparatively few papers have been written

about multivariate versions of any Burr distributions. They

include work by Takahasi 1965, Durling 1969, 1975 and Johnson 1987

on the B12 distribution and by Rodriguez 1980, and Rodriguez and

Taniguchi 1980 on the bivariate B3 distribution. This paper

reviews and extends this literature by presenting a number of new

results on B2 and multivariate Burr distributions, which may prove

useful in further applications.

Section 2 of this paper summarises the properties of univariate

B12 and B2 distributions, considers some of the links between the

Burr and other well known distributions, and proposes a new

generalised B2 distribution, which turns out to coincide with the

generalised-F distribution. In section 3 we summarise some of the

diverse applications of the B12 distribution and mention the one

area where the B2 has found some application, namely binary choice

modelling. The properties of multivariate B12 and, in particular,

multivariate B2 distributions are found in section 4. Again new,
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more flexible, variants on the 82 form are proposed with a view to

future applications. The section concludes by investigating the

link between multivariate B12, B2 and other distributions. We then

consider the few applications of multivariate B12 and B2

distributions in section 5, and finally section 6 includes some

concluding remarks.

2. Univariate Distributions

Burr 1942 described a number of forms of cumulative distribution

functions which might prove to be useful for fitting data. The

purpose of using cumulative distribution functions was to

facilitate mathematical analysis whilst attaining a reasonable fit

to the data using a method of moments. The system of distributions

was introduced by considering distribution functions satisfying

the following differential equation:

dF = F(1 - F)g(x)dx,

where 0 F 1 and g(x) is a suitable function, non-negative over

the domain of x. The solution to this differential equation, for

given g(x), is obtained as:

1

where

(1 + e
-G(x)

)

G(x) = fx g(u)du .

-co

Burr gave 12 solutions to this differential equation

(corresponding to choices of g(x)) which we list below:

(I) F(x) = x 0 < x < 1

(II) F(x) = (1 + e-x)-k
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(III) F(X) 
= (1 + xc)—k

(IV) F(X) = [1 + 
(c_11/c]—k

X

(V) F(x) = (1 + ce
—tan())-k

(1 4. e—ksinh(x),--k
(VI) F(x) =

(VII) F(x) = 2-k(1 + tanh(x))k

(VIII) F(x) = 1e 
Jj

(IX) F(x) = 1 -
2

x > 0

0 < x < c

-n < x < it

2 + c[(1 
4. ex)k _ 1]

(X) F(x) = (1 - e
-x2r

x > 0

(XI) F(x) = [K - 2.i sin(2nxd k 0 < x < 1
1

(XII) F(x) = 1 - (1 + xc)_k x > 0

where c, k are positive parameters and -co- < x < co unless otherwise

stated. Putting x = (z - µ)/a would introduce scale and location

shift parameters, if required. We have chosen not to include them.

The twelve distributions defined by these distribution functions

may conveniently be called the Burr Type I - XII distributions.

The Burr Type XII Distribution

If X is distributed as Burr Type XII with parameters c and k we

will use the notation X - B12. For this distribution we have:

F(x) =
1 — (1 + xc)k x > 0

c,k >
0 x 0

kcx
c-1

f(x) -   x > 0.
(1 + xc)k+1

5



This density function is unimodal with mode at:

1/c
[  c - 1

(kc + 1)

if c > 1 and L shaped if c 1. Its moments are given by:

E(Xr) = kB(r/c + 1 , k - r/c)

where B(m, k) is the Beta function. Notice that there is an

existence condition for the moments of X, that ck > r.

It can be shown by means of a standardised third and fourth moment

,g ) coverage diagram that the B12 distribution covers a wide
1 2

range in the 4131,132 plane (see Rodriguez 1977, Tadikamalla 1980b -

both these papers have an incorrect limit value for g2 in their

figures (it should be 5.4, see Sugiura and Gomi 1985)).

As mentioned above the B12 distribution may be fitted by the

method of moments in which values of c and k are matched to the

sample mean, variance, skewness 413 and kurtosis g measures to
1 2

produce the best fit for the data (Burr 1973 gives a table of

values for this purpose). We can also note the result that the

upper and lower tail area integrals for this density are Gauss

Hypergeometric functions (see Abramowitz and Stegun 1965).

Dubey 1968 has provided an alternative derivation of the B12

distribution. He assumes that, conditional on 0, the random

variable X follows a Weibull process with scale parameter 0 and

that 0 follows a Gamma distribution. The resultant unconditional

density is of the B12 form.
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The Burr Type II Distribution

If X is distributed as Burr Type II with parameter k we will use

the notation X - B2. For this distribution we have:

F(z) = (1 + e-z)-k

f(z) -
ke
-z

•(1 + e-Z)k+1

-03 < z < co k > 0,

Notice that this distribution is a generalisation of the Logistic

collapsing to that of the Logistic when k = 1. Indeed it is

sometimes termed the Generalised Logistic distribution (see inter

alia Dubey 1969, Zelterman 1987). The introduction of this extra

parameter allows for a variety of shapes for the pdf, as shown in

Figures 1 and 2.

The Moment Generating Function (mgf) for this distribution is

given by:

M(t) = kB(1 - t, k + t),

from which we obtain:

A = A = 0(k) - 0(1)

µ = T
2

2 
=0'(k) 01(1)

(0"(k) 0"(1)) 4131 -
(Iy(k) +

(0"/(k) + 0"'(1)) +3
Fj2

(01(k) 01(1))2

(details of the polygamma functions (P
(r)
) above may be found in

Abramowitz and Stegun 1965), which enables us to draw the moment

coverage diagram (Figure 3). This shows that the B2 distribution

has a wide range of third and fourth moment coverage as traced out



by the curve from (-2, 9), as k 4 0, to (1.14, 5.4), as k 4 co,

passing through (0, 4.2) corresponding to the Logistic when k = 1.

Thus the B2 distribution generalises the coverage of the Logistic

distribution. As with the B12 distribution the upper and lower

tail area integrals for this distribution are found to be Gauss

Hypergeometric functions.

The B2 distribution may also be derived through a mixing argument.

Assume that conditionally on 0, the random variable Z follows a

Log Weibull (or Extreme Value) process. and that 0 follows a Gamma

distribution then the resultant unconditional density is of the B2

form. Such a mixing argument allows the use of the following

formula to compute the moments of the distribution:

E (Zr) = E
0 
E
Z 
(Zr 10) .

Finally note that Dubey 1969 uses a Generalised Extreme Value

distribution mixed with a Gamma distribution to yield a slightly

more general B2 distribution than that derived here.

Links With Other Distributions

It is useful to state some of the relationships between particular

Burr distributions (i.e., Type XII, Type III and Type II) and some

other well known distributions (see Fry 1988 for details).

Tadikamalla 1980b investigated the relationships between Burr and

related distributions, concentrating his attention on the Type III

and Type XII distributions. His work may be viewed as a complement

to the list given here.

It is not surprising that since the B2, B3 and B12
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distributions derive from particular solutions to the same

differential equation that there is an inter-relationship between

them. Namely that if X - B12 then Y = X-1 - B3 and Z = clogY - B2.

The B12 distribution is related through variable transformations

to a wide range of well known distributions. If X - B12 then:

i) U = (1 + Xc)-1 has a Beta Type 1 distribution with

parameters k and 1.

ii) V = Xc has a Beta Type 2 (Pearson Type VI) distribution

with parameters k and 1.

iii) W = kXc has an F distribution with (2, 2k) degrees of

freedom.

Analogously, we may link the B2 distribution to a range of

non-Burr system distributions. If Z B2 then:

i) S = (1 + e-z)-1 has a Beta Type 1 distribution with

parameters k and 1.

ii) T = e-z has a Beta Type 2 distribution with parameters k

and 1.

iii) R = ke-z has an F distribution with (2, 2k) degrees of

freedom.

-
iv) Q = log(1 + e

z 
) has an Exponential distribution with

mean 1/k.

Another family of distributions to which this version of the B2

distribution is related is the one parameter exponential family.

For a distribution to be a one parameter exponential family

9



distribution we must be able to write it as:

f(z) = a(k)b(z)e
[c(k)d(z)]

where a(k), c(k) are functions of the parameter k alone and b(z),

d(z) are functions of z alone. It is straightforward to verify

that this may be done for the B2 distribution with the following

choice of functions:

a(k) = k b(z) = e-z ; c(k) = -(k + 1) ; d(z) = log(1 + e-z).

Note however, that it would appear that two or three parameter B2

distributions cannot be written as members of the exponential

family of distributions.

A Generalised Burr Type II

We have seen that the B2 distribution can be related to a Beta

Type 1 distribution with parameters k and 1. An obvious way to

generalise the B2 distribution would therefore be to relate a Beta

Type 1 with parameters k and m to the B2 distribution via the

appropriate transformation.

Let S - Beta Type 1 with parameters k and m. If we consider the

(Logistic) transformation:

S
Z = log(  

1 - S )

we have:

e
-mz

1 
f(z) - k,m > 0, -03 < z < 03.

m) (1 + e-z)k+m

We may regard this as a Generalised Burr Type II (GB2)

distribution with parameters k and m.

10



It is straightforward to find the mgf of the GB2 distribution as:

M(t) -
1

B(m - t, k + t),
B(k, m)

from which we obtain the following moment's:

A = 0(k) - gm)

2
= (k) + (m)

4131 - (0"(k) -

(0'(k) + W(m))312

132 = 3
(0"'(k) +'0"/(m))

(0/(k) + tY(m))2 •

Thus the GB2 distibution extends the moment coverage properties of

the B2 distribution and is a more flexible distribution.

To derive the cumulative distribution function of the GB2

distribution we use f(z) defined above and make the obvious change

of variable in the integration to yield:

F(b) -
1

B(k, m) 
B
1-c

(k
' 

m)

in which B is the incomplete Beta function and where
1-c

1 - C = (1 + e-b)-1. Since the incomplete beta function can also

be written as a Gauss Hypergeometric function we have an

alternative form for the distribution function:

F(b) -
1

F (m, 1-k; m+1; (1 + e-
-b)m 2 1

MB (k, m)(1 
+ e

Prentice 1975, 1976 has suggested the use of the pdf given above

and points out that the density is symmetric if m = k, negatively

skewed for m < k and positively skewed for m > k. Limiting

distributions are Normal (m,k 4 co), Double Exponential (m,k -4 0),

11-



Exponential (m*O, k 4 0), and Reflected Exponential (m40, k*0).

The Logistic distribution coincides with m = k = 1.

3. Univariate Applications

Psuedo Random Sampling

The B12 distribution covers a wide range of distributions in

terms of third and fourth moments. In particular when c = 4.873717

and k = 6.157568 we have 1f3 = 0 and 132 = 3 which coincide with

the Normal distribution (these values of c and k yield

µ = 0.644717 ancro. = 0.16199). The fact that an appropriate choice

of parameter values yields an approximation to the normal

distribution led Burr 1967a to suggest the use of the B12

distribution to simulate random sampling from a Normal

distribution.

The use of the B12 distribution in simulation is not confined to

the Normal distribution. The B12 (and B3) distribution has the

advantage of having simple closed forms for both the distribution

function and its inverse. This fact allows random samples from the

distribution to be easily obtained by the inverse transformation

method. Tadikamalla 1977 used a four parameter distribution

(including scale and location parameters) as an approximation to

the Gamma distribution and also suggested its use to simulate any

non-normal distribution (see Tadikamalla 1980a).

Quality Control

An attractive property of the B12 distribution is its ability to

fit data which is non-normal i.e 413 # 0 and/or g # 3. Zimmer and
1 2
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Burr 1963, and Burr 1967b used this fact to develop sampling

plans for variables when the population from which the sample is

drawn may not be normal. They were concerned with sampling plans

which base a decision about a lot (or process) on the proportion

of pieces beyond a single specification limit, and deal with the

cases of T known and T unknown. For the former 3? ± ga. is used in

the criterion for acceptance and in the latter Y.( + gs, where g is

a constant to be determined.

They presented tables which enable the choice of appropriate

values of g and n (the sample size) for a variety of non-normal

distributions if the degree of skewness and/or kurtosis in the

population is known or can be estimated/approximated. It was found

that, whilst non-normality has some effect on g, it is more

strongly felt in the sample size n.

Normality Test

Bera 1982 used the B12 distribution to construct tests for

normality of observations and regression disturbances. Interest

was centered only upon the shape of the distribution. The proposed

test of normality is achieved by testing:

H
o 
: c = 4.873717 and k = 6.157568

after transforming the data into a set of positive observations

with 3? = 0.644714 and s = 0.16199. No details of the proposed

transformation are given, although inability to make such a

transformation is itself deemed an indication of non-normality. It

is also claimed that the proposed test is likely to have high

13



power to detect non-normality for symmetric distributions.

The paper discusses Lagrange multiplier (LM) and likelihood ratio

(LR) tests. When testing for the normality of observations, it is

found that no estimation is required to calculate the LM test

statistic. When testing regression disturbances, the LM test is

again found to be easily applied while the LRT is much more

difficult to apply.

Duration Models

Lomax 1954 analysed data on business failure assuming it is

reasonable to expect monotonically decreasing conditional

probabilities of failure for business. In other words, the longer

a business survives, other things being equal, the smaller becomes

the probability of failure. This implies a particular form for the

failure rate (or hazard) function which corresponds to a 312

distribution with c = 1 and scale parameter 1/a. Dubey 1966b

showed that Lomax's data can be better fitted by using another

form of the scaled 312 distribution given by k = 1 and c free to

vary.

Wingo 1983 investigated the use of the B12 distribution for life

test data in biometric applications. He considered the maximum

likelihood estimation of the complete sample case (i.e. no

censoring) of n independent observations, x > 0, i = 1,.. n,

with a B12 probability density. The paper gives expressions for

the asymptotic variances and covariances of the parameters and for

both joint and separate parameter confidence intervals and applies

14



the methodology to life test data arising in a clinical setting.

The mixing approach to deriving the B12 distribution given above

has been used in deriving duration models in the social sciences

(see for example Morrison and Schmittlein 1980, Lancaster 1979,

1985). If we assume that each individuals' duration follows a

Weibull distribution and let the Weibull scale parameter 0 be

distributed according to some distribution, g(0), across the

population of individuals, then we may view the mixing

distribution, g(0), as capturing the heterogeneity of failure

rates in the population. When this mixing distribution is a Gamma

distribution, then the resultant density is the B12.

Lancaster 1979, 1985 and Brdnnds 1986 also mixed Weibull durations

with a Gamma distribution for a random heterogeneity component,

thus producing B12 distributions. Their work includes explanatory

variables in the model while that of Morrison and Schmittleins

does not. Furthermore, the rationale given for the existence of

heterogeneity in these papers is as a consequence of omitted

variables.

A Model for the Size Distribution of Income

In the literature on this subject, the B12 distribution is often

termed the Singh-Maddala distribution after its introduction by

Singh and Maddala 1976. They derived the B12 distribution both

from an argument concerning failure rates and one concerning decay

rates. They also fitted the 312 distribution to U.S data using

non-linear least squares and found that it provides a good fit

15



when compared with the Pareto and Log-normal distributions.

Schmittlein 1983 extended the Singh-Maddala analysis by deriving

the large sample properties of the 3 parameter B12 distribution.

In particular, he derived the asymptotic variance-covariance

matrix of the parameters for both the complete sample case and for

the more usual situation, in income data, of grouped, censored

observations. His results are therefore generalisations of those

of Wingo 1983. He presented the implied values of four common

inequality measures (the Gini Index, variance of log-transformed

income, Theil's Entropy and the Pietra Ratio) when income follows

the B12 distribution and the asymptotic variances for the first

three measures are also derived. The paper concludes with a

re-analysis of the U.S data used by Singh and Maddala using MLE

and a brief look at the impact of the types of grouping commonly

used in income data.

Further evidence on the usefulness of the B12 distribution in this

area comes from McDonald 1984 who found that it provides a better

fit to income data than one of his generalised Beta distributions

and was only bettered, in his comparisons, by his generalised Beta

of the second kind. Furthermore he concluded that the closed form

of the B12 greatly facilitates estimation and analysis of results.

Binary Choice Model

The application of the B2 distribution in a model of binary choice

has been discussed in Poirier 1980, Fry 1988 and Smith 1989 and

such a model may conveniently be termed a Burnt model.
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Poirer was concerned with developing the Burnt model as the

alternative to the Logit model in a LM test for skewness in binary*

choice models. Fry developed the Burnt model within a latent

variable framework and discussed both its estimation and a LRT for

symmetry. The Burnt model has also been used by Smith 1989 in the

context of developing LM tests, computed as nR2 from an auxiliary

least squares regression, for distributional mispecification.

Finally we note that Seibert 1970, Drane, Owen and Seibert 1978

suggested the B12 distribution as a candidate distribution for

quantal choice bio-assay problems.

4. Multivariate Distributions

We now investigate some multivariate versions of the B12 and B2

distributions. We begin with the bivariate Burr distributions

since these provide an insight into the properties of multivariate

distributions. Bivariate distributions are often generated by

transformations of given univariate marginal distributions. We

consider a variety of possible transformations for both the B12

and the B2 distributions.

Bivariate Burr XII Distributions

We have already seen that the B12 distribution may be derived

using a mixing approach. Takahasi 1965 extended this approach to

generate a multivariate B12 distribution (TB12). Here we consider

a bivariate version of the Takahasi-Burr distribution which omits

scale and location shift parameters.

17,



Assume that X and X have independent Weibull distributions with
1 2

common parameter 0 and that this parameter 0 follows a Gamma

distribution. The joint pdf for X1 and X2 is found to be:

f ( x , x)
1 2

C -1 c -1
1 2

r(k+2)c c x
1 2 1 2

x,x,c, c,k> .
c k+2 1 2 1 2"

r(k)E 
21

1 + x 1 +x
1 2

The marginal pdfs of X1 and X2 may be obtained in the usual

manner. We find that these are univariate B12 distributions with

parameters c ,
1 2

and k. The conditional densities for this

distribution are found to be scaled B12 distributions.

The joint moments are given by:

r r r(r /c + 1)1"(r /c + i)roc - r /c - r /c )

E(X ! X 1 -  2 2 1 1 2 2 1 1

1 2 r(c)

with existence conditions of:

r /c + 1 > 0 , i = 1,2 ; k + 1 - r /c > 0 ;
1 i 2 2

k - r /c - r /c >0,
1 1 2 2

and the conditional moments are:

r /c
1

2
[1 + x

c
 r(r /c + 1)roc + 1 -r /c )
2 1 1 11 1 

E1X I X = x -I1 2 2 r(c+1)

with an analogous result for the moments of X2 conditional on

values of X .
1

If we were to hold c 
1 
, c, and k constant (e.g. to approximate the

2
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bivariate normal) then the correlation coefficient is restricted

to a point defined by a function of the c, c2, and k.
1

The Durling-Burr Distribution.

Durling 1969, 1975 introduced a generalisation of the

Takahasi-Burr bivariate distribution where the correlation

coefficient p would not be restricted to a point if the ci, c2.

and k parameters were held constant. Comparison of the

Takahasi-Burr bivariate distribution function and that of the

product of two independent Burr distributions suggested the use of

the following joint cdf:

-k
F(x , x ) = 1 - (1 + x ) - (1 + x 

2
)
-k

1 2 1 2

cl c C C

+ (1 + X +x 
2 

2 

1
+ axx

2

2
)
-k

x ,x -Cs; c,c,k>0;07-4- k+1
1 2 1 2

= 0 otherwise.

This cdf reduces to that of the Takahasi-Burr distribution if

a = 0 and to the product of two independent Burr distributions if

a = 1. The joint density function is obtained by differentiation

and the marginal distributions are the same as those for the

Takahasi-Burr distribution.

- 19



Durling 1969, 1975 gives the conditional density as:

f(X = x Ix )
j

ci c -1
(k+1)(1 + ax )A c x

1 iii
c k+2

[1 + A x
Ji

c -1
OCC X

i

c k+1
[1 + A x i]

ji

i * j = 1,2

where A = (1 + ax J01 + x i). From which we find:

and

r -r /c
E(Xil l x2) = (lc + 1)A

2 

1 
1B(1 + r 

1 
/c 

1 
, k + 1 - r 

1 
/c 

1
)

ar -(r /c +1)
1 1 1

+ A B(1 + r /c k - r/c
1
),

1C 2 1 1 '
1

r r -r /c
1 
, X ) = k

2
a 

1 1
B(1 + r /c , - r /cE(X )

12 
1 1 1 1

3(1 + r /c , k - r /c )
2 2 2 2

F (r /c , k - r /c ; k; 1 - a-1).
21 1 1 1 1

Thus the correlation coefficient p is a complicated function of

c
1' c2' 

k and a and its range is difficult to determine. It is,

however, more general than that of the Takahasi-Burr distribution.

The Durling-Burr distribution as introduced lacked a formal

justification, but Hutchinson 1981 provided a derivation of a

version of the Durling-Burr distribution which shows it may be

derived within a mixing framework.

Morgenstern Burr XII Distribution.

Another way to generate a bivariate B12 distribution is to use the

system attributed to Morgenstern in Johnson and Kotz 1972. The
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joint cdf is given by:

F(x , x2)  = F 
1 
(x 

1 
)F
2 
(x
2 
)[1. + a{1 - F

l
(x

1
)}{1 -

12 2

where -1 5- a =5 1 is a 'mixing' parameter and independence of Xi

and X
2 
corresponds to a = 1.

One drawback with this family of bivariate distributions is that

it can be shown that for any such bivariate distributions with

finite variances, the correlation coefficient is bounded in

absolute value by 1/3 (see Schucany, Parr and Boyer 1978).

If we assume that the marginal distributions are both univariate

312 distributions then we find that:

F(x 
1 
, x2)

c -k c -k
- (1 + x ) }{1 - (1 + x 

2
) 

2
1.

1

1 1 
2

c -k c -k
[1 4. cx(1 x 1) 1(1 4. x 2) 2]

1 1

We find the joint moments to b

r 1 2 r
E(X , X ) = (a+1)k k B(1+r /c , k -r /c )8(1+r /c , k -r /c )

1 2 12 1 1 1 1 1 2 2 2 2 2

- 2ak k [B(1+r /c , 2k -r /c )B(1+r /c , k -r /c )
12 1 1 1 1 1 2 2 2 2 2

+ B(1+r /c k -r /c )8(1+r /c , 2k -r /c )]
1 1' 1 1 1 2 2 2 2 2

+ 4ak k B(1+r /c , 2k -r /c )113(1+r /c , 2k -r /c )
12 1 1 1 1 1 2 2 2 2 2

Bivariate Burr II Distributions

In the univariate case, the mixing of a Log-Weibull (or Extreme

Value) distribution with a Gamma distribution yields a B2

distribution. In this section, we use the Takahasi approach to
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obtain a bivariate B2 (TB2) distribution.

Assume that Z and Z have, conditionally on a common scale
1 2

parameter 0, independent Log-Weibull distributions and that this

parameter 0 (0 0) follows a Gamma distribution. The joint pdf is

given by:

-z -z
r(k+2)e 

1
e 

2

f(z , z ) - -co < z < co
1 2 -z -z] k+22roc) [1 + e 1 + e k > 0; i = 1,2.

This joint pdf could also have been obtained by making the

appropriate change of variables in the T312 distribution given

above. For this distribution it is easy to verify that the

marginal densities are univariate B2 and that the conditional

densities are 'scaled' B2 distributions.

Given the mathematical form of the joint pdf of the TB2

distribution it is natural to consider the joint moment generating

function (mgf):
•••••

, t )
1 2 r(c)

rci - t - t + t + t )1 2 1 2

from which joint moments may be obtained. For example,

a2ma t1 2
)

E(Z , Z )
1 2 atat1 2 t =t =0

1 2

= 01(k) + [0(k) - 0(1)]2.

In finding the conditional moments, it is again natural to

consider the appropriate mgf:
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-z -t r(1-t )r(k+1+t )
M(t

1
I Z

2 
= Z

2
) = [1 + e 

2] 1  1 

r(k+1)

This distribution was considered by Satterthwaite and Hutchinson

1978 who derived the regression of Z on Z (and of Z on Z2 l l 2),

which is non-linear and homoscedastic.

The correlation between Z and Z is found to be:
1 2

1/1(k) 

P 0'00 + 01(1)

tY(k)

0/(k) + n2/6 '

which varies between 0 and 1 and tends to zero as k tends to

infinity. Now if k = 1 we have a bivariate Logistic distribution

and p = 1/2. This is also the formula given in Johnson and Kotz

1972 as an approximation to the correlation between X and X in a

multivariate Burr XII distribution. In addition, as Sattertwaite

and Hutchinson 1978 point out, since the regression curves are

non-linear, the product moment correlation coefficient may not be

the most appropriate measure of association. Their paper suggests

other measures.

Morgenstern Bivariate Burr II

We have already seen how we may generate such a bivariate

distribution for the B12 distribution. Here we assume that the

marginal distributions are univariate B2 distributions and hence

23



produce a bivariate B2 distribution with cdf:

F(z , z2)
, 

1
[1 + e-z1] [ -z2] k2

1 + e

4a  2a
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-zii k1 [

1 + e
-z2] k2
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-zi] k1

[1 + e 2

-Z k2 1
= 1,2 -1 a :5- 1 .

1
-co < z < co k > 02a

If we consider finding the joint mgf for this distribution. The

resultant expression, after some simplification is:
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1 1 1 
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1 2

'Triangular' Bivariate Burr II

Another way in which a bivariate B2 distribution can be generated

is to take the product of two independent variables with

univariate B2 distributions and a 'triangular' linear

transformation. If Z - independent B2, then their joint pdf is

given by the product of the marginal pdfs. Now if we consider a

'triangular' linear transformation from the Zi's to new variables
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WCi = 1,2), defined by:[4 1 {a 0 1[11 11 1w = = Az,
a a z
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then the joint density of the Wi's is:
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It is possible to find a closed form expression for the marginal

density of W1 by integrating out W2 (the result is a scaled B2

density). However, the integrals defining both the marginal

density of W2 and the joint cdf do not have closed form solutions.

Fry 1988, therefore, used an alternative approach to find the

relevant moments:

µ = a a (01(k ) + 01(1)) = Cov(W
1 
W2)

1.1 11 21 1

A = a (0(k ) - 0(1)) = E(W )
1.1

1120 = a
2 
(IY(k ) + 01(1)) = Var(W )

11 1

11
01
=a 21(0(k1) - 0(1)) + a22(00(2) - 0(1)) = E042)

p =a
2 
(01(k ) + 01(1)) + a

2 
(01(k + 01(1)) = Var(W ).

02 21 1 22 2 2

Thus the effect of the linear transformation is to 'free up' the

correlation coefficient p such that -1 p 1.

Multivariate Burr XII Distributions

It is possible to construct other multivariate 'Burr'

distributions. For example, the construction of an m-variate

Durling-Burr distribution, requiring either an m-variate Gamma
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mixing distribution or a generalisation of Durling's approach to

the m-variate situation, could be attempted but would not be

straightforward. Since attention in the literature has

concentrated upon it, we choose only to consider the Takahasi-Burr

distribution (see Takahasi 1965, Johnson and Kotz 1972). Johnson

1987 includes many examples of the generation of versions of the

Takahasi-Burr distribution and may therefore be viewed as a

complement to the distributions given here.

If we assume that X ,...,X have, conditional upon a common scale
1

parameter 0, independent Weibull distributions and that the

parameter 0 follows a Gamma distribution we find:

f(x .,x c
il
k+m

r(k)k L xj J

c -1

r(k+m)ri -xJ-J

k>0; c >0;x >0 j= 1,...,m

Takahasi 1965 calls this distribution "multivariate Burr's

distribution" (henceforth TB12) and gives the following two

theorems with outline proofs, which are elaborated in Fry 1988.

Theorem 1: Any marginal distribution of the TB12 distribution

is also (multivariate) TB12.

Theorem 2: Any conditional distribution of the TB12

distribution is also (multivariate) TB12.
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Conditional moments are given in Johnson and Kotz 1972 (p290) as:

E(X I ...,X )

m C ]r /c= [1 4. v x j 1  r(k+m) 
L r(k+m-1)

- J=2

B(1+r /c , k+m-1-r /c ).
1 1 1 1

The joint moments may be derived as:

ri r
1 

E(X ...X m) -  TT r(1 + r /c - E r /c )
1 r(k) jj

J=1

with the following moment existence conditions

1 + r /c > 0 ; k > E r /c j = 1,..
ii ii

. ,m.

Since the marginal distributions are univariate B12 the covariance

between any two variables X and X i * j = 1,...,m is found to

be:

Cov(X ,X )
r(k)

F(1 + 1/c )1-(1 + 1/c - 1/c - 1/c )
J I j

- k
2
B(1 + 

1/c1, 
k - 1/c )B(1 + 1/c k - 1/c)

Thus the correlation coefficient is a function of c c and k and
J

its range is difficult to determine.

Multivariate Burr II Distributions

The extension of the argument used in generating the bivariate TB2

distribution to generate a multivariate distribution is

straightforward. That is, we assume that Z have,
1

conditional upon a common scale parameter 0, independent

Log-Weibull (Extreme Value) distributions and that the scale

parameter 0 has a Gamma distribution. The usual mixing arguments
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will then yield:

f(z ) -
1 m

-z
r(k+m)u e

rook +
-z

J]
k+m

k > 0 ; -co < z < co , j = 1,... ,m.

We may call this distribution the multivariate Takahasi-Burr II

distribution (TB2). It can also be shown (Fry 1988) that the two

theorems relating to the TB12 distribution stated above also apply

to the TB2 distribution.

As in the bivariate case, when finding moments, it is natural to

consider the joint moment generating function:

roc + E t )
M(t) = M(t

m
) -  roo TT r(1 - t),

J=1

with existence conditions:

k + E t >0 1 - t >0 V j = 1,...,m.
ii j

The correlation between Z and Z is given by:

P = P -I j 0' (k) +
(k)

V i * j = 1,..• m •

Therefore, the TB2 distribution has an equi-correlated structure.

The correlation coefficient p is that encountered in the bivariate

TB2 distribution. For many applications this correlational

structure may be restrictive and we would like to generalise it

further to the 'free' structure found in the multivariate Normal

distribution. It is useful to write the joint pdf in vector
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notation as:

f(z) -
r(k+m)e-liz

lk+m 'r(k)p. + vev(-z)]

[ -z -z
1

where z = (z z )', ev(-z) = e ...e
1

and i is an

m x 1 vector of ones. Therefore:

E(z) = µ = [0(k) -

Var(z) = E = m + 0/(k)ii'

This vector notation enables us to consider the distribution of a

linear transformation w = Az (where A may or may not be

triangular). We find the pdf of w to be:

with

f(w) -

-1
r(k+m)1A

-1
le
-i'A w

-1 lk+mr(k)E1 + i'ev(-A w)j

E(w) = AE(z) = Ai = [0(k) - 0(1)1Ai

Var(w) = AEA' = 0' (1)AA' + 0' (k)Aii'A' .

This generalises the distribution in that its correlation

structure will no longer be equi-correlated but will be a fully

free structure.

Links With Other Distributions

Cook and Johnson 1981 proposed a general family of distributions

for modelling multivariate data, which includes the TB12 and TB2

distributions as special cases. Using the fact that multivariate

distributions are usually classified by their associated

marginals, they propose a 'standard form' multivariate

distribution with uniform (on (0,1]) marginals from which other

distributions may be obtained by the appropriate transformation.
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If U = (U U )' follow a Cook-Johnson distribution then:
1

[ 
Emu

-1/a
- (m - 1) 0 < u 1 a > 0.

L1

The parameter a measures the strength of agreement between Ul and

U and does not affect the marginal distributions. Also the

distribution of U is invariant under permutations.

Multivariate Burr distributions are - obtained from the standard

Cook-Johnson form by transforming the marginal distributions. In

particular:

Z = -log(U
-1/a

- 1) j = ,...,m

Z - TB2,

X = [d
-1
(U

 
- 1)] i

i J i

1/c

j = 1,...,m

X - TB12.

Earlier we considered the relationships between univariate Burr

distributions and other univariate distributions and hence the

Cook-Johnson framework enables us to find the links between

multivariate Burr distributions and other multivariate

distributions. Cook and Johnson 1986 and Johnson 1987 considered

extensions of the family which yield a more general form and which

could be used to generate 'Generalised' Burr distributions.

One distribution which the TB2 (hence the TB12) is related to, and

which does not fit easily into the Cook-Johnson framework, is the

Dirichlet distribution. This distribution is of interest since

Woodland 1979 has proposed its use in budget share models.
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Consider the variables w (0 < w < 1) j = 1,...,m defined by:

-z

W -  
J m -z

1 + E e
1=1

We find the density of w = (w1 ... wm)1 to be:

r(k+m) r(k+m) 
f(w) -   (1 - i'w) - (1 - w - . . - w ).

F(k) r(c) 1 m

That is, w has a Dirichlet distribution (see Wilks 1962). This

relationship links a multivariate Burr (TB2) distribution to a

multivariate Beta distibution through a 'generalised' logistic

transformation. This is the multivariate analogue of the

relationship found in the univariate section of this paper.

5. Multivariate Applications

We now consider the application of multivariate Burr

distributions. So far only the Takahasi-Burr and Durling-Burr

distributions have found any application in the literature.

Attention has centred upon multivariate failure time (duration)

models and hence upon the B12 distributions. Notice however that

analysis of log failure times will involve the B2 distribution.

Time To Failure Under Dependence

Johnson and Kotz 1981 constructed a model for time to failure

under dependence. They were interested in determining the

distribution of the time to failure, T, of a replacement component

taken from a stock which has been stored for some time. For

example, when the second component is taken from the same product

batch as the first and there is batch to batch variation such that

we are unable to assume independence between the times to failure
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of the first and second components. When the TB12 distribution,

with c
1 
= c = c, is used in this model they find that the

2

survival function of the time to failure (T) of the second

component is a function which depends upon k but not upon c.

A Model For Repeated Failure Time Measurements

The standard model for repeated failure time measurements is based

upon the multivariate Normal distribution. Crowder 1985 developed

a corresponding model for Weibull distributed failure times.

Suppose that a response time is measured on an individual on

several occasions, giving a data vector t = (t 1,...,t)'. The

joint distribution of t is defined from the assumption that,

conditional upon 0 - Gamma(1,k), the ti's are independent Weibull.

The resultant joint distribution is a 1B12 distribution with

'scale' parameters .

To encourage future applications he discussed the properties of

the TB12 distribution in the context of failure time modelling and

used the joint and marginal moments of lv(t) = (log(tl)...log(tm))/

to suggest a method of moments estimation method for n

non-censored iid TB12 distributed vectors t ...,t . Finally, he
1,

applied this repeated failure time model to data on the response

times of rats and found it provided an adequate fit to the data.

Quantal Choice

Durling 1969 suggested the use of bivariate TB12 and Durling-Burr

distributions in a model of quantal choice. He is concerned with

the biological assay of a mixture of two stimulants. Three
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distributions for the stimulants (bivariate Normal, Logistic and

Burr (Takahasi and Durling versions)) were fitted to seven data

sets using a modified non-linear least squares procedure. It was

found that the analytic model utilising the Durling-Burr

distribution performed best in terms of minimising the sum of

squared errors in the estimation. On this basis the Durling-Burr

distribution is recommended for use in applications where the

number of parameters to be estimated is not of concern (in such

cases the bivariate Normal which fits 3 less parameters than the

Durling-Burr is recommended).

A Model For Disease Transmission

The bivariate TB2 distribution has been used in the fitting of

multifactorial model of disease transmission to data on the

clustering in families of hysteria and sociopathy (see Hutchinson

and Satterthwaite 1977). In the paper they consider fitting the

bivariate Normal distribution, a TB2 distribution and a bivariate

Pareto distribution. They found that the fits were equally good

and agreement on threshold levels close, but that the two

non-Normal models gave different estimated values for the

correlation coefficient r.

6. Concluding Remarks

In this paper we have reviewed the literature concerning the Burr

family of distributions. We have summarised some of the results

concerning two members of the family, the Burr types II and XII.

We have also developed some new univariate and multivariate

variants of the Burr type II distribution, which being a
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generalisation of the Logistic, may prove an attractive

distributional assumption in future applications.

We have not dwelt upon the estimation of models based upon either

the B12 or the B2 distributions. In the univariate case the

results concerning estimation of the B12 distribution may be found

in, inter alia, Schmittlein 1983, Wingo 1983 and Al-Marzoug and

Ahmad 1985. Zelterman 1987 and Fry 1988 both consider the

estimation of models based upon the univariate B2 distribution.

Notice however, that since the one parameter B2 distribution is

exponential family estimation should be straightforward. In the

multivariate case, both Crowder 1985 and Scallan 1987, have

considered the estimation of models for repeated measure data

based upon the TB12 distribution. Little is known about the

estimation of models based upon multivariate B2 distributions.

However, Fry 1988 outlines the estimation of a multivariate

binomial choice model based upon the TB2 distribution.

Burr's original motivation to find a flexible distribution, which

remains tractable to deal with, remains a desirable attribute of

any candidate distribution for, particulary multivariate,

applications. It is hoped that by reviewing and extending the

literature on the Burr family this paper will stimulate further

work with these distributions.
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FIGURE THREE

3rd and 4th Moment Coverage Diagram
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