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Summary

This paper considers the problem of testing for nonzero values of
the equicorrelation coefficient of a standard symmetric multivariate
normal distribution.v Recently, SenGupta (1987) proposed a locally best
test. We construct a beta-optimal test and present selected one and

five per cent critical values. An empirical power comparison of

SenGupta’s test with two versions of the beta-optimal test and the power

envelope shows the relative strengths of the three tests. It also
allows us to assess and confirm Efron’s (1975) rule of when to question
the use of a locally best test, at least for this testing problem. On
the basis of these results, we argue that the two beta-optimal tests can
be considered as approximgtely uniformly most powerful tests, at least

at the five per cent significance level.

Key words: beta-optimal test; locally best test; point-optimal
test; power envelope; standard symmetric multivariate

normal distribution; statistical (Efron) curvature.




INTRODUCTION

Recently, SenGupta (1987) proposed a test for nonzero values of the
equicorrelation coefficient of a standard symmetric multivariate normal
(SSMN) distribution. The symmetric multivariate normal (SMN)
distributionA is a multivariate normal distribution in which all
components have equal means and equal variances and all covariances
between components take the same value. These common covariances give
rise to a common correlation coefficient, p, which is called the

intraclass, equi-, uniform or familial correlation. The SSMN

distribution is a SMN distribution in which the component mean and

variance values are zero and unity, respectively. As Sampson (1978)
notes, SSMN distributions arise naturally from multivariate normal
models in which means and variances of individual variables are known,
thus allowing these variables to be standardized. For example, this can
occur when there are many observations on the individual variables but,
because of historical, financial or practical reasons, there are
comparatively few sets of Jjoint observations. The 1individual
observations can be used to obtain excellent estimates of means and
variances whicﬁ allow one to proceed as if these estimates are the true

values.

SenGupta showed that in the context of the SSMN distribution, the
likelihood ratio test that p takes a given value has a number of
theoretical and practical shortcomings. He constructed the locally most
powerful test of HO : p = 0 and found that it does not share these
shortéomings while appearing to have reasonable small sample power. A
locally most powerful test, often also known as a locally best (LB)

test, a term we prefer (see Ferguson, 1967), is optimal in the sense




that its power curve has the steepest slope at H., of all power curves

0
from tests with the same size. Alternatively, a LB test can be viewed
as a test which optimizes power in the neighbourhood of the null

hypothesis.

This paper considers point-optimal tests (see King, 1987) which
optimize power at a predetermined point under the alternative
hypothesis. We find that for this testing problem, point-optimal tests
are also beta-optimal tests. The concept of beta-optimality was first
introduced by Davies (1969) and is based oh finding the test whose power
function reaches a predetermined value, p1 say, most quickly. In
contrast to LB tests, beta-optimal tests typically optimize power at a
point away from the null hypothesis. The analogous tests for a

SMN distribution can be constructed in a similar manner to the

beta-optimal tests Davies and Harte (1987) proposed for a related

testing problem.

In the next section, the model is introduced and the beta-optimal
test constructed. The new test involves finding the point-optimal test
which optimizes power at a predetermined level of power, say 0.5 or 0.8.
Computational details are discussed and selected one and five per cent
critical values are tabulated. Section 3 reports an empirical power
comparison of the LB test, two versions of the beta-optimal test and the
power envelopé (PE) which traces out the maximum obtainable power.
Among other things, the power comparison allows an empirical assessment
of Efron’s (1975) rule, based on statistical curvature, of when to
question the use of a LB test. It also allows us to argue that the
beta-optimal tests can be regarded as approximately wuniformly most

powerful (UMP) at least at the five per cent significance level.




2. THE MODEL AND THE TEST

Let y be a kx1 random vector with a SSMN distribution, i.e

.

y ~ N(0,Z(p))

where Z(p) = (1—p)Ik + pEk , Ik is the kxk identity matrix and Ek is
the kxk matrix of ones. Let Yir Yor oo ym denote a random sample from
this distribution and 1let Y denote the nx1 stacked vector of these
independent random vectors where n = mk. Then

Y ~ N(0,A(p))

where A(p) (l—p)In + pD , and D is the nxn block diagonal matrix,

Furthermore

-1 1 ) -1
A (p) —TP)[ID p{1+(k1)p} D],

provided -1/(k-1) < p < 1.

The problem of interest is one of testing
HO : p = 0 against Ha : p>0.

To construct our test, we first consider the simpler problem of testing
Ho against the simple hypothesis H; PP =Py > 0 where Py is fixed and

known. The Neyman-Pearson lemma implies that the critical region

r(p,) = Y'(A‘l(pl) S I)Y < e

is the most powerful test where Cy is an appropriate critical value. c




can be computed by noting that under HO,

[
Pr i r(pl) < Cq ]
[ n

2
i§1A151 < %y }

2 2
Pr {pl/(l-pl)}xm(k_l) - [pl(k—l)/{1+(k-1)pl}]xm < ca] (2)

i=1, ..., n, are the

where & = (&1, &2, cee €n)' ~ N(O.In). Ai’

eigenvalues of A_l(p

1) - In and xi denotes a chi-squared random

variable with j degrees of freedom. The second equality follows because
the eigenvalues of D are k and zero with multiplicities of m and m(k-1),
respectively. This together with (1) impiies that the.eigenvalues of
A'l(pl) - 1 are —pl(k-l)/{1+(k—1)p1} and pl/(l-pl) with multiplicities
m and m(k-1), respectively. In order to find Cy such that (2) equals
the required significance level, «, (2) can be evaluated using either
Koerts and Abrahamse’s (1969) FQUAD subroutine or Davies’ (1980)
algorithm. Alternatively, one can note that in (2), r(pl) is expressed
as the weighted difference of two independent chi-squared random

variables so that its probability density function is given by SenGupta

(1987, Theorem 3).

For the wider problem of testing HO against Ha’ the test based on

r(pl) is most powerful at p = p, and is therefore a point-optimal test.

1
A central question is: how should Py be chosen? Strategies for
choosing the point at which a point-optimal test optimizes power are
discussed in King (1987). One approach is to choose a Py value
arbitrarily. Another is to take the limit of r(pl) tests as Py tends to
zero. This results in SenGupta’s LB test. There seems little point in

optimizing power when it is very low (as the LB test does) or when it is

one or nearly one. We favour optimizing power at a middle power value,




say 0.5. In order to do this, we need to be able to calculate readily

the power of our test.

Consider the Cholesky decomposition of A(p), namely

Al(p) = TT/

where T is an nxn nonsingular, lower triangular matrix. Then under Ha

_ 1
z = T7Y N(O,In) .

Thus for any critical value Co’ the power of the critical region

r(pl) <c, is

Pr r(pl) <c, | Y ~ N(0,A(p)) ]

1T -1 -
z’T’ (A (pl) In)Tz <c, ]

(3)

where Ai’ ., n, are the eigenvalues of T’(A—l(pl) - In)T and

g ~ N(O’In) .

Note that the eigenvalues of T'(A_l(pl) - In)T are also

the eigenvalues of
(e, - 1)a(p)
1 n

pl(l-p) pllp{(pl—l)(k—l) + 1} - 1]

Ty 'n* (T=p) (1 + (&-1p,) D

al + bD ,
n

say. The eigenvalues of the latter matrix are

pl(l—p)

a = —
1-p1




with multiplicity of mk-m and

—py (k-1){1 + (k-1)p}

S SR (SO ()

with multiplicity of m. Thus r(pl) in (3) can also be expressed as a

weighted difference of two indépendent chi-squared random variables so
(3) can be evaluated using any of the methods outlined above for
calculating (2). In the special case in which power is being evaluated
at Py (4) and (S5) reduce to Py and -(k—l)pl, respectively, so that (3)

can be written as
2 2 _ 2 _ _ 2
Pr[plxm(k_l) (k 1)p1xm < Ca] = Pr[xm(k_l) (k l)xm < Ca/p1]°

Observe that both (4) and (5) decline in value as p increases.
Given (3), this means that the test’s power increases as p increases
which implies the test is a beta-optimal test. A test is beta-optimal
if its power function reaches a predetermined value, pl, most quickly as

one moves away from H As noted by King (1987, pp.197-8), a

0
point-optimal test is beta-optimal if its power function is always a
monotonic non-decreasing function of the parameter under test. Davies
(1969), when introducing the concept of beta-optimality, suggested P,

.

should take the value 0.8.

Given the desired level of significance, «, and the level of power
at which we wish to optimize power, Py then Py and the associated

critical value, Ca’ can be found as follows:

(i) Solve
2 2 _
Pr[xm(k—l) - (k-l)xm < ca/pI] = P

for ca/p1 .




(ii) Given this ratio, determine ¢ and p by solving

(ii) Given this ratio, determine s and Py by solving

Pr[r(pl) < ca] = a.

In the remainder of this paper, we will denote this as the r test.
1

Selected one and five per cent significance points, Co’ and their

associated Py values for the r (i.e., P, = 0.5) and r (i.e.,

0.5 0.8
P, = 0.8) tests are tabulated in Tables 1 and 2 respectively. They were

calculated using a FORTRAN version of Davies’ (1980) algorithm.

3. A COMPARISON OF POWERS

Point-optimal tests can be used to trace out the maximum attainable
PE for a given testing problem. In our case, this can be done by
evaluating the power of the r(pl) test at p = p, over a range of Py
values. The PE provides an bbvious benchmark against which test
procedures can be evaluated. If a test’s power is always found to be
close to the PE, it can be thought of as an approximately UMP test. An

example of such a finding is given by Shively (1988).

It is also of interest to compare the power curves of SenGupta’s LB

test with those of the beta-optimal tests, and r Is one of

To.5 0.8
these tests close enough to the PE to be called an approximately UMP

test?

SenGupta used Efron’s (1975) criterion of statistical curvature Yg
to gauge the small-sample performance of the LB test. Based on "very

rough calculations", Efron (1975, p.1201) suggested that

2 1
Yg = 3
S g




is a "large" value where 60 is the null value of the parameter under
test, in which case it is reasonable to question the use of a LB test.
For our testing problem, SenGupta found that (6) 1is equivalent to

mk = 64. How good is Efron’s rule in this case?

With these thoughts in mind, we computed and compared the PE with

the powers of the LB, and r tests at the S per cent level of

To.5 0.8

significance. Powers were calculated at p = 0.05, 0.1, 0.2, 0.3, ...,
0.9 for m = 10, 15, 25 and k = 2, 3, 4, 6, 10. Selected results of
thesé calculations, performed using a FORTRAN version of Davies’ (1980)
algorithm, are given in Tables 3, 4 and 5. The values for p = 0.7, 0.9

have been omitted because, especially for large m and k values, they are

very similar to those for p = 0.8.

The PE and the powers of all tests increase as k increases and m

increases, ceteris paribus. As expected, of the three tests, the LB

test is most powerful for p values associated with small PE

probabilities, the Ty 5 test is most powerful for p values associated

with middle PE probabilities and the r test is most powerful for p

0.8
values associated with large PE probabilities. Particularly for larger
k and m values, the PE and all three power curves generally reach a

-value of one as p increases. The PE reaches this maximum value first,

followed by the power curves of the r and LB tests.

0.8" To.5

More importantly, for each combination of k and m values, the LB

test always has the largest maximum power deviation below the PE of the
three tests. For k = 2 and m = 10, 15, 25, this maximum power
difference is 0.246, 0.162 and 0.095, respectively. In contrast, the

largest maximum power difference for the r test is never greater than

0.5

0.031 while that for the r test is never greater than 0.027. On the

0.8




basis of these results it can be argued that the Ty s and Ty g tests are
approximately UMP, at least at the 5% level. It also seems evident that
these maximum power deviations from the PE decrease as either k

increases or m increases, ceteris paribus.

Efron’s rule of questioning the use of a LB test when (6), or
equivalently mk = 64 holds, appears to work well in this situation.
Maximum deviations from the PE when mk = 64 range from 0.246 to 0.071
while for mk > 64, they range from 0.057 to 0.015. There does seem to

be a tendency for the rule to work better for smaller m values.

Finally, there is the question of which of the rp tests is better.
1 ~

While the r test has larger maximum deviations from the PE, the r

0.5 0.8

test has larger maximum percentage deviations. This is because the To. 5

test has increased power for lower levels of power while the Ty g test
is relatively more powerful for higher levels. The differences between
the two tests are not great. The choice of test, therefore, boils down

to a choice between extra power at lower or higher values of p.

ACKNOWLEDGEMENTS

This research was supported by the Australian Research Council. We

are grateful to a referee for constructive suggestions.




References

DAVIES, R.B. (1969). Beta-optimal tests and an application to the

summary evaluation of experiments. J. R. Statist. Soc. B 31,

524-538.

DAVIES, R.B. (1980). Algorithm AS1S5S. The distribution of a linear

combination of xz random variables. Appl. Statist. 29, 323-333.

DAVIES, R.B. & HARTE, D.S. (1987). Tests for Hurst effect. Biometrika

74, 95-101.

EFRON, B. (1975). Defining the curvature of a statistical problem (with
applications to second order efficiency). Ann. Statist. 3, 1189-

1242.

FERGUSON, T.S. (1967). Mathematical Statistics: A Decision Theoretical

Approach. New York: Academic Press.

KING, M.L. (1987). Towards a theory of point optimal testing.

Econometric Reviews 6, 169-218.

KOERTS, J. & ABRAHAMSE, A.P.J. (1969). On_the Theory and Application

of the General Linear Model. Rotterdam: Rotterdam University

Press.

SAMPSON, A.R. (1978). Simple BAN estimators of correlations for certain

multivariate normal models with known variances. J. Amer. Statist.

Assoc. 73, 859-862.

SENGUPTA, A. (1987). On tests for equicorrelation coefficient of a
standard symmetric multivariate normal distribution. Austral. J.

Statist. 29, 49-59.

SHIVELY, T.S. (1988). An exact test for a stochastic coefficient in a

time series regression model. J. Time Series Analysis 9, 81-88.

10




TABLE 1
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TABLE 2
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TABLE 3
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