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A 'GORMANESQUE' APPROACH TO THE SOLUTION

OF INTERTEMPORAL CONSUMPTION MODELS1

by

Russel J. Cooper, University of Western Sydney

Dilip Madan, University of Maryland

Keith R. McLaren, Monash University

ABSTRACT

In this paper we compare the standard dynamic programming method

for the derivation of closed form solutions to stochastic control

problems with three alternatives. Our first alternative is a minor

variant of dynamic programming which requires solution of an alternative

partial differential equation. In the context of a ba.sic, stochastic

intertemporal utility maximizing model, this alternative solution

procedure is particularly useful when preferences are represented by an

instantaneous profit function. Our second alternative is based on

intertemporal duality theory, and is most useful when preferences are

represented by an indirect intertemporal expected utility (or value)

function. Our third alternative is based on matching restrictions

across inverse marginal instantaneous and indirect intertemporal

expected utility functions - Gorman "expenditure" and "wealth"

functions. Each of the approaches is suitable to particular model

specifications and preference representations. As a collection of

methods based to varying degrees on the exploitation of separability and

duality, the methodology of this paper may be termed 'Gormanesque' (in

the. spirit of Gorman (1976)). Taken together, these methods expand

considerably the range of models for which closed form analytical

solutions may be obtained.

1
Earlier versions of this .paper were presented to the Seventh

Analytic Economics Workshop, Australian National University,

Canberra, February 15-16, 1989, and to the 1989 Australasian

Meetings of the Econometric Society, University of New England,

Armidale, July 12-15, 1989.



1. INTRODUCTION

Since the seminal work of' Hall (1978) a vast literature on Euler

equation estimation has developed in applied econometric studies of the

consumption function. While the undoubted simplicity of this approach

is attractive, this achievement is not without cost. In particular, if

the effects of unanticipated events on an economic agent's decision

making are to be measured, a synthesised solution which links the

agent's choice variables to fundamental exogenous variables must be

•
analysed. Thus, from the point of view both of the economic theorist

and the applied econometrician, there is a gap in the literature which

needs to be filled.

In this paper we compare the standard dynamic programming approach

.to the derivation of synthesised or optimal feedback solutions to a

consumer's stochastic intertemporal utility maximizing problem with

three alternative solution procedures. The analytical derivation of

closed form consumption functions seems to have begun and ended With the

contribution of Merton (1971). The popularity of Euler equation

estimation (as distinct from solution) seems to be due to a view that

the extension of closed form techniques beyond the HARA class of utility

function specifications considered by Merton is not analytically

tractable. In the current paper we hope to show that this is not the

case and that, by judicious use of separability and duality,

considerable advances which are both of theoretical and empirical value

may be made. The three methods which we propose to examine as

alternatives to the standard dynamic programming approach rely upon the

use of separability and duality (i.e. choice of the 'natural independent

variables' in Gorman's (1976) methodology) to varying degrees. It is

for this reason that we view our methodology as 'Gormanesque'.



2. A PROTOTYPE STOCHASTIC INTERTEMPORAL UTILITY MAXIMIZING MODEL

In this section we specify a prototype model in which the utility

function is left as general as possible in order to illustrate the

applicability of each of several approaches to the derivation of optimal

feedback solutions.

Let c represent real total expenditure, w real wealth, and r the

real rate of return on a risk free asset. We allow one risky asset with

risk premium exogenously given as h. The expected real return on the

risky asset is therefore (r + h)dt. The actual rate of return is

affected by a diffusion m db, where b is standard Brownian motion. Let

a represent the proportion of the consumer's portfolio which is held in

the risky asset.

.The consumer's decision making process is characterized by the

problem:

(2.1)

co

V(w,r,h,m,p) = max
{c,a} 

E
t 
I e-
t

subject to:

T-t)
U(c(T))ft

(2.2a) dw(T) = i[a(T)h + r]w(T) - c(T)IdT + a(T)cw(T)db,

(2.2h) w(t) = w,

(2.2c) w(T) 0 w.p.1.

In the prototype model we treat r,h,m and p as parameters of the

consumer's decision making process. None of these simplifications are

vial. We could equally have written r, h and m as variables, hence

have written V as a function of "deeper" parameters, and sought a

solution for c as a function of the deeper parameters. This may well be

appropriate empirically, especially in view of (anticipated) time

variation in a., but since our primary interest is in synthesis in terms
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of fundamentally exogenous factors there is little point in introducing

additional levels of nesting into the prototype.

The instantaneous utility function U(c), where c is real total

expenditure, may be interpreted as an indirect utility function from

static consumer demand theory, where c = M/P with M total money

expenditure and P a price index. The structure of the model admits two

stage budgeting as optimal and we are concentrating on the first stage,

the determination of aggregate real expenditure.

We seek a feedback solution of the form c = f(w,r,h,T,p) or, more .

generally, some parametric representation of this relationship capable

of indicating the responsiveness of c to shocks in w, r, h or T. For

the purpose of derivation of the optimal response function, since r, h,

T and p are to be treated as parameters it will generally be convenient

to suppress the dependence of V on r, h, T and p, and to write the value

function as V(w), or simply V. Time dependence of w,c,a is also

suppressed wherever convenient to aid notational clarity.

3. PRELIMINARY RESULTS

In this section, our point of departure from the "Euler equation"

approach is clarified. We use stochastic control theory/dynamic

programming notation to facilitate transition to the synthesised ,

approaches of the next section.

(3.1)

Define the operator X by:

X = [(ah + r)w - c] 3/3w+ 1 a
2
a'
2
w
2 
8
2
/814

2 
.

2

3



The Hamilton-Jacobi-Bellman •(HJB) equation (see for example,

Kushner (1967), Ch. IV, Theorem 7) for problem (2.1) is:

(3.2) 0 = max
c,a 

{U + - pV}

implying first order conditions for c:

(3.3) U
c 
=V 

w

(where subscripts indicate partial derivatives), and for :

(3.4) a = - (hAr)Vw (wV ) 
ww

.

. Of great importance to the synthesised approaches is the

Hamilton-Jacobi (HJ) equation, that is (3.2) written as an identity for

optimal c,a. We substitute out the "nuisance" variable, a, using (3.4)

and write the condensed HJ equation as:

(3.5)
1

0 = U + (rw-c)V
w 
- 2-(hAr)

2
V
2 
/V - pV

w ww

where c is now understood to be optimal.

Because of the importance of the HJ equation (3.5) in the sequel,

some interpretation may be in order. The interpretation is most

straightforwardly given for (3.2) written as an identity for optimal

c,a. This equation simply states that, allowing for time discounting

(pV), potential expected utility V should be used up optimally, being

balanced by the acquisition of actual instantaneous utility U as the

optimal path evolves. The usage of ,potential expected utility is

measured by 2V, a measure of the expected change in V which allows for

the second Order effects relevant by Ito's Lemma.

Of even more importance in the sequel is the sensitivity of the HJ

equation to w. Differentiating (3.5) wrt w and using (3.3) we obtain:

4



1 22
(3.6) 0 = [r - p - (h/T)

2
w 
+ (rw-c)V

ww 
+ 2(11/T) VV (3) Vww

where V
w(3) 

E V. Equations (3.3), (3.5) and (3.6) are key equations

for the various solution procedures to be discussed. The three

alternatives to the standard dynamic programming method all make use of

(3.6) in some way. Because of the structure of the model (the fact that

U does not depend on w), (3.6) is structurally simpler than (3.5). One

unifying feature of our alternative methods, and a justification for the

term 'Gormanesque', is their exploitation of this natural structure.

In the remainder of this section we illustrate the "Euler equation"

approach in the above terminology. It is important to note that Euler

equation estimation does not involve solution of the Euler equation but

simply represents a rewriting of the equations given above.

As is well known, (3.3) is the Euler equation in integral form. We

may write this equivalently as:

(3.7) • c = CG(V)

where C
G 

is the inverse marginal instantaneous utility function. (Our

notation C
G 

arises from our intention to refer to this function as the

"Gorman Cost Function", to be discussed further in the sequel.) By

Ito's Lemma, the stochastic Euler equation is:

1 G
(3.8) dc = C

(1)
dV

w 
+ -2-C

(2)
[dV

w
]
2

where C
(1) 

and C
2) 

denote first and second derivatives respectively of

CG, and 
•

(3.9) dV V dw 
-Vw(3) [dW]

2 
.

w ww 2 

From (2.2a):

(3.10) [dw]
2 
= a

2
T
2
w
2
dt.

5



Using (2.2a), (3.10), (3.4) and (3.6), we may write (3.9) as:

(3.11) dV
w 
= (p-r)V

w 
dt - (h/c)V

w 
db.

This in turn implies:

(3.12) [dV ]
2 
= (h/c)

2
V
2 
dt

so that (3.8) becomes:

(3.13) dc = [(p-r)V C + -(h/c)
2
V
2
C
G 
]dt - (h/c)V

w
C
(1)

db
w (1) 2 w (2)

By re-expressing C
(1)' 

C
(2) 

and V as functions of c, (3.13)

becomes the standard stochastic Euler equation for problem (2.1). To

make this transformation, observe that (3.3) •and (3.7) imply

c C
G
(U

c
(c)), so that successive differentiation gives:

(3.14a) C
(1) 

= 1 U
• cc

G / 3
(3.14b) C

(2) 
= - U

c(3) 
n

/ wcc

The stochastic Euler equation can then be written:

. (3.15) dc = [(p-r)Uc 1 U - 2- c c(h/c)
2 
U
2
U (3) it U

3 
pt

cc cc

h/c)U U ldb.
c cc

Equation (3.15) is amenable to discrete time approximation and

estimation subject to a conditionally heteroscedastic error structure.

However, since it does not.contain a solution for c as a function of the

fundamentals w, r, h, c and p, it cannot be used to examine the

. responsiveness of c to unanticipated events. In addition, it is worth

noting that a further source of information on the parameters of the

model is the analogous equation for the evolution of wealth:

6



(3.16) dw = [rw - c - (h/T)
2 
Uc (Uccfw)]dt - [(h/T)U

c 
CU f ddb.
cc w

To ignore (3.16) in estimation involves an efficiency loss, but to

apply (3.16) requires the closed loop solution f(w,r,h,T,p). We turn

therefore to approaches which allow the derivation of the synthesised

solution.

4. APPROACHES BASED ON SYNTHESIS

4.1 Dynamic Programming

This is the standard approach, which uses the HJ equation (3.5) and

employs the inverted first order condition (3.7) to give a nonlinear

PDE in V:

(4.1) . 0 = U(C
G
(V 

w
)) + [rw - C

G
(V
ww 

- 
1 2.(h/T)2 V2 

w 
Vww - pV

As the lack of progress since Merton (1971) indicates, analytical

solution of this PDE for V(w), when U(c) is more general than HARA,.

remains intractable.

4.2 Dynamic Programming Applied to the Marginal Function

A potentially more amenable application of the dynamic programming

method may be derived by the change in "variable" from V to Vw, which

results in the use of (3.6) rather than (3.5) as the underlying PDE.

Thus the "derivative" form of the fundamental PDE of dynamic programming

Is:

(4.2) 0 = [r - p (h/T)
2
]Ni

w 
+ [rw - C

G
(V dV

w ww

4 (11/0')"VWV* 
W(3) 

/ 

. vWW.



For certain instantaneous utility functional forms U and associated

Gorman cost functions C
G
, (4.2) may be more tractable (solving for V

w
)

than would be (4.1) (which must be solved for V). Clearly, a solution

for V
w 

is all that is required to enable (3.7) to represent the

synthesised solution. Additionally, the approach based on (4.2) is

viable in cases where the Gorman cost function C
G 

has a closed form

analytical representation even though the utility function U may not

• have a closed form. Clearly, this includes a wider class of preference

orderings than the usual closed form U representations.

(4:3)

For example, let preferences be represented by a profit function:

F
(µ) = max

c 
{gU(c) - cl

. where µ is the "price" of utility. (See Gorman (1976) for a discussion

of the consumer's profit function). By Hotelling's Lemma,

(4.4) U =
F
(g)
A

and hence costs as a function of g (the "Frisch cost function") may be

defined, on rearrangement of (4.3), as:

. (4.5) C
F
(p) = pH

F
(p) -

F

A

The Frisch cost function C
F
(L) is an important duality concept

associated .with the profit function approach to the representation of

preferences. However, in an intertemporal model it is 1/p rather than p

which is the "natural variable" in Gorman's (1976) sense. We denote by

"Gorman cost function" the cost function defined in terms of the

"natural variable" for our problem.

The first order condition of (4.3) requires p = 1/Uc = 1/Vw,

allowing the Gorman and Frisch cost functions to be related simply by

8



(4.6) C
G
(V

w
) E C

F
(1/V

w
) .

Combining (4.6) and (4.2) allows the approach of this section to be

applied to problems in which preferences are ppecified in terms of the

profit function
F
(p) even if preferences •cannot be explicitly

represented in terms of a utility function U(c).

4.3 Stochastic Intertemporal Duality

(4.7)

An alternative way to use (3.6) is to rearrange it as:

c = f(w,r,h,T,p) = rw + Er - p - h/T)
2 

)(V
w ww

2
+ 

1 
2(h/T) 

V2wVw(3) (
( V

3
ww

Since V is the stochastic intertemporal indirect utility function,

(4.7) may be thought of as the stochastic intertemporal analogue of

Roy's Identity. Equation (4.7), together with the asset solution (3.4),

reproduced here as:

• (4.8) a = g(w,r,h,a.,p) = - (h/o-2)Vw (wV ),
ww

provide a complete solution of the optimization problem (2.1)

conditional on knowledge of the functional form of V.

The importance of these results hinges on the possibility

characterizing a value function V(w,r,h,T,p), to which we now turn.

Consider functions U(c) satisfying the following properties:

• (U1) U is non-decreasing in c;

(U2) U is concave in c;

over some set t' c R+. For any function U(c) let X = {(w,r,h,T,p)) c R
s

I Problem (2.1) has a solution}. Let -t3 = {cic = f((w,r,h,T,p);

9



(w,r,h,T,p) c Xl. The proofs of the following theorems are in

Appendix 1.

Theorem 1. CU 4 V)

For any specification of U satisfying (U1)-(U2) for which X is

non-null, V defined by Problem (2.1) has the following properties on X:

(V1) V is non-decreasing in w;

(V2) V is concave in w;

(V3) V is non-decreasing in r;

(V4) V is non-decreasing in h;

(V5) V is non-increasing in T;

1 
(V6) Let H(w,r,h,T,p,c) = pV - (rw-c)Vw + 2-(h/T)

2 
V
2
w )(V ,

(4.9)

then for c c H is locally convex in (w,r,h,T,p) about

its stationary point.

To introduce the derivation of U from V, consider the problem:

U(c) = min H(w, r, hor, p, c)
w, r, h, p

with H defined in terms of V as in (V6) above.

For any function V(w,r,h,T,p) let X (c) = {(w,r,hor,p))1 Problem

(4.9) has a solution} and let t' be the set of c c 11
+
such that X (c) is

non-null.

Theorem 2 (V 4 U)

For any specification of V satisfying (V1)-(V6) for which e is

non-null, U defined by Problem (4.9) satisfies (U1) and (U2) on .

-10



Theorem 3

For any U satisfying (U1)-(U2), define V by Problem (2.1). For this

V, define U by Problem (4.9). Then on their common domain of

definition U = U.

Theorem 4

For any V satisfying (V1)-(V6), define U by Problem (4.9). For this

U, define V by Problem 2.1. Then on their common domain of definition

V = V.

If in Theorem 3, t. = then U and U will coincide. Similarly, if

in Theorem 4, X = X then V and V will coincide. Thus there is a

duality between functions U satisfying properties (U1)-(U2) and

functions .V satisfying properties (V1)-(V6). The empirical content of

this duality is summarised in the following:

Theorem

Let V satisfy properties (V1)-(V6) and define the synthesised

functions c = f(w,r,h,T,p) by (4.7) and a = g(w,F,h,T,p) by (4.8). Then

these functions are the solutions of Problem (2.1) corresponding to a

function U with properties (U1) and (U2) dual to V.

Use of Theorem 5 allows the approach of this section to be applied

to problems in which preferences are specified in terms of 'the value

function V(w,r,h,T,p) even if preferences cannot be explicitly

represented in terms of a utility function U(c).

For a discussion of intertemporal duality in a deterministic

context see Cooper and McLaren (1980).



4.4 Matched Inverse Marginal Functions

This approach uses the equality of the instantaneous marginal

utility of money, Uc, with the full marginal utility of wealth, Vw, to

set up a two-equation parametric relationship between c and w. Let

A = U
c 
= V. Then c = C

G
(A) and w = W

G
(A, r,h,T,p), where W

G 
is the

inverse of the V
w 

function. (We refer to W
G 

as the "Gorman wealth

G -
function".) From the identity w W

G
(V(w)) we have 1 = W V and

w A ww

0 = WAA
V
2 

+ 
WAVw(3). 

Thus (4.7) may be used to define
A ww

restrictions relating C to W
G
. Specifically,

(4.10) C = DW
G

functional

L12_.,
where 7) = rI + [r - p - (h/T)1A aiax - (h/T)2A2 a

2/ax

Given U(c) and hence C(A), the approach requires construction of a

function W
G
(A,r,h,T,p) such that (4.10) -holds. For these matched

functions the c = f(w,r,h,T,p) relationship is then given parametrically

by:

(4.11a)

(4.11b)

c =

w = W
G 
(A,r,h,cr,p

These can be complemented by the asset demand equation, also

parameterised on A, as:

(4.11) a w = -(h/T)
2
AW
G

.In common with the approach of Section 4.2, this approach is viable.

in rases where C
G 

(hut not necessarily U) has a closed form analytical

representation. Specification of C
G 

may proceed from the specification

of a profit function via the association with a Frisch 
cost function, as

illustrated in Section 4.2.

-12



A detailed exposition of this approach in a more general setting

may be found in Cooper and Madan (1986).

5. EXAMPLES

5.1* Features of the Alternative Solution Methods for HARA Preferences

We sketch all four methods when preferences are HARA in order to

highlight the basic features of each approach. HARA functional forms

for U and V are known to be self-dual, and this is the most general case.

for which the standard dynamic programming method has been applied to

date.

HARA preferences are represented by an origin-translated Box-Cox

generalization of a logarithmic instantaneous utility function:

• (5.1) U(c) = [(c-7) - / (3 , . c > f3 < 1 ,

where T is interpreted as subsistence consumption and utility is only

defined for c > T.

Using (4.3), an equivalent representation of HARA preferences is

given by the profit function:

(5.2).
11F() 01(1-(3) g/(1-13)

A = 
(1 131(1

- / -

From (4.5), this implies a Frisch cost function:

(5.3)*
F , 11(1-13)
c (A) = A

and from either (5.1) by differentiation and inversion, or from (5.3) by

identification of A with 1/µ, the Gorman cost function is immediately

13



obtained as:

(5.4) c = C
G
(A) = 7 +

Since utility is defined only for c > 7, we expect the optimal

value function V(w,r,h,c,p) to be defined only for wealth above what

would be required to meet committed expenditure 7 in perpetuity. Of

course, for this example the form of V is known. However, at this point

it is convenient to write down a conjectured generic form for V to

illustrate the application of the various solution methods. Let us

conjecture:

(5.5) [ gV(w,r,h,c,p) = 0
0 
+

where 0 and 0
1 

are, unspedified functions of r,h,c,p.
0 

We now consider the relative strengths of the various .methods in

deriving the consumption function c = f(w,r,h,c,p) and the asset

share function a = g(w,r,h,c,p).

Method 1

Given the C
G 
function (5.4), the identification of A with V

w 
allows

the fundamental PDE of dynamic programming (4.1) to take the form:

T - Vv-11/(1-11V(5.6) 0 = FV-g/(1-g) - 1] g + [rw -
w

1
- 2.(h/c)

2
V
2 
/ V - pV .

w ww

The conjectured form for V does indeed solve this PDE (as is, of

course, well known since Merton (1971)). The point we wish to make,

however, is that to establish this it is necessary to determine suitable

• 14 •..



specifications for the parameters 0
0' 01. 

It can be seen that

,-(3)
(5.7a)

o (1/p)[Pel 
(3/(1-] it

and

13

1 
(5.7h) 0

1 
[p/(1-13) - rg (1-13) - —2

(h/T)
2 

(1-13)2]
-1

justify (5.5) as a solution to (5.6). Although these parameters needed

to be determined to examine the legitimacy of the V function, the

information on 0
0 

(at least) is superfluous to requirements for

determination of the closed loop consumption function. Having

established the legitimacy of (5.5), we now use:

• (5.8) g-V (w,r,h,T,p) =
1
(14 - T/r)

together with (5.7b) in (5.4) to give the consumption function:

(5.9) f(w,r,h,T,p) = T + pci-g) - 0/(1-13)

- l(h/T)
2
13/(1-13)

2
](w - 7/r) .

2

Similarly, we use (5.8) and its derivative in (3.4) to give the asset

share function:

(5.10) g(w,r,h,cr,p) = (h/o2)[1 - 7/(rw)] / (1-13) .

Method 2

While Method 1 requires an explicit specification of U to employ in

(4.1), the use of Method 2 allows us to begin at the point of

G 
specification of C in (5.4). This may be thought of as corresponding to

F
(µ) in (5.2) or to U(6) in (5.1), but U(c) need not be explicitly

specified. Starting, for example, from the II
F 

function (5.2) we obtain

(5.4), .identify A with V
w
, and hence employ the alternative PDE (4.2)

15



which now takes the form:

(5.11) 0 = [r - p - (h/T)T [1.14 _ 7
ww

4_
2
1
(hic)

2v2vw(3) vww2w 

As for Method 1, we could use the conjecture (5.5) for V. However,

since V is not required, we may use the equivalent conjecture (5.8) for

V
w
. It can be seen that (5.8) solves (5.11) if 0

1 
satisfies

g-
(5.12) 0

1 
= f[p - r (1/T)2] / (1-(3) - r - 2-(h/T)2(2-g) / 1-13)21 1

(and this is, of course, equivalent to (5.7b)). The consumption and

asset functions follow as for Method 1. Note that Method 2 does not

require determination of the superfluous parameter 00. More

importantly, a specific form for U(c) is not required. This advantage

will be developed in the example of Section 5.2.

Method 3

In this approach, we regard (5.5) not as a conjectured solution to

•a PDE but as an initial specification containing a representation of

preferences. Application of the intertemporal analogue of Roy's

Identity (4.7) leads immediately to the consumption function, and (4.8)

gives the asset function. It is important to note that neither 00 nor

0
1 

need be specified in this case. If V is thought of simply as an

approximation to a regular optimal value function, this is the end of

the matter. Many, empirical applications of duality theory in static

models follow this route, with the initially specified function

representing a flexible (at some point) . approximation to some

unspecified regular underlying function. A similar methodological

approach in stochastic intertemporal consumption models would suggest

16



Method 3 as the most straightforward procedure for derivation of

'estimable closed form consumption and asset equations.

If full regularity in the specification of V is desired, one may

use (V6) of Theorem 1 to define H(w,r,h,T,p,c) and then check that (4.9)

defines a regular U function. Except in simple cases, however, this

appears to be impractical. An alternative approach is to impose

regularity as a stochastic constraint on a flexible function9.1 form.

Method 4

Given that (5.4) defines the Gorman cost function with T

interpretable as committed expenditure, we conjecture a Gorman wealth

function of the form:

(5.13) W
G
(A) = ?fir + 

-1/(1--)

Applying Applying (4.10) we obtain:

(5.14) + fr - [1/(1-13)] [r - p - (h/cr)2]

1
- h/T)

2[-1/(1-0)][-1/(1-p) - 1]7x-1/(1-(3)

and comparison with (5.4) implies:

(5.15) n = fp/(1-g) - 0(1-0) _ Jff.(h/T)2p/(1_(3)21-1

Using (5.15), the consumption function is given parametrically by 5.4)

and (5.13). The asset function follows immediately from (4.11).

5.2 A Generalized Profit Function

Comidu thq profit funetioni

(5.16) TIF(A) = ti(triti - tic") ,

17
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An explicit analytical representation of U(c) cannot be recovered

for this function (except in the trivial case a = 0). Nevertheless, the

stochastic intertemporal utility maximizing problem can be solved for

this preference representation by either of Methods 2 or 4. We derive

the consumption function. (The asset function follows trivially.)

Observe that the Frisch cost function is:

(5.17) CF(g) = µ(1 -

To apply Method 2, we note firstly that the Gorman cost function is

therefore:

(5.18) w [
so that the PDE (4.2) becomes:

-
(5.19) 0 = [r - p - (h/ )1V w + - 7 - V

1
w

2
+ 
1(h/T)2 

V
w
V
w(3)2 WW

1 - a

This PDE admits a solution for V
w 
in implicit form:

-
(5.20) 0

1
V
w
1 
+ 0 V

 
- w 0

2w

where:

-a

(5.21a) 0
1 

= 1/p ,

(5.21b) 0
2 = 

a / fir - p - (h/T)1(1+a) - r +

We consider only the case a # 0. (The case a = 0 gives the

logarithmic form which may be solved easily as a special case of HARA.)

Note that (5.20) may be written (in view of (5.21a)):

(5.22) pw = V-111 +
2 
V
w
-1

18



Dividing 5.18) by (5.22) and rearranging we obtain:

(5.23) V
-a

[1 - 1/p)(c/w)] / + 02(c/w)]

and use of (5.23) in (5.18) gives the nonlinear consumption function:

(5.24)

1/a
11-(1/p)(c/w)1

+ 0
2
(c/w) j

where 0
2 

is given by (5.21b)

- a

(1+)/a
11-(1/p)(c/w)1

+ 0
2
(c/w) j

This example is of considerable interest because the consumption

function is obtained from an initial specification of the profit

function II
F
(µ) rather than the instantaneous utility function U(c).

Indeed, the function U(c) does not even have an analytical

representation. The derivation above uses Method 2_ Alternatively,

using Method 4 we simply write the Gorman cost function (5.18) in terms

of A:

- 
.(5.25) c = 

1[
1 - ]

Then, conjecturing a similar form for the Gorman wealth function

w = W
G
(A), say:

(5.26) w = -1
[0

1 
+ 0

2
A
a]

we find on application of (4.10) that 01 and 02 must satisfy (5.21a) -

(5.21b). Given these restrictions the consumption function is given

parametrically by (5.25) - (5.26). For this example, Method 4 is much

simpler to apply than Method 2, and we have found that this is generally

the case.

19



5.3 A Generalized Optimal Value Function

In this example we illustrate Method 3 for the optimal value

function

(5.27) V(w,r,h,T,p) = + 0
1 
watn w , k:< 1 .

This function is non-decreasing and concave in w for 01 > 0 and

tn w > 1/(1-a) - 1/a. Although 00 and 01 are functions of r, h, T and p

in principle, these functions need not be explicitly specified for

application, of (4.7). The consumption function, although complex, may

be derived trivially as:

(5.28) f(w,r,h,T,p) = rw + 
p (h/)2] w  tnw+1/a

a-1 tnw+1/a+1/(a-1)1

1 2 (a-2)w f(tnw+1/a)
2r

tnw+1/a+1/(a-1)+1/(a-2/+ 2.(h/T)
(a-1)

2 tnw + 1/a + 1/(a-1)

while from (4.8) the asset function is:

(5.29)
w + 1/a 

g(14,r,h,T,p) = (h/T)2 
w + 1/a + 1/(a-1

A major advantage of this approach is that the consumption function

is necessarily linear in c (contrast (5.24)). A possible disadvantage

is that neither U(c) nor II
F
(µ) is analytically derivable for even

moderately complex examples such as (5.27). However, for many purposes

an analytical representation of instantaneous preferences is irrelevant.

In such cases Method 3 seems very attractive.

6. THE DISCRETE TIME CASE

this section we set out the consumer's decision making problem

in a discrete time framework, demonstrate which of the previous results

have close analogues in the discrete time. setting, and how the other

20



results necessary to employ the various solution approaches may be

obtained by appropriate approximation procedures.

In discrete time, the consumer's decision making process may be

characterized by the problem:

(6.1)
co

V(w,r,h,c,p) = max E4. E (1+p) )11(c )
-(T-t

fc,al T=t

subject to:

(6.2a). w = [a h + r + 11w - c + a ow c
T+1 T T T

(6.2b) 
wt 

= W

(6.2c). w 0 w.p.1.

The definitions of these variables are essentially as in Section 2

except that ET is a discrete time stochastic process with mean zero and

variance unity. In order to enable the satisfaction of (6.2c) it is

necessary that at any time T the set r of all pairs (c,a) satisfying

non-negativity of next. period's wealth for all possible values of cT be

non empty. This imposes some constraints on the class of stochastic

processes to which c may belong. For example, c could not be modelled

as a continuum over the whole line (e.g. Normal) but would be consistent

with a Binomial or Multinomial approximation to the Normal.

The Bellman equation (the analogue of (3.2)) is:

(6.3) V(w,r,h,c,p)

max {U(c) + (1+p)
-1
E VC[ah+r+11w c + acwc, r,h,c,p)}.

(a,c)Er

U(c) can be reconstructed from the optimization problem:

(6.4) U(c) = min
(w,r,h,c,p,a)

EfV(w,r,h,c,p) - (1+p)-1V([ah+r+11w - c+acrwc,r,h,c,p)}

where the optimization is over the set

21



0(c) = {(w,r,h,T,p,a)I(ah+r+1)w - c + aTwe 0 V el

which ensures a non-negative value of next periods wealth.

This optimization problem is the analogue of (4.9), and in Appendix

2 the analogous properties of V and U so defined are demonstrated.

Note, however, that this duality is not operational because it has not

.been possible to derive the analogues of Roy's Identity (corresponding

to 4.7 - 4.8) which allow the closed form derivation of optimal c and a

from the function V. This is due to the presence of the stochastic term

e in (6.3). This precludes the derivation of exact solution methods

analogous to the alternative approaches based on synthesis.

On the other hand, if we are willing to make an approximation to

the discrete time Bellman equation (6.3), we may replicate all of the

results previously derived for the continuous time model.

Dividing each unit time interval into sub-intervals of length At,

and suppressing arguments where appropriate for clarity, (6.3) becomes:

.(6.5)

where:

V(w ) = max {U(c )At + (1+pAt)
-1
EV(w

T+At
)1

(c ,a )Er
T T T

(6.6) w
T+At 

w + [(a h + r)w - c ]At + a TW e (At)
1/2

T T T

Taking a Taylor Series approximation of V(wT+At
) around w, takingT

expectations and dividing by At, we observe that if we drive a to zero

we obtain:

(6.7)
1 2 2 2

0 = max {U(c) + [(ah + r)w - c]V + aa.ww - .
w ww

(c,a)er

It is clear that the first order conditions for c and a from (6.7)

are equivalent to (3.3) and (3.4). Hence (6.7) at the optimum is

equivalent to (3.5). Thus the key result (3.6) applies, and all of the

22



solution approaches discussed in Section 4 apply mutatis mutandis to

allow the derivation of approximate solutions to the discrete time

problem (6.1). It also follows a fortiori that all of the examples of

. Section 5 may serve to illustrate the application, of the solution

methods in a discrete time formulation.

7. CONCLUSION

In this paper we have considered procedures for the derivation of

synthesised solutions to a typical stochastic intertemporal consumption

model. We have demonstrated that, if the natural structure of these

types of models is exploited and if preferences are specified by one of

the natural dual representations (such as the profit function or the

optimal value function), the range of solution procedures is

considerably expanded. The relationship among the natural solution

procedure and the natural preference representation and the associated

function which is derived as part of the solution procedure can be

summarised in the following table.
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Solution
Procedure

Dynamic
Programming

D.P. Applied
To Marginal
Function

Intertemporal
Duality

Matched Inverse
Marginal
Functions

SOLUTION PROCEDURES

SUMMARY BASED ON SYNTHESIS

Exploitation of Preference
Structure

Yes

Yes

Yes

Representation
Associated
Function

U(c) V(14,r,h,T, )

TI 
F
(A)

V(w,r, h, o, p)

V(14, r, h, cr, p)

11F() 
W (A,r,h,T,p)

As the examples in the paper illustrate, the use of those solution

procedures which exploit the natural structure of the problem

considerably expand the range of preference representations for which

closed form consumption functions and asset demand equations may be

derived.
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APPENDIX 1

Proof of Theorem 1 (U V)

1 1 1 1
V1. For w

2 
> w , let c (T), a (T) and w (T) be the optimal solutions

corresponding to w
1
. .The paths c

1 
and a1, with implied path w(t), are

feasible, but not necessarily optimal, for w
2
. Hence V(w

2 
) V(w

1 
).

V2. • For0 p 1, let ci(T), ai(T), wi(T) be the optimal paths

corresponding to initial values w(t) = w
1
,w
2 

and wP = pw
1

+(1-p)w2,

= pw1+(l_p)w2
• i = 1, 2, p. The paths -CP = pc1+(1-p)c ,

1 
(1-p) a

2 
w
2

and a =
p w + (1-p) w2

are by construction feasible, but not necessarily optimal, for

w(t) = wP.

Hence V(pw
1 
+ (1-p)w

2
)

=E

Et

e
-p(T-t)

U(c
p
(T))dT

e-p(T-t) u(-c-P(T))dT

E
t 
I e-P(1---"[p U(cl(T)) + (1-p) U(c2(T))]ft

(by concavity of U( ))

= pV(w
1
) + (1-p)V(w

2
)
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1 1
V3. For r

2 
> r , let c

1 
(t), a (r) and w

1
(T) 

-b
e the optimal solutions

corresponding to r = r1. The paths c
1 
+ (r

2 
- r

1
)w

1
and a', with implied

1
path w (T), are feasible, but not necessarily optimal, for r = r

2
.

Hence

V(w, r
2
, h, p) > V (w, r

1
, h,

V4. Analogous to V3. (Noting that a 0 by (3.4) and V1 and V2.)

2 2
VS. Let T

2 
=

1
, k > 1. Let c

2 2 
, a be optimal for T = T . Then w

satisfies

dw = {(a,
2
h + r)w - c

2
}dt*+ a

2 T2 
w db

= {(ka
2
h + r)w - (c

2 
+ (k-1)a

2
hw)ldt + 

ka2 
T
1 
w db

which defines a feasible, but not necessarily optimal, path when T = a'1,

with a higher value than the optimal path for T
2
. Hence

V(w,r,h,a.
2
,p) < V(w,r,h,T1p)

V6. For any point (w,r,h,T,p) EX 3 c

such that U(c) = H(w,r,T,p,c). For any other point (w,r,h,T,p) cX,

1%.

U(c) H(w,r,h,T,p,c)

since c is not necessarily optimal for (w,r,h,T,p).

•••

Hence H(w, r, h, cr, p, c) ->-- 1-1(w, r, p, c).

Proof of Theorem 2 (V 4 U)

By the envelope theorem, pc = vw. That U is concave follows by

standard duality arguments.
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Proofs Theorems 3, 4, 5

Follow directly from the condensed HJ equation (3..5).
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APPENDIX 2

Stochastic Intertemporal Duality in the Discrete Time Case

1. Properties of V.

V can be defined directly by (6.1), and also satisfies (6.3). By

(6.1), V is non-decreasing in w (V1), since a small increment in w

leaves the original consumption plan feasible but not optimal. To prove

the other results, the non-negativity of a is necessary. The partial of

(6.3) with respect to a is

U
c 
+ (1-p) E V

w
([ah+r+1N - c + aavc,r,h,T,p)[hw + Twell

When evaluating at a=0 the term Vw is a constant independent of the

random variable c, and so comes out of the expectation operator. Since

Ec = 0, the partial at a=0 is Uc 
+ (1+p)

-1
hwV

w
([1+r]w - c,r,h,T,p) > 0,

hence the optimal a is non-negative. (Note that a is bounded from above

by the possible negativity of c.) Properties V2 to V6 then follow as

for the continuous time case, with H defined as the minimand of (6.4).

2. Properties of U

U may be defined from V by (6.4). Since an increase in c reduces

the set 0(c) and hence raises the minimum, U is non-decreasing in c

(U1). Again, concavity (U2) follows by standard duality arguments.

28



REFERENCES

Cooper, R.J. and D. Madan, "Stochastic Intertemporal Utility

Maximization and the Consumption Function," Research Paper No. 305,

Macquarie University, January 1986.

Cooper, R.J. and K.R. McLaren, "Atemporal, Temporal and Intertemporal

Duality in Consumer Theory," International Economic Review, 21

(1980), 599-609.

Gorman, W.M., "Tricks with Utility Functions", in M. Artis and R. Nobay

(ed.) Essays in Economic Analysis, (Cambridge: Cambridge University'

Press, 1976).

Hall, R.E., "Stochastic Implications of the Life - Cycle - Permanent

Income Hypothesis: Theory and Evidence," Journal of Political

Economy, 86, (1978), 971-987.

Kushner, H. J., Stochastic Stability and Control, New York: Academic

Press, 1976).

Merton, R. C., "Optimum Consumption and Portfolio Rules in a Continuous

Time Model," Journal of Economic Theory, 3, (1971) 373-413.

• 29



MONASH UNIVERSITY

DEPARTMENT OF ECONOMETRICS

WORKING PAPERS

1988

6/88 Grant H. Hillier, "On the Interpretation of Exact Results for

Structural Equation Estimators".

7/88 Kuldeep Kumar, "Some Recent Developments in Non-Linear Time Series

Modelling.

8/88 Maxwell L. King, "Testing for Fourth-Order Autocorrelation in

Regression Disturbances When First-Order Autocorrelation is Present".

9/88 Ralph D. Snyder, "Kalman Filtering with Partially Diffuse Initial

Conditions".

10/88 Asraul Hogue, "Indirect Rational Expectations and Estimation in a

Single Equation Macro Model".

11/88 Asraul Hogue, "Efficiency of OLS Relative to C-0 for Trended x and

Positive Autocorrelation Coefficient".

12/88 Russel J. Cooper & Keith R. McLaren, "Regular Alternatives to the

Almost Ideal Demand System".

13/88 Maxwell L. King, "The Power of Student's t Test: Can a Non-Similar

Test Do Better?".

14/88 John Hamilton, "On-Line Management of Time Series Databases: Database
Retrieval Program DBR".

1989

1/89 R. D. Snyder, C. Chah & C. Lehmer, "Multi-series Heuristics for
Exponential Smoothing.

2/89 Maxwell L. King and Phillip M. Edwards, "Transformations for an Exact
Goodness-of-Fit Test of Structural Change in the Linear Regression
Model".

3/89 Muhammad I. Bhatti and Maxwell L. King, "A Beta-Optimal Test of the

Equicorrelat ion Coefficient".

• 4/89 Muhammad I. Bhatti, "Null Distribution of the Small Sample

Mean Correlation Coefficient: An Application to Medical Research."

5/89 Grant H. Hillier, "On the Normalisation of Structural Equations:

Properties of Direction Estimators".

6/89 Brett A. Inder, "A New Test for Autocorrelation in the 
Disturbances

of the Dynamic Linear Regression Model".



IM,

••

•

•


