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A NEW TEST FOR AUTOCORRELATION IN THE DISTURBANCES OF THE

DYNAMIC LINEAR REGRESSION MODEL

1. INTRODUCTION

In the linear regression model with a lagged dependent variable as regressor,

the assumption of uncorrelated disturbances is crucial for the properties of

the structural parameter estimates. If the disturbances are autocorrelated

and the parameters are estimated by ordinary least squares (OLS), the

estimates will be inconsistent, and inferences from hypothesis tests on the

parameters are likely to be misleading. Consequently the need to test for the

presence of such correlation is obvious.

Until recently the asymptotic tests of Durbin (1970] known as Durbin's h,

and t tests, have been widely accepted as the appropriate tests for first

order autocorrelated (AR(1)) disturbances (see Kenkel (1974, 1975, 1976] and

Park [1975]). However, Inder (1986b] has proposed a procedure based on the

Durbin—Watson (DW) statistic (Durbin and Watson [1950, 1951]) which he shows

to be significantly more powerful than Durbin's tests, and which also performs

more consistently under the null hypothesis. In this paper we present a new

test which is a modification of the s(pi) test proposed by King [1985] for

the static linear model. The results that follow suggest that this test is

substantially more powerful than the DW test.

(1)

Consider the model

ay
1 
+ x'S + u

tt— t (t = 1, .

where yt is the tth observation on the dependent variable, xt is

a k x 1 vector of observations on the exogenous variables at time t, a and
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(k x 1) are unknown parameters, and ut is a stochastic disturbance which

follows the AR(1) process

(2) e
t

u
t = Put-1

(t = 1, .

where Ipl < 1 and e
t 

IN(0,a
2
). We are interested in testing H

0 
: p = 0

against the alternative H1 : p > 0.

The DW statistic for the regression in (1) with the last n-1 observations

is given by

A A A

(3) d = u'Au/u'u ,

where A is the first differencing matrix2 and u is the vector of OLS

residuals. Inder [1986b) proposed a test procedure using this statistic, with

the critical value being the exact critical value from a regression on X

alone. The tabulated bounds of Durbin and Watson [1951] could be used, and if

the statistic fell in the inconclusive region, the appropriate critical value

could be computed or approximated by one of the many procedures available.3

(4)

Durbin's h statistic is defined by

A A

1/,
= (1 — d/2)[(n-1)/(1—(n-1)V(a))] 14

where V(a) is the estimate of the variance of a. Durbin's t test is a test of

the significance of the coefficient of u_l in the OLS regression of u on u_1,

2. A is a tridiagonal matrix whose main diagonal elements are 2 except for
the top left and bottom right elements which are both 1 and whose
elements in the leading off—diagonals are all —1.

3. King [1986] surveys the various techniques for computing or approximating
such critical values.
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y_1, and X where for any vector z = (z2,z3,...,zn), z_1= (z1,z2,...,z
n-1
)

and za = (z1,z2,...,zn), and X' = (x2,x3,...,xn).

The plan of this paper is as follows: the new test, called the s(a, pl)

test, is described in section 2, and its null distribution examined. Sections

3 and 4 then describe the results of a Monte Carlo (MC) study comparing the

performance of the test with the DW, h and t tests - results under the null

hypothesis are in section 3, and powers in section 4. In the final section we
A

recommend the use of the s(a, pl) test in preference to any of the existing

tests.

2. THE s(a, pl) TEST

One class of test procedure that has proved quite successful in the

linear model without a lagged dependent variable is those tests which are most

powerful invariant at some particular value of p, say pl. The results of

Berenblut and Webb [1973] and King [1985] suggest that these tests can be

quite powerful relative to the DW test. Following King [1985], the test can

be regarded as a likelihood ratio test of H
0 

against the simple alternative

•that  p =p1 and will be referred to in this paper as the s(pi) test.

For the dynamic model, we propose a modification of the s(p1) test which

involves estimating (1) by OLS, and obtaining a. A new variable

(5)
^

Yt= Yt- t-1a 
(t = 2, ...,n)

is constructed. The s(a, pl) statistic is then the s(pi) statistic in a

regression of y on X. Specifically,

(6) s(a, pl) = SSE(a, p1)/SSE(0),
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where SSE(0) is the sum of squared errors in an OLS regression of -.); on X,4

and SSE(a, pl) is the sum of squared errors in an OLS regression of

-*
y on X for t = 2, ...,n, where for any vector or matrix wr, w = Qw, and

- 2 
(l-P 

1
1) /2 

0 0 • 0
BEM Nor

1 
1 0 • 0

(7) Q= 0 -p1 
1

0
• 1

1

ense

Essentially the modification to the s(pi) statistic involves

"eliminating" the dynamic component of the model by constructing y, and then

computing the statistic to a now pseudo-static model.

Inder (1986a) has derived the large sample asymptotic distribution of the

s(a,p1) statistic. It was found that as with the DW statistic, this

distribution depends on V(a), the asymptotic variance of a. Thus to obtain

critical values based on large sample asymptotics, V(a) would need to be

estimated. This results in a modification of the s(a,pi) statistic similar

in form to Durbin's h statistic:

(7)

2
[1 + p

1 
- s(a, p1)]11  an-1 

- N(0, 1).h
s
(a, p

1
) =

2p1
1 - (n-1)V(a) •

However, the discussion in Inder [1986b] indicates that the performance

of the h test is poor in comparison with that of the DW test - it is

4. SSE(0) is also the sum of squared errors in the estimation of (1).
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frequently undefined, it has lower power, and the use of standard normal

critical values does not lead to very good properties under H0.

The h (a, p
1 
) test is likely to suffer in the same way relative tos 

the s(a, pl) test. These potential problems are confirmed in the results

presented by Inder (1986a).

In the remainder of this section we will examine the small disturbance

asymptotic distribution of the s(a, pl) statistic.

THEOREM 2: Let P
x 
= PP', where P'P = I

n—k —1' 
and let E(y 1) = m_1.

Under the model given by (1), (2), with p = 0, and provided P'm_i 0, the

small disturbance asymptotic distribution of s(a,pi) (defined in (6)) is the

same as the distribution of

(8) s
o 
= u'Q'Q'T)

QX
Q0u/u'O'-13xQu 

'

where Q = I —

(9)

PROOF: A specific expression for the statistic is given by

^ ^ ^ ^
s(a,pi) = (y — y_la)'Q'P(130(y — y_la)/(y y_la)'-fx(y y_ a).

This can be rewritten

S(aill1) = (u—Y-1(a—a))Vil-QX(1(u—Y-1(a—a))/(u—Y-1(a—a))/;X

and u—y_1(a—a) = (I—y_lyljx/y.:.jxy_i)u. Since y_l = m_l + 0(c),

u—y_1(a—a) = (I—m_1m.11-13xtm.:1)ua + 0(a2),

^
u-y_1(a_a)),

where U = uba, and 0(a1) means other terms of order ai or higher. Thus

s(a,pi) = u'Q'Q'-fuQ0u/u'O'il'xQu + 0(a)

= 5
o 
+ 0(a) . Q.E.D.



6.

Since so is a ratio of quadratic forms in normal variables, its

distribution function can be obtained by the Imhof [1961] procedure namely.

—Pr(s
o 
< s ) = Pr(u'0'(Q'-13.

QX
Q 

s* 
P
X 
)0u < 0).

However, note that 0 depends on unknown parameters a and A, so the (small

disturbance) asymptotic distribution of s(a,pi) depends on these parameters.

For practical purposes, then, it is necessary to consider an

approximation to the asymptotic distribution of s(a,pi). Assuming that the

elements of m...1 are of similar magnitude, the matrix m_im'iiixtm'ilixm..1 will

contain very small values (of order 1/n). Hence for reasonable values of n,

replacing 0 with the identity matrix may yield quite an accurate

approximation. This gives s
o 

s
s' 

where

(10) =

whose distribution function does not depend on any unknown parameters.5

The distribution function of ss thus provides a computable approximation

to the asymptotic distribution of s(a,pi). Using this to obtain 8—level

critical values requires solving

Pr(u'(Qq;
QX
Q — s13

X
)u < 0) e

for se. Observe further that ss is, in fact, the s(p1
) statistic in a model

whose only regressors are X, so se will be the exact critical value for the

s(pi) statistic in a regression on X alone. This result is significant in

that the bounds tabulated by King [1985] can be used as bounds for se. The

5. Inder [1986b] made a similar approximation for the DW statistic, and gave
several other reasons why this approximation may be expected to be
reasonably accurate.
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critical value need only be computed when the calculated value of s(a,pi)

falls in the appropriate inconclusive region.6

3. PROPERTIES OF THE s(a, pl) TEST UNDER THE NULL HYPOTHESIS

The adequacy of the s(a, pl) test as an alternative to Durbin's tests and

the DW test can be assessed in terms of its performance under H0

(probabilities of a type I error) and under H1 (power). We resort to MC

techniques to examine the test, looking at the null distribution in this

section, and its power in the next section. The following data sets and

parameter values were used:

Experiment 1 : X comprised of a constant and Maddala and Rao's [1973] GNP

data. ' = (0, 1, 1); n = 32 and 76; and a = 8, 20, and 40.

Experiment 2 : X included a constant and an artificially generated series

constructed by adding a random variable Vt to the GNP series, where

V
t 

N(0, 1600) (MtNown and Hunter [1980]). All other parameter values

were identical to experiment 1.

Experiment 3 : X contained a constant, three quarterly seasonal dummy

variables, and the quarterly Australian Consumer Price Index comencing

1959(1). p' = (0, 1, 6, —7, 2); n = 30 and 60; and a = 1, 2, and 4.

Experiment 4 : X was Durbin and Watson's [1971] consumption of spirits data (a

constant, real income, and price of spirits). — (0, 1, 1); n = 30

and 60; and a = .5 and 1.

In all four experiments a took the values .2, .4, .6, and .8.

6. The appropriate bounds would be for n-1 observations and k regressors.
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The classical approach to nonsimilar tests involves finding critical

values for which the probability of a type I error never exceeds the size.

This provides a basis for comparing the tests under Ho: since all of the

existing tests are nonsimilar, it would be preferable if they do not have

probabilities of a type I error which exceed the nominal significance level.

However, in previous MC studies, interest has been focused on haw close the

probabilities of a type I error are to the nominal size, with fluctuations

above and below this level being given equal importance. We will evaluate the

critical values of the s(a, pl) test according to both criteria, dealing with

the latter first.

Tables 1 and 2 provide a selection of typical results comparing the small

disturbance asymptotic critical values of the s(a, .5) test,7 and the DW, h

and t tests.8 They show that in some cases the test can perform quite

consistently (for example, Experiment 2), and in other cases they are very

eratic (for example, Experiment 4).

We see that in most cases the s(a, pl) test probabilities of a type I

error are the smallest and are further from the significance level. Only

occasionally does the s(a, pl) test perform better than the DW test. The

approximation does seem to be more accurate for large values of a and small

(which is not surprising since it is a small a approximation), and the

difference between the two tests is much smaller in these cases. All of the

tests seem to perform better for the larger sample sizes, although the

improvement is only marginal.

7. The e—level critical values for the s(a, pi.) test were obtained for
e = .05 and .01 using a modified version of Koerts and Abrahamse's

[1969] sub—routine to solve (11) for se.

8. Several values of pl were considered for the s(a, pl) test; varying -
p
1 

made little difference to size or power, so we chose to use a
"middle" value, namely 0.5.
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Occasionally the probabilities of a type I error are exceptionally low

for the s(a, pl) test: for example, with the first data set and n = 76,

a = 20, a = .2, the probability is only .002 compared to a nominal size of

.05. Such cases are of particular concern not only because they are so far

from the nominal size, but also because of the detrimental effect these low

probabilities can have on the power of the test. However, note that in every

situation where the probability is low for the s(a, pl) test, it is also very

small for the DW test.

Experiment 4 yields some interesting results: the DW probabilities vary

greatly from close to zero when a = .2 to around .1 when a = .8 (with a

significance level of .05). Durbin's h and t tests also have very poor

probabilities of a type I error for this data set. However, the probabilities

for the s(a, pl) test show little variability — most are around .01. While

these probabilities are undesirably low when one's nominal size is .05, it is

perhaps better than what occurs for the other tests, where the probability of

a type I error can fluctuate wildly.

If one's goal is to find exact nonsimilar critical values for the test

(that is, critical values which give probabilities of a type 1 error which are

never greater than the size), the results in Tables 1 and 2 suggest that the

small disturbance asymptotic critical values for the s(a, pl) test may

provide a reasonable approximation. With a significance level of .05, in no

case does the probability of a type I error exceed this, and it only occurs a

few times at the .01 level.

To examine more closely the performance of the s(a, pl) critical values

further MC results were obtained on the probabilities of a type I error with a

• wider range of parameter values. In particular, a values of .001 and .999

were Considered, along with some substantially larger values of a for each
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experiment. The results of this extra work are encouraging for the use of the

small disturbance asymptotic critical values as an approximation to nonsimilar

critical values. In only a few cases do the probabilities of a type 'I error

exceed the significance level, and the excess is always negligible.

Recognising that broad conclusions ,from MC studies need to be made very

cautiously, it is fair to say that we have no evidence to reject the proposal

that the small disturbance asymptotic critical values for the s(a, pl) test

can provide reasonable approximations to the exact nonsimilar critical

values. The approximation has the advantage of being much easier and quicker

to compute than the procedure for obtaining nonsimilar critical values of the

DV test9 given in Inder (1986b).

The small disturbance asymptotic critical values of the s(a, pl) test

appear to be adequate. They do very well at approximating nonsimilar critical

values, and although the DU test can often yield probabilities of a type I

error which are closer to the nominal size, the difference is not

substantial. If the s(a, pl) test proved to have far superior power

properties, one may be inclined to overlook its slightly inferior performance

under H0. Furthermore, the s(a, pl) test seems to be more consistent under

H0'• its probabilities of a type I error do not fluctuate very much relative

to those of the DV, h and t tests.

4. PROPERTIES OF THE s(a, pl) TEST UNDER THE ALTERNATIVE HYPOTHESIS

In this section we report some powers of the s(a, p
1
) test and compare

these with the powers of the Dif, h and t tests. Powers are obtained with the

9. The procedure for finding e—level nonsimilar critical values of. the D14test is as follows: set a to .999 and to zero, and generate at least1000 samples under Hn. For each sample, calculate the DV statistic, andchoose the critical values so that 1000 x 0 of the DV statistics are lessthan this value.
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small disturbance asymptotic critical values described in Section 2. These

latter critical values can be interpreted as approximate nonsimilar or as

"asymptotically similar" critical values (see Section 3).

The results in Tables 3 and 4, together with Figure 1, provide some

typical power results, as well as showing the most extreme cases of the

performance of the 
s(a' pl) 

test (the "worst" is in Figure la, and the best

in Figure lb). Despite the handicap of almost always having lower

probabilities of a type I error, the s(a, .5) test still shows a significant

power advantage over the other tests. In no case does any other test have
A

lower probabilities of both types of error than the s(a, .5) test, but there

are many situations where the s(a, .5) test dominates the other tests in this

way.

In fact, it is possible to go even further in establishing the test's
Asuperiority: in every case considered in this MC study, the s(a, .5) test

is at least as powerful as its competitors for moderate to large values of p,

even though often its probability of a type I error is substantially lower.

In Figure lb, for example, the s(a, .5) test has far greater power for values

of p above .3, despite the fact that its probability of a type I error is much

smaller. In most cases the s(a, .5) test has higher power for p values of .3

and higher, although sometimes it can be slower in catching its competitors

because of the vast differences in the probabilities of a type I error.

Figure Id illustrates the most unfavourable of these cases, where the
A

probability of a type I error is very small for the s(a, .5) test (.018), and

for all the other tests it is unacceptably high (above .1). Despite this,

the s(a, .5) test is still the most powerful for p greater than .5.

These results show that, despite the fact that the s(a, .5) test starts

at a disadvantage because of its properties under Ho, its power is so great

that it is still to be preferred to any of the existing alternatives. It
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always gives the best power for values of p where this is especially

important — moderate to large values — often at the same time having the

lowest probability of a type I error.

The results reported in this paper show clearly that the powers of the

tests vary greatly with the X data and parameter values. One possible cause

of this is the variation in haw well the model fits the data. To verify this,

a pseudo—R2 was calculated (using known parameter values) for each combination

of parameter values.10 This revealed great variation between and within

experimentsR2T1 ranged from below 0.1 in experiment 4 to more than 0.99 for

some cases in experiments 1 and 3. This analysis revealed that when smaller

R2 values occur, the probabilities of a type I error of all the tests deviate

much more from the nominal size. The powers, however, do not seem to vary as

systematically with R2.

Powers do, however, depend on a, with generally better powers for larger

a values, and less difference between the tests. There is also some small -

Improvement in power for the smaller a values, and larger sample sizes. The

other key source of variability seems to be the nature of the X data. The

data for experiments 2 and 4 are quite choppy, and in these cases the tests

all have similar performance; the superiority of the s(a, .5) test is more

obvious in the more smoothly evolving and trending data of experiments 1 and

3. This observation could be very important: if valid it suggests that

existing procedures such as Durbin's tests may be used with confidence when

detrended or choppy data is used; in other cases there is a large cost

involved in not using the s(a, pl) test.

10. This measure of goodness of fit was obtained by comparing the actual
variance of the disturbance term with the variance of the mean vector of
y, with R2 being one minus the ratio of these quantities.
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As a further test of the validity of this conclusion, power results were

obtained for another nontrending, choppy X series. This series was obtained

by randomly "shuffling" the GNP data in experiment 1. As anticipated, there

was much less variation in the powers of the tests than for experiment 1.11

In Section 3 it was observed that the small disturbance asymptotic

critical values of the s(a, .5) test could serve as approximations to the

nonsimilar critical values. It would be of interest, then, to compare the

power of the test with that of the DU, h and t tests when nonsimilar critical

values are used. A few results for this comparison are given in Figure 2.

It is not surprising that this comparison favours the s(a, .5) test even

more strongly. The s(a, .5) test is the most powerful test in every

situation, except for a few cases with p = .1 in experiment 4 where the

probabilities of a type I error for the other tests are higher (see Figure

lc). There are many occasions where the powers of the INT, h and t tests are

poor, not even reaching .5 when p = .9, where the s(a, .5) test power often

comes very close to one (for example, see Figure 2b). To conclude, if the

researcher preferred to use nonsimilar critical values, the s(a, .5) test,

with its approximate nonsimilar critical values, has vastly superior power to

the MT, h and t tests.

5. CONCLUSIONS

In Inder (1986b] we introduced procedures for obtaining asymptotically

similar critical values and nonsimilar critical values of the MT test for

first order autoregressive disturbances in the dynamic linear model. It was

11. I am grateful to an anonymous referee for suggesting this procedure.



14.

shown that this test performs better than Durbin's h and t tests, both in

terms of power and consistency under the null hypothesis. It was the aim of

this paper to improve on the DW test still further. In the light of this aim,

the s(a, pl) test was introduced. In Section 2 we considered the null

distribution of this new test and suggested a simple procedure by which

approximate critical values could be obtained. The results of Section 3

suggest that this procedure, based on the small disturbance asymptotic

distribution of the statistic, can provide both asymptotically similar

critical values and approximations to the nonsimilar critical values of the

test. The test procedure using the s(a, .5) statistic is as easy to perform

as the s(pi) or DW tests in the static linear model.

^
The power of the s(a, .5) test was investigated in Section 4 by means of

a MC study: this showed overwhelmingly that the test yields a vast improve—

ment over the DW test. It is always at least as powerful for moderate to

large values of p, even when its probability of a type I error is often

substantially lower. There are many occasions when the test has lower

probabilities of both types of error. The power of the s(a, .5) test is often

more than double that of the DW and other tests.

It appears, then, that the aim of this paper has been realised in the

s(a, .5) test. While the DW test is a reliable and powerful test, the

s(a, .5) test is considerably more powerful. We would thus conclude by

recommending that the s(a, .5) test with critical values based on the

procedure outlined in Section 2 be used in preference to the DW, h and t

tests.

Monash University
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TABLE 1

PROBABILITIES OF A TYPE I ERROR FOR THE TESTS USING ASYMPTOTIC
CRITICAL VALUES : NOMINAL SIZE = 5Z

Test s(a,.5) DW

a EXPERIMENT 1 : n = 32

0=8

= 20

a= 40

a=8

a = 20

a= 40

•2

• 4

•6

.8

ha

.026 .033 .030 .089(72)

0.035 0.043 0.025 0.055(3)

0.039 0.046 0.018 0.032

0.038 0.039 0.010 0.019

.2 0.005 0.008 0.058

.4 0.011 0.027 0.060

.6 0.027 0.052 0.044

.8 0.037 0.048 0.018

.2 0.007 0.004 0.079

.4 0.005 0.015 0.091

.6 0.010 0.044 0.085

.8 0.035 0.068 0.047

EXPERIMENT 2:n - 76

.2 0.050 0.055 0.036

.4 0.048 0.054 0.035

.6 0.046 0.051 0.034

.8 0.046 0.050 0.033

.2 0.048 0.054 0.037

.4 0.048 0.052 0.035

.6 0.047 0.051 0.035

.8 0.045 0.050 0.033

•2

• 4

• 6

.8

0.047 0.048 0.038

0.049 0.048 0.035

0.047 0.050 0.033

0.046 0.050 0.033

0.119(1638)

_0.147(563)

0.102(68)

0.036

0.093(3057)

0.169(1653)

0.184(474)

0.091(35)

0.046

0.043

0.042

0.040

0.045

0.045

0.042

0.040

0.048

0.046

0.044

0.042

a Figures in parentheses represent the number of times h was undefined.



16.

TABLE 2

PROBABILITIES OF A TYPE I ERROR FOR THE TESTS USING ASYMPTOTIC
CRITICAL VALUES

a= 1

= 2

a=4

Test s(;;,.5) INT t ha

a EXPERIMENT 3 : n = 60, nominal size = 1%

.2 0.008 0.007 0.007 0.017

.4 0.009 0.008 0.007 0.013

.6 0.009 0.010 0.007 0.010

.8 0.009 0.010 0.006 0.010

.2 0.004 0.002 0.010 0.050 (15)

.4 0.007 0.005 0.010 0.023

.6 0.007 0.008 0.009 0.012

.8 0.009 0.010 0.007 0.011

.2 0.000 0.000 0.013 0.096 (897)

.4 0.001 0.001 0.014 0.072 (99)

.6 0.006 0.006 0.013 0.028 (2) .

.8 0.007 0.010 0.010 0.013

EXPERIMENT 4: n = 30, nominal size = 5%

.5 .2 0.016 0.009 0.084 0.041 (4205)

.4 0.017 0.023 0.110 0.112 (3375)

.6 0.016 0.055 0.118 0.196 (2026)

.8 0.012 0.103 0.109 0.229 (913)

c = 1 .2 0.017 0.009 0.085 0.041 (4236)

.4 0.017 0.024 0.116 0.106 (3442)

.6 0.018 0.055 0.122 0.197 (2097)

.8 0.018 0.106 0.115 0.237 (1029)

a Figures in parentheses represent the number of times h was undefined.
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TABLE 3

POWERS OF THE TESTS USING ASYMPTOTIC CRITICAL VALUES : NOMINAL SIZE = 5Z

EXPERIMENT 1 : n = 76, a = 40a

p= 0. .1 .3 .5. .7 .9

Test a = .2

^
s(a, .5) .003 .076 .811 .995 1.000 1.000

DW .001 .003 .031 .137 .379 . .604

h .158 (1614) .230 (212) .369 (34) .440 (2) .532 .637

t .074 .120 .233 .331 .476 .578

a = .4

s(a, .5) .001 .077 .822 .995 1.000 1.000

DW . .006 .020 .180 .522 .830 .956

h .183 (293) .272 (27) .503 .722 .884 .962

t .079 .146 .397 .650 .843 .944

a = .6

^
s(.a, .5) .009 .103 .822 .996 1.000 1.000

DW .027 .095 .502 .867 .985 .998

h .133 (9) .248 (2) .650 .909 .987 .998

• t .073 .180 .590 .879 .984 .997

a = .8

s(a, .5) .031 .141 .810 .996 1.000 1.000

DW .057 .180 .745 .976 .999 1.000

h .078 .213 .764 .977 .999 1.000

t .055 .174 .725 .968 .997 1.000

a Figures in parentheses represent the number of times h was undefined.
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TABLE 4

POWERS OF THE TESTS USING ASYMPTOTIC CRITICAL VALUES : NOMINAL SIZE = 5%

EXPERIMENT 4 : n=60, a = 1
a

p= 0. .1 .3 .5 .7 .9

Test a = .2

s(a, .5) .012 .034 .652 .964 .998 1.000

DW .001 .003 .034 .174 .348 .541

h .090 (3769) .181 (573) .373 (163) .444 (25) .506 .557 (1)

t .093 .152 .224 .307 .390 .475

a = .4
^

s(a, .5) .011 .036 .656 .964 .997 1.000

DW .008 .027 .183 .493 .763 .911

h .237 (1582) .348 (162) .512 (24) .685 (2) .807 .901

t .118 .191 .351 .572 .754 .864

a = .6

s(a, .5) .010 .039 .657 .966 .997 1.000

DW .042 .112 .425 .832 .955 .987

h .253 (268) .365 (20) .631 (2) .879 .956 .984

t .120 .216 .509 .832 .940 .979

a = .8
^

s(a, .5) .004 .049 .655 .965 .996 1.000

DW .103 .226 .692 .949 .990 .999

h .204 (26) .342 (2) .740 .949 .990 .999

t .120 .246 .664 .932 .987 .998

a Figures in parentheses represent the number of times h was undefined.
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FIGURE 1

POWERS OF THE TESTS USING ASYMPTOTIC CRITICAL VALUES
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FIGURE 2

POWERS OF THE TESTS USING NONSIMILAR CRITICAL VALUES
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