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• interpretation of exact results for structural equation
estimators". My thanks to the referees and the Associate Editor
for comments on the first version of the paper that helped to both
clarify the message and broaden the scope of the paper.



Abstract

In the classical structural equation model only the direction of

the vector of coefficients of the endogenous variables is determined.

The traditional normalisation rule defines the coefficients that are of

interest but should not be embodied in on the estimation procedure: we

show that the properties of the traditionally defined Ordinary Least

Squares and Two Stage Least Squares estimators are distorted by their

dependence on the normalisation rule. Properly normalised analogues of

these estimators are defined and are shown to have essentially similar

properties to those of the Limited Information Maximum Likelihood

estimator.

Keywords: Direction estimators; Exact Distributions; Induced

densities; Normalisation rules.



1. INTRODUCTION

Exact distribution theory for the classical structural equation model in

econometrics is notoriously complex, and results for even the simplest

cases have seemed too complicated to yield interesting analytical

conclusions about the relative merits of different estimators. Thus,

Anderson and Sawa [3] and Anderson, Kunimoto, and Sawa [2], for

instance, have resorted to extensive numerical tabulations of the exact

densities to extract such information. For the case of an equation with

just two endogenous variables these tabulations suggest that, in several

respects, the limited information maximum likelihood (LIML) estimator is

superior to the ordinary least squares (OLS) and two-stage least squires

(TSLS) estimators, among others, and these conclusions are supported by

the higher-order asymptotic results in Anderson, Kunimoto and Morimune

[1] and other work referenced there.

The basis for inference in this model is the joint distribution of

the included endogenous variables (represented by the reduced form),

together with the maintained hypothesis that a submatrix of the reduced

form coefficient matrix has rank one less than its column dimension.

This latter condition determines the direction of a vector in R
n+1

where n+1 is the total number of endogenous variables in the equation -

but not its length. Thus, some normalisation rule is needed to

determine the coefficient vector uniquely, and the distribution theory

referred to above has focused on results for the n coefficients

remaining when the other is assumed to be unity.

In this paper we focus on the estimation of the direction of the

(n+1)-dimensional coefficient vector in an unnormalised equation.

Existing distribution results for the coefficients in a normalised



equation are easily translated into results for the corresponding

direction estimators, and, as we shall see, this at once makes these

complex formulae more intelligible. In fact, at least in the case n=1,

the results clearly demonstrate the superiority of the LIML estimator

and hence explain analytically the results of the numerical studies

referred to earlier. In the case n>1 the results are less decisive, but

they do, nevertheless, provide considerably greater insight into the

properties of these estimators than their counterparts for the

normalised case.

The results we obtain suggest that the normalisation rule embodied

in the OLS and TSLS estimators distorts their properties. This prompts

the question of whether or not analogues of OLS and TSLS based on the

same normalisation rule as the LIML estimator would correct this

distortion, and we show below that this is indeed the case.
2

Thus,

while the traditional normalisation rule can certainly serve to define

what is of particular interest in the model - usually, the coefficients

of the right-hand-side endogenous variables - it is neither logically

necessary nor, as we shall show, wise, to impose this rule on the

estimation procedure.

2. MODEL AND ASSUMPTIONS

We consider a single structural equation, written without an explicit

normalisation rule,

(y,Y)136, = Z
1 

+ u , (1)

with corresponding reduced form

2



[n1 H11
(y,Y) = (Z1'Z2) n H + (v,V) , (2)

2 2

where y is Tx1, Y is Txn, ZI is TxKl, Z2 is TxK2' K22-41
' 

and Z = (Z1'Z2)

is fixed and of full column rank K = K
1 
+ K2. To simplify the notation,

but without loss of generality, we shall assume that the model is

already in canonical form - see Phillips [11] for details of the

reduction to canonical form. Thus, we assume that the rows of (v,V) are

independent normal vectors with mean zero and covariance matrix I
n+1'

and also that Z/Z = IK.

As is well known, (1) is compatable with (2) if and only if the

relations 7 = (Tr1,H1)0A,

(n2'IT2)0 = 0 (3)

• and u = (v,V)gA' hold for some PA # 0. Equation (3) implies

rank(n
2'

112) n, and to ensure an essentially unique solution requires

the identification condition rank(u
2'
H2) = n. 

This is the maintained

. hypothesis.

In practice equation (1) is usually normalised by singling out an

endogenous variable (y, say) as the 'dependent variable', so that PA

takes the form

13A

and (3) becomes

(4)

(5)

This normalisation rule implies the compatability of (1) with (2). (hence

that rank(n2'112) n), and uniqueness here requires rank(H2 ) = n.
. 

3



Equation (5) and the condition rank(H
2
) = n together imply

rank(ir
2'

11
2
) = n, but the converse is clearly not true. The traditional

normalisation rule therefore seems a stronger assertion about the model

(i.e., the joint density of (y, Y)) than the condition rankOr2'
IT
2
) = n.

However, equation (3) determines only the 'direction' of the vector pA,

and the set of directions in which the traditional normalisation is

impossible is of measure zero. Hence, the 'primitive' equation (3) can

be regarded as formally equivalent to eqUation (5), and we shall focus

on the estimation of the direction of the vector p
A 
in (3).

Let Q. = wAsipA, i = o, 1, 2, with So = (y,Y)/(I - ZiZ)(y,Y),

S
1 
= (y,Y)'(I - ZZ')(y,Y), and S

2 
= (y,Y)/Z

2 
Z1(y,Y). The OLS and TSLS
2

estimators for p in (4) are obtained by minimising Q0 and Q
2'

respectively, with respect to p
A' 

subject to the normalisation rule (4).

The LIML procedure leads to the minimisation of x((3A) = Q2/(21, and,

since this ratio is invariant to the length of p
A' 

determines only an

estimator for its direction. If, as we shall in the next section, and

is common in practice, 'direction' is indicated by position on the

surface of the unit (n+1)-sphere, the LIML estimator for the direction

of pA minimises x((3A) subject to frApA 7 1.

In Section 4 below we consider, in addition to the estimators for

the direction of pA that are induced by the OLS and TSLS estimators for

13, analogues of these two estimators defined by minimising Q0 and Q2,

respectively, subject to wApA = 1. These, of course, are simply the

unit-length characteristic vectors corresponding to the smallest

characteristic roots of S
0 

and S
2 

respectively.



•

3. DIRECTION ESTIMATORS

Equation (3) is clearly incapable of determining the length of PA.

Thus, in the context of the primitive equation (3), the estimation

problem can be thought of as one of determining just the direction of

the vector p
A' 

and even that can only be determined up to sign. It is

convenient to use points on the surface of the unit sphere in n+1

dimensions,

n+1 ,
S
n+1 • 

{a 
_

.; CCE , oca=---1}

to indicate direction, and we shall henceforth replace [36, in (3) by a,

and treat the estimation problem as one of determining (up to sign) the

position of the point a on Sn4.1. An estimator for a will also be a

point, h say, on Sn4.1.

Now, to each point h = (111,y1 E Sn4.1, with h2 nx1, and hi. # 0,

(i.e., almost everywhere on Sn+1) there corresponds a point r =

-
-h

1
1 
h
2 

R
n
. The two points h and -h both yield the same r, but apart

from this r is unique and ranges over all of R
n 

as h ranges over S
n+1

.

Conversely, each point r E Rn determines a pair of points -±h on S
n+1'

with h given by

1

1(1 r,r)-1/2 (6)

so that r = -h
-11

h2. If we impose the restriction hi. > 0 there is thus a

one-to-one correspondence between points in R
n 

and points on (one

hemisphere of) Sn4.1. Hence, a probability density (with respect to

Lebesgue measure) on Rn can be thought of as inducing a measure on S
n+1

via (6), and we can drop the requirement that 111 > 0 by allocating the

mass at r equally to the two points ±h. We evaluate measures on S

5
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with respect to the invariant measure, (h'dh), on S
n+1 

and, with the

above convention on sign, we have

(h'dh) = 2(1 + r'r
n+1)/2

A dr.
i=1

(7)

(see Phillips [12], [13], and Hillier [7], the invariant measure (h'dh)

on S
+1 

is defined in Muirhead [9, Chapter 21, as is the exterior
n 

product •notation 'A'). By construction, the measure on S
n+1 

for h

induced by that of r will exhibit antipodal symmetry, i.e. pdf(h) =

pdf(-h).

Given an estimator, r, for p in the normalised equation, we may

thus construct an estimator, h, for the point a E S
n+1 

satisfying

Or
2'
H
2
)a = 0 via (6), and the density of r induces a probability measure

for h on Sn+1. With a slight abuse of notation we shall denote both

measures o
n 
R
n 
(w.r. to Lebesgue measure), and measures on S

n+1 
(w.r. to

the invariant measure) by the same symbol, pdf(.), although the latter

are not, strictly speaking, density functions.

Likewise, of course, a measure for the direction estimator h will

induce d measure for the coefficient estimator r, and the properties of

r will reflect those of h. Thus, although I would argue that it is the

direction of p
A 

that is the proper focus of attention in this model, if

interest is nevertheless centered on p in the normalised equation, the

properties of the direction estimator are pertinent because they explain

the behaviour of r. For instance, in the case n = 1, r is simply the

slope of the line orthogonal to ±h, and, in the representation

1
a 

[-P] 

(1 p,p)-1/2 • 13
-1= 

-cl a2
(8)

6



for the parameters corresponding to (6), p is the slope of the line

orthogonal to ±a. Loosely speaking, getting h right is a prerequisite

for getting r right, and of course this heuristic argument can be both

formalised and generalised to. the case n > 1. We shall not pursue this

formality here, though, because our main point is that interpreting the

estimation problem as one of estimating a direction is both more natural

and more productive.

Before proceeding we note that in the canonical model p = 0 if and

only if Y is independent of u in equation (1), and in that case a in (8)

corresponds to e
1
, the first coordinate axis (e = (1, 0, :.., 0),

1

1 x (n+1)).

4. DENSITIES AND PROPERTIES: n=1

The exact density functions of the OLS and TSLS estimators for p in the

normalised equation were first derived for the case n=1 by Richardson

[15] and Sawa [16]. The corresponding result for the LIML estimator for

p was first given by Mariano and Sawa [8], but the results below for

LIML are based on [7] and thus differ slightly from those in [8].

Defining h as in (6) and a as in (8), and using (7), we have, for

the OLS and TSLS estimators (cf. Phillips [11], equation (3.45)):

pdf(h) = C
11
[cos

2
01 

](v-1)/2exp{-d
2
/2}

cv(J,k, d
2
/2]

j+k
[cos ii[sin2 1k

j,k=0 k' 1 
(9)

where C
11 

= [F((+1)/2)/21"(1/2)r(v/2)1, d
2
 = tr[Or

2'
IT
2
Y ea

2'
IT
2
)] is the

single non-vanishing characteristic root of Or
2'

IT
2
Y(Tr

2'
IT
2
)(= 112112(1+13

2

in the normalised case), 0
1 

and 0
1 

are the angles between h and a,



respectively, and the first coordinate axis, e
l' 

and 0 is the angle

between h and the true direction a. The coefficients c
v
(j,k) are given

by

c(j,k) ((v+1)/2).((v-1)/2)/(v/2)j
V 

k +k ,

where v = T - K
1 
for OLS, v = K

2 
for TSLS, and (a)

t 
= a(a+1)...(a+t-1).

For the LIML estimator we have (cf. [7], equation (52)):

-1 
00 a(j,k) 2 

i+k 2 j
pdf(h) = (2n) exp{-d

2
/2} E ki /21- [cos 0] , (10)

j,k=0 
J., kl 

with coefficients a(j,k) = al(j,k) given in equation (A.4) in Appendix

A.

The key difference between the results (9) for the OLS/TSLS

estimators, and (10) for the LIML estimator, is that the latter depends

upon h only through 0, the angle between h and a, while the former

depends, in general, upon both 0 and 0
1, 

the angle between h and the

first coordinate axis. Only when p = o, so that a E el, or v = 1 (the

exactly identified case for the TSLS estimator), does (9) depend on 0

alone. Notice too that (9) also involves 0
l' 

the angle between a and

e
1
. Evidently the normalisation rule (4), which gives special emphasis

to the first coordinate axis, plays an important role in determining the

properties of the estimators that embody it.

In the totally unidentified case d
2 
= 0 and (9) and (10) reduce to

pdf(h) = C
11
[cos

2
01 
]
(v-1)/2

(11)

pdf(h) = (2n)-1 (12)

respectively, the latter being, of course, the uniform distribution on

the unit circle.

8



We now summarize the properties of the direction estimators that

follow from (9) and (10).

Properties of the LIML direction estimator

(i) The density is symmetric about the true points ±a, having modes at

±a and antimodes at where a is orthogonal to a. These

properties follow simply from the fact that (10) depends on h only

through cos
2
0, and is an increasing function of cos

2
O.

(ii) The concentration of the density near ±a depends only upon d
2
,

T-K1, and K2 (the last two through the coefficients al(j,k)). For

the normalised case d
2

E'R
2 
(1+02), so that 101 and the

2 

'concentration parameter' WTI
2 

play essentially the same role.
2 

(iii) In the unidentified case h is uniformly distributed on S2' 
i.e.,

the LIML estimator is completely uninformative about the direction

of This result persists asymptotically because (12) holds for

all sample sizes (cf. Phillips [141).

These properties - in particular, the position of the modes, and

the symmetry of the distribution about them - are clearly desirable

properties of the LIML estimator. Indeed, for a distribution defined on

the circle such symmetry is the natural analogue of unbiasedness for a

distribution on R
2
, and we shall thus say that, in the case n = 1, the

LIML direction estimator is spherically unbiased. As we shall now see,

the traditional OLS and TSLS estimators do not, in general, have this

property.

9



Properties of the OLS/TSLS direction estimators

The density in (9) may be written in the form

pdf(h) = c a(h) b(h) (13)

with a(h (cos
2
0
1
)
(v-1)/2

, b(h) = g(h)/g(), where

co
g(h) = E

j, k=0

c
v
(j,k)

2- k
[d
2
/2]

j+k
[cos

2 
] [sin

j! k!
(14)

and c is a constant. In this decomposition we have 0 5- a(h) 1, with

a(h) symmetric about ±el, while bo b(h) 1, with bo = g(a)/g(a), and

b(h) is symmetric about ±a. Note that a(h) depends only upon v, while

b(h) depends upon v, d
2
, and 0

1 
(hence 

(32
). The following properties

can be deduced fairly easily from this decomposition:

(i) Except when = 0 or v = 1, the density is not symmetric about ±a.

The modes are at points between ±a and 
-±e1' 

and the density is

'twisted' away from the true points ±a towards the first

coordinate axis, ±el. The antimodes are at 
-±e2' 

e
2 
= (0,1)',

where the density touches the circle (because a(h) = 0 at these

points). The position of the modes depends upon v, d
2
, and 'pl.

(ii) The density depends upon A through the characteristic root d2

-
and, independently, through the term sin

2 
0
1 
=

2
/(1+0

2
). Thus, d

2

and have separate influences on the properties of the

estimator.

(iii) In the unidentified case the density is symmetric about modes at

-±e
1' 

and has antimodes at 
-±e2. 

For the TSLS estimator this is

also true asymptotically since (11) holds for all sample sizes.

Both the lack of symmetry about the true points ±a, and the fact that

the modes do not occur at these points, are clearly undesirable

10



b.

properties of these estimators. As noted above, .these properties

reflect the dependence of the estimators on an explicit normalisation

rule.

The effect of the normalisation rule is most dramatically brought

out in the unidentified case, when the model clearly contains no

information about the direction of 0. This circumstance is accurately

reflected by the properties of the LIML estimator, whatever the sample

size. The properties of the OLS and TSLS estimators, on the other hand,

are in this case determined entirely by the normalisation rule, the

densities being concentrated around the direction (that of the 'first

coordinate axis) chosen by the normalisation rule. For the TSLS

estimator this effect is independent of the sample size but is

exacerbated by the degree of overidentification (K
2
-1). For the OLS

estimator the effect is exacerbated by increasing sample size.

The general shapes of these densities, supported on the

circumference of the unit circle, are depicted in Figure 1. The

position of a in relation to e
1 

corresponds to p = -1 (so that a is in

the centre of the positive quadrant), but otherwise the figure is meant

to indicate only the general shapes of the densities: no particular

values of T-K K
2 

or d
2 

are implied. Figure 2 shows the components

a(h), b(h) in equation (13), and their product a(h)b(h). To simplify

the picture these are graphed with 0, the angle (measured in a clockwise

direction) between h and a, on the horizontal axis, and are again

stylized rather than an exact representation for particular values of v

and d
2
.

Figure 1 makes quite clear, I think, the superiority of the LIML

estimator over the OLS/TSLS estimators when these are based on the

11



traditional normalisation rule (4). Thus, we next address the question

of whether the simple change in the normalisation rule suggested in

Section 2 is enough to correct these deficiencies.

The matrices S and S
2 

that define the OLS and TSLS estimators are
0

non-central Wishart matrices with common covariance matrix

I
n+1' 

non-centrality matrix 
(n2'I12

)'(Tr
2'

I1
2
)
' 

and degrees of freedom v =

T - K
1 

(for S
o
) and v = K

2 
(for S

2
). In Appendix B we derive the

density (with respect to the invariant measure on Sn+1) of the

unit-length characteristic vector corresponding to the smallest

characteristic root of such a matrix.

It turns out (see equation (B.6) in Appendix B) that these

densities are of precisely the same form as that of the LIML estimator

in (10), but with different numerical coefficients a(j,k) = a2(j,k)

(equation (B.9) in Appendix B). Hence, the properties of the properly

normalised analogues of the OLS/TSLS direction estimators are

essentially the same as those of the LIML estimator. In particular,

both are symmetrically distributed about the true points ±a, and, in the

unidentified case, are uniformly distributed on S2.

Not surprisingly, the distorted properties of the traditional OLS

and TSLS estimators flow from the normalisation rule used to define

them, not from the statistics (the matrices S
0 

and S
2
) upon which they

. are based.'

The median of r

Any subset of Rn evidently has an image on 
5
n+1, and its

probability content may thus be calculated from either the density of r,

or the density of h, as convenient. For example, it is easy to see

12



that, when n = 1,

prir < (31 = prf-h-
1
1h < (3} = 2pr{0 < 0 < it; - n/2 < 0

1 
< n/2}

= E 13-4-} , say ,

where

B
+ 
= ih ;hES • 0 < 0 < u; - u/2 < 0 < u/21 (15)

n+1' 1

(see Fig. 1).

In the case of the LIML and properly normalised OLS/TSLS estimators

the symmetry of the distributions of h about ±a, together with the

observation that B
+ 

occupies an arc of length less than (more than) u/2

when p < o > 0), implies that, in each case,

prfr < pl 1/2 as p < o

<
pr{r < 0} 1/2 as p > o

(16)

and prfr < = 1/2 just if p = 0 (assuming d2 # 0). The same conclusion

can be obtained for the direction estimators induced by the traditional

OLS/TSLS estimators,
3 

so that, for all five estimators, the median lies

between the true value of p and the origin.

This result is consistent with the numerical results in [2] and

[3], but these studies also indicate that the median of the LIML

estimator is much closer to p than it is for the (traditional) OLS/TSLS

estimators. This suggests that the density of the LIML estimator is

much more concentrated near a than is indicated in Fig. 1, and thus adds

further weight to our earlier conclusions.

13



5. THE GENERAL CASE

Earlier results for the case n=1 have, in recent years, been generalised

to the case n > 1. Results for the OLS and TSLS estmators may be found

in [19] and [6], while those for the LIML estimator may be found in

[12], [13], and [7]. Using the decomposition (n2,112) = ADL' given in

Appendix B, the totally unidentified case corresponds to D = 0, and

equations(11) and (12) generalise easily in this case to give

pdf(h) = C
1n
[cos

2
0
1
]
(v-n)/2

(17)

for the OLS and TSLS estimators, with C
1n 

= [F((v+1)/2)/2n
n/2

F((v-n+1)/2)], and pdf(h) = F((n+1)/2)/2
2

(the uniform

distribution on Sn+1) for the LIML estimator. The statements in Section

4 about the properties of these estimators in the totally unidentified

case when n = 1 thus generalise completely when n > 1.

Since (17) is the leading term in the series expansion of the OLS/

TSLS density when n > 1, the distortion of the properties of these

estimators noted in Section 4 for the case n = 1 clearly persists when

n > 1. The interesting question, therefore, is whether the nice

symmetry of the distributions of the LIML and properly normalised

OLS/TSLS estimators about the true point a generalises to the case n

1. We shall now show that, in general, it does not, but that there is a

less obvious sense in which the result for the case n = 1 does

generalise.

The densities of the LIML and properly normalised OLS/TSLS

direction estimators are of the form (generalising equation (10)):

14



1.

pdf(h) = [F((n+1)/2)/2u(n+1)/2] etrf- D
2
/21

OC, K;

a(41.KVCC,K 

0 
C
OC,K 

(DL'VV'LD/2, D
2
/2)

0
(18)

with a(a,K;0) = a1(a,K;0) (equation (A.3) in Appendix A) for the LIML

estimator and a(0,K;0) = a
2
(a,K,O) (equation (B.8) in Appendix B) for

the OLS/TSLS estimators. Here VV' = I - hh' and LI/ = I - am', while

D = diagfd_
i
, d2, 7 d 1, where d

2 
d
2 

are the non-zero
2

characteristic roots of (u
2'

11
2
)'(u

2'
II
2
). The scalar powers (d

2
cos

2
0/2)

j

2 k
in (10) are, in the general case, replaced by the invariant

,
polynomials C Ka (DL'VV'LD/2, D

2
/2) (see Davis [5] and Chikuse and Davis

[4] for background and notation).

The symmetry noted for the case n = 1 arises from the fact that

(10) depends upon h only through 0, where 0 is the angle between h and

a.•Now, any point h E Snii other than ±a may be represented (uniquely)

in the form

= a cos0 + Lw sine 19)

where a,. L, and 0 are as above, 0 < 0 < it, and w E S. Here Lw is the

•unit vector lying along the orthogonal projection of h onto the space

orthogonal to a spanned by the columns of L, and 0 and w are a set of

coordinates for h. That is, any point h E S114.1 can be located by the

angle (0) it makes with an arbitrary fixed point on Sn+1 
(in this case,

a) and its direction in the n-dimensional space orthogonal to a

(indicated by w). The density of h can be expressed as a function of 0

and w (we could, but do not, transform h 4 (0,w)) and is constant on the

surface 0 = constant if and only if it does not depend on w or, what is

the same thing, it is invariant under w 4 Hw, H E 0(n) (0(n) denotes the

group of all nxn orthogonal matrices).
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Using (19), the matrix L'VV'L that occurs in (18) becomes L'VVL =

L'(I-hh')L = I
n 
- sin

2
Owce. Now, consider a rotation of w : w 4 Hw, •

HEO(n). Since the polynomials C'
K
(A B) are invariant under A 4 H'AH,

B -4 H'BH, HEO(n), we have

C
ct,ic

(D
2 
- sin

2
6DweeD,D

2
) 4 C

cc,ic
(D
2 
- sin

2
6DHww/H1 D,D

2)

0

K
= 
C,
a (H'D

2
H - sin

2
OH/DHww/H/DH, H'D

2
H)

Hence, pdf(h) in (18) is invariant under rotations of w if and only if D

is invariant under D 4 H'DH. If the diagonal elements of D (or,

equivalently, the n non-zero characteristic roots of (Tr
2'

IT
2
)/(7r

2'
II
2
))

are distinct the only matrices H E 0(n) with this property are the 2n

matrices H = diag{±1, ±1, ±1}.

• Thus, if the characteristic roots of (Tr
2'

II
2
)1(n2'H2) are distinct

the densities (18) are not constant on the surface 0 = constant, but for

fixed 0 there are 2n directions in which the density is the same,

namely, those generated by replacing w in (19) by Hw, with

H = diag{±1, ...,±1}. Since pdf(h) = pdf(-h), there are thus 2
n+1

points on S
n+1 

at which the density is the same, and the symmetry noted

'for the case n = 1 is simply the degenerate case of this less compelling

symmetry of the distribution (18).

The condition that D be invariant under D 4 HIDH for all H E 0(n)

is satisfied only when D = XI, i.e., when the non-zero characteristic

roots of ( ,112)'(n2,H2) are all equal. In this case the density (18)

a,
is constant on the surface 0 = constant (the polynomial C

ic 
(A
2 
(I
n 
-

sn
2
0wW), X

2
I
n
) is a polynomial of degree j in cos

2
0). Thus, in this

special case the symmetry noted for the case n = 1 does generalise; in

general it does not.
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Evidently, the properties of the LIML estimator (and the properly

normalised OLS/TSLS estimators) depend on both the magnitude of the

characteristic roots of (n2,11 )'Or2,112), and on the dispersion of those

roots.

6. CONCLUDING REMARKS

The OLS and TSLS estimators, as traditionally defined, embody a

normalisation rule that is appropriate essentially only when the

right-hand-side endogenous variables are weakly exogenous (i.e. (3 = 0).

In general, this distorts the properties of these estimators. The LIML

and properly normalised OLS/TSLS estimator are free of this distortion,

whatever the number of endogenous variables in the equation.

This conclusion focuses attention on the densities (10) (for n = 1)

and (18) (for n > 1), which differ for the different estimators only in

respect of the numerical coefficients a(j,k) (or a(a,K;0)). To compare

the different estimators one can use a measure of the information in

pdf(h) about a, say

I(D; T-K
1' 

K
2
) = - f tn[pdf(h)] pdf(h) (h1 dh),

h'h=1

or, alternatively, the risk function relative to the loss X = 1 - cos

R(D
' 

T
-K1' 

K
2
) = 1 - E(cos

2e].

It is clear from (10) that, in the case n = 1 at least these functions

do not depend on the position of a, and that I(d; T-K
1
, K

2
) is, in each

case, an increasing function of d
2
. I hope to report the results of

further study of these functions in a later paper.
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APPENDIX A

The coefficients in the LIML density

Equation (41) in [7] may be used to obtain the following expression for

the density of the LIML estimator, r, for in (4):

pdf(r) = F((n+1)/2)[n(1+r1r)]
-(n4-1)/2

etrf-D /21

-(m+K
2
)(n+1)/2

[cir
n 4.1)/2)] S S f

m(n+1)/2-1(1
+f

1
) etr(-R)

1
f
1
>0 R>0

.
2
F
2
((m+K

2
)/2
' 

(n+3)/2; (m+n+2)/2, (n+1)/2; f
1 
R/(1+f

1 
)

((m+K
2
-n)/2) C (R)

K a

, 

i+kpao caoc—w,
VV'LD/2, D

2
/2)/(1+f

1
)- (dR)df

1 
(A.1)

, 0 
c 
0

OCK; 
j! k! (K,/2) C (I) 

where m = T-K, V' = (I + rr')
-1/2

(r, I
n
),

r
n+1

((m+K
2
)/2) F

n
((n+3)/2) F

n
((m-1)/2) n

(n+1)/2

F
n+1

(K
2
/2) r (m/2) r

n
((m+n+2)/2) F((n+1)/2) '

n+1
(A.2)

and the notation R>0 indicates that the integral in (A.1) is over the

space of real positive definite symmetric matrices. This can be

converted to the density of h by simply noting that VV' = I - hh' and

using (7). Hence, the coefficients a1(a,K;0) in equation (18) in the

text are given by

a a, K; = c[((m+K
2
-n)/2)/((

2
/2)r

n
((n+1)/2)]

S S etr -RMC (R)/C (I )lf
m(n+1)/2-1

(1+f )
-(f+(m+K

2
)(n+1)/2)

a n 1 a 1
f >0 R>0
1
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••

=C

(n+3)/2; (m+n+2)/2, (n+1)/2- f
1 
R/(1+f ))df

1
(dR)

2 ' ' 

r ((m+K
2
-n)/2) F(m(n+1)/2)r(f+K

2
(n+1)/2)

(K
2
/2)

0
r(f+(m+K

2
)(n+1)/2)

co ((m+K
2
)/2)

A
((n+3)/2)

A
(m(n+1)/2)

x E E
t!((m+n+2)/2)x((n+1)/2)x(f+(m+K2)(n+1)/2)t

t=0 A

x E ((n+1)/2) (OX)2C (1)/C (I) .
pEa.A P P

where f = j+k, A is a partition of t, and p is a partition of j+t.

When n=1 (A.3) can be simplified to

F((m+1)/2)MK
2
+1)/2)r((m+K

2
-1)/2)

a
1
(j,k) =  

21"((K
2
-1)/2)1-((m+3)/2)r((m+K

2
+1)/2)

(1)
j((m+K2

-1)/2)
k 

)
f

(K/2)
f
(m+K

2
)
f 

4
F
3
((m+K

2
)/22m j+1;(m+3)/2,1,f+m+K

2
; 1)

In particular, a
1
(0
'
0) = 1.
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APPENDIX B

Distribution of the characteristic vectors corresponding

to the smallest characteristic roots of S0 
and S

2
.

Let S W
n+1

(v
' 

I
n-i-1' 

(n
2'
H
2
)/(n

2'
11
2
)). Since (n

2' 
H) is of rank n we

may -write

Or
2'
H
2
) = ADL' (B.1)

where A (K2 x n) satisfies A'A = I
n
, D is a diagonal matrix D =

2 2 
diagfd

1' 
d
2' 

..., d
n
1, where 0 < d

1 
d
2 

-4 . -5- d
2
n 

are the n non-zero

characteristic roots of (n2,H2)/(n2,112), and L (n+1 x n) satisfies

L'L = I. This decomposition is unique if the roots are distinct and the

elements •in, say, the first row of L are taken to be positive. The

matrix L determines a in the equation (1t2,112)a = 0 uniquely up to sign,

and in the normalised case we can take

= r 1(1 
0(3,)-1/2

(B.2)
In

Using (B.1) we have (cf. [9], Section 10.3)

pdf(S) = C
2 

etr{-D
2
/2} etrf-S/21 ISI 

(v-n-2)/2

0F1 
' 

(v/2 DL'SLD/4) (B.3)

with C
2 

= [2
(n+1)v/2r

n+1
(v/2)]

-1
. We now transform from S to its

characteristic roots and vectors: S = HFH' (see Muirhead [9], Theorem

3.2.17 for technical details and notation). We have

(dS) = (1-11 c1H) H (f.-f.) H (f.-f) H df. df
1 1 1

i<j i=1 i=1

where F = diagal, f2, . . . , . . . > f
n 

> f > 0,f
n
, fl

' 
f
1 

> f
2 

>

HEO(n+1), and (H/dH) denotes the unnormalised invariant measure on the

orthogonal group 0(n+1).
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Next, partition H = (111,h), where H
1 
(n+1 x n) satisfies H'H

1 
= I

1  n

and H'h = 0, and
1

Fi 0 1

0 f

with F
1 
= diag{f

1' 
f
n
}. We need to integrate out H

1' 
F
l' 

and f.

Now, for fixed h we may set H
1 
= VH

2' 
where V is a fixed matrix

satisfyingWV=In rh=0,andli2 E00"0.Theset•{111, H= VH
2'

H
2 
E 0(n)} is identical to the set {1-1 • H'H I, II/h = 0}, the

1' 11 
n 1

relationship is one-to-one, and we have (cf. [9], p.397)

(11'dH) = (h'dh)(yH2)

To facilitate the integration with respect to H2 we write the

Bessel function in (B.3) as an inverse Laplace transform:

F
1 
(v/2, DL'SLD/4) = a

n 
etr(W)IWI

-v/2
etrOL'SLDW

-1
/41 (dW)

Re(W)>0

where a n 
n(n-1)/2

/(2Tri)
n(n+1)/2

n 
= r(v/2)2 . Writing

S = VH
2 
F
1 
H'V' + fhh' = VH

2
(F

1 
- fI )1-1/ V1 + fI

n+1n 2 '2 

and integrating out H2 gives,

v
pdf(h,F) C

2
etrf-D

2
/21etrf-F/2}1Fi 

(-n-2)/2

a r etr(W)IWI
-v/2

etraD
2
W
-1
/41

n
Re(W)>0

F
(n)

((F
1 
- fI

n
)/2, DL'VV'LDW

-1
/2) (dW)

0 0

(B.4)

(B.5)

2/2
with C

*
2 
= n

n /2
C
2
/2r

n
(n/2) (for the other notation see [9], Chapter 7).

The inverse Laplace transform in (B.5) may be evaluated by using

results from Davis [5], and we then find that the distribution of h has

the form
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pdf(h) = [r((n+1)/2)/2n
(n+1)/2

letr{-D
2
/2}

O, K;

a
2
(a,K;0)

j! k! 
 Oa

,K ,K 
Ca (DUTPLD/2, D2/2) (8.6)
0

with coefficients a2(a,K;0) given by

a2(a,K,O n) = [2
(n+1)/2 * j+k

C
2
/2 r((n+1)/2)(v/2) ]

etrf-F/211FI
(v-n-2)/2

f
k
[C
a(F1n

)/C
a
(I
n
)]

f
1
>...>f

n
>f

U (f.-f.) (f.-f) df. df
1 1 1

i<j i=1 i=1
(3.7)

To evaluate the coefficients 
a2 " 
(a K.0) explicitly, put T.=(f.-f)/f,

3.

i = 1, n (f
1 

> f
2 

> ft, > fn > 0, df. = f df.), so that
1 1

a2 " 
(a K.0) = [2n

(n+1)/2
C
2
*
/2

j+k
r((n+1)/2)(v/2) ]

etrf-f(I+P
1
)/21 expf-f/21f

j+k+(n+1)v/2-1

•T1n>0 f>0

I+P1 II I' 
(v-n-2)/2„-

1 
LC
a
IF

1
)/C

a
(I
n
)] H (T.-T.) H dTIF df

1 j 1
i<j 1=1

[Tr
(n+1)/2

C2/2
j+k

r((n+1)/2)(v/2) ]
0

S etrf-f(ItR)/21 expf-fi2lf
j+k+(n+1)v/2-1

f>0 R>0

IRI 
II-011(v-n-2)/2

[C
a
(R)/C

a
(I
n
)](dR) df

(compare equation (A.3) in Appendix A).

(B.8)

In the case n = 1 it is straightforward to evaluate the 
a2 ' 
(j k) in

(B.8) and we find, for n = 1,

a
2
(j,k) = [r((v+1)/2)/2r((v+3)/2)]

[(2)pv-1)/2)k(v)j+ki2i (v/2)j_0(((v+3)/2)ii_k]

2F1(j+2, j+k+v, j+k+(v+3)/2, 1/2) .
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I

In particular, a2(0,0) = 1 since 2F1(2, v, (v+3)/2, 1/2) = 2F((v+3)/2)/

For arbitrary n the coefficients a
2 
(a, ,0) are much more

complicated and we omit the details.
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a

FIGURE 1

Densities of OLS/TSLS and LIML direction estimators: n=1

—

Note: The position of pc corresponds to g = -1.

The sets of B
+ 

(see equation (15) in the text) and B , its

mirror image, yield coefficient estimators for the normalised

equation satisying r < g.
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FIGURE 2

a(h), b(h), and the product a(h)b(h)



Footnotes

2. This question was suggested by a referee, who also points out that

the analogue of the TSLS estimator can be viewed as a generalised

method of moments estimator, normalised to have unit length.

3. For the OLS/TSLS estimators (16) follows from the decomposition

(13), the symmetry of b(h) about a, and the fact that 0 a(h) 1.
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