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Summary 

This paper considers the problem of testing for nonzero values of

the equicorrelation coefficient of a standard symmetric multivariate

normal distribution. Recently, SenGupta (1987) proposed a locally best

test. We construct a beta-optimal test and present selected one and

five per cent critical values. An empirical power comparison of

SenGupta's test with two versions of the beta-optimal test and the power

envelope shows the relative strengths of the three tests. It also

allows us to assess and confirm Efron's (1975) rule of when to question

the use of a locally best test, at least for this testing problem. On

the basis of these results, we argue that the two beta-optimal tests can

be considered as approximately uniformly most powerful tests, at least

at the five per cent significance level.

Key words: beta-optimal test; locally best test; point-optimal

test; power envelope; standard symmetric multivariate

normal distribution; statistical (Efron) curvature.



1. I NTRODUCT I ON

Recently, SenGupta (1987) proposed a test for nonzero values of the

equicorrelation coefficient of a standard symmetric multivariate normal

(SSMN) distribution. The symmetric multivariate normal (SMN)

distribution is a multivariate normal distribution in which all

components have equal means and equal variances and all covariances

between components take the same value. These common covariances give

rise to a common correlation coefficient, p, which is called the

intraclass, equi-, uniform or familial correlation. The SSMN

distribution is a SMN distribution in which the component mean and

variance values are zero and unity, respectively. As Sampson (1978)

notes, SSMN distributions arise naturally from multivariate normal

models in which means and variances of individual variables are known,

thus allowing these variables to be standardized. For example, this can

occur when there are many observations on the individual variables but,

because of historical, financial or practical reasons, there are

comparatively few sets of joint observations. The individual

observations can be used to obtain excellent estimates of means and

variances which allow one to proceed as if these estimates are the true

values.

SenGupta showed that in the context of the SSMN distribution, the

likelihood ratio test that p takes a given value has a number of

theoretical and practical shortcomings. He constructed the locally most

powerful test of H
0 

: p = 0 and found that it does not share these

shortcomings while appearing to have reasonable small sample power. A

locally most powerful test, often also known as a locally best (LB)

test, a term we prefer (see Ferguson, 1967), is optimal in the sense
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a,

that its power curve has the steepest slope at Ho of all power curves

from tests with the same size. Alternatively, a LB test can be viewed

as a test which optimizes power in the neighbourhood of the null

hypothesis.

This paper considers point-optimal tests (see King, 1987) which

optimize power at a predetermined point under the alternative

hypothesis. We find that for this testing problem, point-optimal tests

are also beta-optimal tests. The concept of beta-optimality was first

introduced by Davies (1969) and is based on finding the test whose power

function reaches a predetermined value, pl say, most quickly. In

contrast to LB tests, beta-optimal tests typically optimize power at a

point away from the null hypothesis. The analogous tests for a

SMN distribution can be constructed in a similar manner to the

beta-optimal tests Davies and Harte (1987) proposed for a related

testing problem.

In the next section, the model is introduced and the beta-optimal

test constructed. The new test involves finding the point-optimal test

which optimizes power at a predetermined level of power, say 0.5 or 0.8.

Computational details are discussed and selected one and five per cent

critical values are tabulated. Section 3 reports an empirical power

comparison of the LB test, two versions of the beta-optimal test and the

power envelope (PE) which traces out the maximum obtainable power.

Among other things, the power comparison allows an empirical assessment

of Efron's (1975) rule, based on statistical curvature, of when to

question the use of a LB test. It also allows us to argue that the

beta-optimal tests can be regarded as approximately uniformly most

powerful (UHF) at least at the five per cent significance level.
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2. THE MODEL AND THE TEST

Let y be a kx1 random vector with a SSMN distribution, i.e.,

y N(0,E(p))

where E(p) = (1-p)Ik + pEk , Ik is the kxk identity matrix and Ek is

the kxk matrix of ones. Let yl, y2, y
m 
denote a random sample from

this distribution and let Y denote the nxl stacked vector of these

independent random vectors where n = mk. Then

Y N(0,A(p))

where A(p) = (1-p)In + pD , and D is the nxn block diagonal matrix,

E
k 

0 O_

0 E
k 

0

0 0

Furthermore

E
k

= 1  r TA (p) 
(1-p) L 'n P {1 .4" 

(k-1)P}
 ID ] '

provided -1/(k-1) < p < 1.

(1)

The problem of interest is one of testing

0 
0 against Ha : p > 0 .

To construct our test, we first consider the simpler problem of testing

H
0 

against the simple hypothesis H' : p = p
1 

> 0 where p
1 

is fixed and
a

known. The Neyman-Pearson lemma implies that the critical region

r(P1) = 1"(A-1(p1) - In)Y <

is the most powerful test where ca is an appropriate critical value.
a



can be computed by noting that under H0,

Pr [ r(p1) < c
a 
]

Pr x.e < ci=1 11 al

2 [13
RP1/(1-131)1Xm(k-1) 

_

where g cg g
1' 2"

k-1)/{1+(k-1)p1
}]x2 

m < ca (2)

n)' - 
N(0'In)' 

A i = 1, n, are the

2
eigenvalues of A

-1
 (p

1
) - I

n 
and x

j 
denotes a chi-squared random

variable with j degrees of freedom. The second equality follows because

the eigenvalues of D are k and zero with multiplicities of m and m(k-1),

respectively. This together with (1) implies that the eigenvalues of

A
-1
(p

1
) - In are -p1(k-1)/{1+(k-1)p1l and p1/(1-p1) with multiplicities

m and m(k-1), respectively. In order to find ca such that (2) equals

the required significance level, a, (2) can be evaluated using either

Koerts and Abrahamse's (1969) FQUAD subroutine or Davies' (1980)

algorithm. Alternatively, one can note that in (2), r(pi) is expressed

as the weighted difference of two independent chi-squared random

variables so that its probability density function is given by SenGupta

(1987, Theorem 3).

For the wider problem of testing Ho against Ha, the test based on

r(pi) is most powerful at p = pl and is therefore a point-optimal test.

A central question is: how should pl be chosen? Strategies for

choosing the point at which a point-optimal test optimizes power are

discussed in King (1987). One approach is to choose a p
1 

value

arbitrarily. Another is to take the limit of r(pi) tests as pl tends to

zero. This results in SenGupta's LB test. There seems little point in

optimizing power when it is very low (as the LB test does) or when it is

one or nearly one. We favour optimizing power at a middle power value,

4



say 0.5. In order to do this, we need to be able to calculate readily

the power of our test.

Consider the Cholesky decomposition of A(p), namely

A(p) = TT'

where T is an nxn nonsingular, lower triangular matrix. Then under Ha

= T 1Y N(0,I
n
) .

Thus for any critical value c
a' 

the power of the critical region

r(P1) < ca is

Pr 
[ r(P1) < ca I

Y N(0,A(P))

-
Pr [ 

1 
(pi) - I

n
)Tz < c

a 
I

Pr [ E X. g2 < c
i

i=1
(3)

•
where A. i = 1, n, are the eigenvalues of T'(A

-1
(p1) - In)T and

1,

g N(0,In) .

-
Note that the eigenvalues of T'(

1
A (p

1 
) - I

n
 )T are also

the eigenvalues of

-1
(A (p

1 
) - I

n
)M:p)

p
1
(1-p) p

1 
[pi(p

1
-1)(k-1) + 1} - 1]

(1-p1) 
I
n 
+

(1-p1)(1 + (k-1)p1)

= aI
n 
+ bD ,

say. The eigenvalues of the latter matrix are

p
1
(1-p)

a = (4)
1-pi
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with multiplicity of mk-m and

-p1(11){1 + (k-1)p}
a + bk =

{1 + (k-1)p1}
(5)

with multiplicity of m. Thus r(pi) in (3) can also be expressed as a

weighted difference of two independent chi-squared random variables so

(3) can be evaluated using any of the methods outlined above for

calculating (2). In the special case in which power is being evaluated

at pl, (4) and (5) reduce to pl and -(k-1)p1, respectively, so that (3)

can be written as

2 2 2
PrEpixm(k_i) - (k-l)p

l
x
m 

< c
a
] = Pr[x2

m(k-1) 
- (k-1)X

m < ca/131I.

Observe that both (4) and (5) decline in value as p increases.

Given (3), this means that the test's power increases as p increases

which implies the test is a beta-optimal test. A test is beta-optimal

if its power function reaches a predetermined value, pl, most quickly as

one moves away from Ho. As noted by King (1987, pp. 197-8), a

point-optimal test is beta-optimal if its power function is always a

monotonic non-decreasing function of the parameter under test. Davies

(1969), when introducing the concept of beta-optimality, suggested pl

•
should take the value 0.8.

Given the desired level of significance, a, and the level of power

at which we wish to optimize power, pl, then pl and the associated

critical value, c
a
, can be found as follows:

(i) Solve

Pr[x
2

- (k-1)x
2 

< c /p ] = p
a 1 1

for c
a
/p

1 
.
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(ii) Given this ratio, determine c and p by solving

(ii) Given this ratio, determine c
a 

and p
1 
by solving

Pr[r(p ) < ca] = a

In the remainder of this paper, we will denote this as the r test.
131

Selected one and five per cent significance points, co:, and their

associated pl values for the r0.5 (i.e., pl = 0.5) and r0.8 (i.e.,

p
1 
= 0.8) tests are tabulated in Tables 1 and 2 respectively. They were

calculated using a FORTRAN version of Davies' (1980) algorithm.

3. A COMPARISON OF POWERS

Point-optimal tests can be used to trace out the maximum attainable

PE for a given testing problem. In our case, this can be done by

evaluating the power of the r(pi) test at p = pl over a range of pl

values. The PE provides an obvious benchmark against which test

procedures can be evaluated. If a test's power is always found to be

close to the PE, it can be thought of as an approximately UMP test. An

example of such a finding is given by Shively (1988).

It is also of interest to compare the power curves of SenGupta's. LB

test with those of the beta-optimal tests, r0.5 and r0.8. Is one of

these tests close enough to the PE to be called an approximately UMP

test?

SenGupta used Efron's (1975) criterion of statistical curvature 70

to gauge the small-sample performance of the LB test. Based on "very

rough calculations", Efron (1975, p.1201) suggested that

(6)



is a "large" value where 00 is the null value of the parameter under

test, in which case it is reasonable to question the use of a LB test.

For our testing problem, SenGupta found that (6) is equivalent to

mk 64. How good is Efron's rule in this case?

With these thoughts in mind, we computed and compared the PE with

the powers of the LB, r
0 

and 
r0 8 

tests at the 5 per cent level of
.5 . 

significance. Powers were calculated at p = 0.05, 0.1, 0.2, 0.3, .

0.9 for m = 10, 15, 25 and k = 2, 3, 4, 6, 10. Selected results of

these calculations, performed using a FORTRAN version of Davies' (1980)

algorithm, are given in Tables 3, 4 and 5. The values for p = 0.7, 0.9

have been omitted because, especially for large m and k values, they are

very similar to those for p = 0.8.

The PE and the powers of all tests increase as k increases and m

increases, ceteris paribus. As expected, of the three tests, the LB

test is most powerful for p values associated with small PE

probabilities, the r
05 

test is most powerful for p values associated
. 

with middle PE probabilities and the r
08 

test is most powerful for p
. 

values associated with large PE probabilities. Particularly for larger

k and m values, the PE and all three power curves generally reach a

- value of one as p increases. The PE reaches this maximum value first,

followed by the power curves of the 
r0 8' 

r
0 

and LB tests.
..5

More importantly, for each combination of k and m values, the LB

test always has the largest maximum power deviation below the PE of the

three tests. For k = 2 and m = 10, 15, 25, this maximum power

difference is 0.246, 0.162 and 0.095, respectively. In contrast, the

largest maximum power difference for the r
05 

test is never greater than
. 

0.031 while that for the r
08 

test is never greater than 0.027. On the
. 



basis of these results it can be argued that the r
0 

and 
r0 8 

tests are
.5 . 

approximately UMP, at least at the 5% level. It also seems evident that

these maximum power deviations from the PE decrease as either k

increases or m increases, ceteris paribus.

Efron's rule of questioning the use of a LB test when (6), or

equivalently mk Lc 64 holds, appears to work well in this situation.

Maximum deviations from the PE when mk 64 range from 0.246 to 0.071

while for mk > 64, they range from 0.057 to 0.015. There does seem to

be a tendency for the rule to work better for smaller m values.

Finally, there is the question of which of the r tests is better.
1

While the r test has larger maximum deviations from the PE, the 
r00 .8

test has larger maximum percentage deviations. This is because the r05

test has increased power for lower levels of power while the r0.8 test

is relatively more powerful for higher levels. The differences between

the two tests are not great. The choice of test, therefore, boils down

to a choice between extra power at lower or higher values of p.
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TABLE 1

Selected values of pl and ca for the r0.5 test

at the one and five percent significance levels

k a

2 0.01

0.05

3 0.01

0.05

4 0.01

0.05

5 0.01

0.05

6 0.01

0.05

7 0.01

0.05

0.01

0.05

9 0.01

0.05

10 0.01

0.05

m= 5

p1 
c
a

.6694 10
-4

.8329 -10
-5

.6269 .3779

.4610 .2778

.4996 .6146

.3530 .4342

.4151 .7748

.2864 .5346

.3550 .8900

.2412 .6046

.3102 .9769

.2084 .6562

.2754 1.045

.1835 .6960

.2477 1.099

.1639 .7275

.2250 1.442

.1481 .7531

m= 10

p1 
c
a

.6581 10
-5

.4973 -10
-5

.4531 .2885

.3227 .2055

.3461 .4448

.2403 .3088

.2803 .5430

.1917 .3714

.2356 .6105

.1596 .4136

.2032 .6598

.1367 .4440

.1787 .6973

.1196 .4670

.1594 .7270

.1063 .4849

.1439 .7509

.0957 .4993

m= 15

P1 
c
a

.5577 10
-5

.4124 -10
-6

.3700 .2394

.2012 .1690

.2779 .3618

.1924 .2504

.2228 .4364

.1525 .2988

.1860 .4869

.1264 .3309

.1597 .5233

.1079 .3538

.1399 .5507

.0942 .3709

.1245 .5722

.0836 .3843

.1121 .5895

.0751 .3949

m = 25

1 
c
a

.4451 10
-5

.3233 10
-5

.2850 .1867

.2602 .1311

.2107 .2770

.1459 .1918

.1674 .3308

.1149 .2271

.1389 .3664

.0949 .2503

.1187 .3918

.0808 .2667

.1037 .4109

.0704 .2792

.0920 .4257

.0623 .2884

.0828 .4378

.0560 .2959
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TABLE 2

Selected values of pl and ca for the r0.8 test

at the one and five percent significance levels

a

2 0.01

0.05

3 0.01

0.05

4 0.01

0.05

5 0.01

0.05

6 0.01

0.05

7 0.01

0.05

8 0.01

0.05

9 0.01

0.05

10 0.01

0.05

m = 5

1)1 
c
a

.9114 3.068

.8189 2.756

.7657 4.680

.6469 3.953

.6584 5.784

.5384 4.730

.5788 6.621

.4633 5.299

.5173 7.289

.4077 5.744

.4684 7.840

.3646 6.103

.4284 8.305

.3302 6.401

.3950 8.705

.3019 6.654

.3666 9.052

.2783 6.871

m= 10

1)1 
c
a

.7767 3.906

.6624 3.331

.5942 5.338

.4821 4.331

.4833 6.212

.3823 4.914

.4084 6.819

.3178 5.306

.3541 7.270

.2724 5.592

.3128 7.621

.2385 5.811

.2803 7.901

.2123 5.983

.2540 8.132

.1913 6.124

.2323 8.324

.1741 6.240

m= 15

1)1 
c
a

.6835 4.289

.5697 3.575

.4980 5.546

.3979 4.431

.3940 6.263

.3082 4.900

.3268 6.739

.2523 5.203

.2794 7.080

.2138 5.416

.2442 7.337

.1856 5.576

.2170 7.539

.1640 5.699

.1952 7.701

.1470 5.797

.1775 7.835

.1331 5.878

m = 25

1)1 
c
a

.5656 4.653

.4615 3.796

.3910 5.672

.3086 4.476

.3008 6.211

• .2336 4.824

.2448 6.552

.1883 5.039

.2066 6.788

.1579 5.187

.1788 6.962

.1360 5.294

.1577 7.095

.1195 5.376

.1410 7.201

.1065 5.441

.1275 7.287

.0961 5.493
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TABLE 3

Comparison of the PE with the powers of LB, r
0 

and 
r0 8 

tests
.5 . 

at the 5 percent significance level for m = 10

p=

Test

PE

LB

0.5

0.8

PE

LB

0. 5

0. 8

PE

LB

0. 5

0. 8

PE

LB

0. 5

0. 8

PE

LB

0. 5

0. 8

.05 .1 .2 .3 .4 .5 .6 .8

k=2

.069 .093 .155 .242 .357 .504 .683 .983

.069 .092 .153 .213 .325 .430 .538 .737

.067 .088 .147 .234 .354 .504 .675 .952

.065 .083 .135 .215 .331 .489 .680 .978

k=3

.088 .139 .279 .456 .650 .829 .951 1.000.

.088 .139 .270 .423 .572 .701 .802 .926

.085 .135 .275 .456 .646 .809 .920 1.000

.081 .125 .255 .438 .646 .829 .946 1.000

k=4

.109 .192 .406 .636 .830 .950 .994 1.000

.109 .190 .389 .582 .735 .841 .909 .974

.106 .188 .405 .633 .812 .922 .975 .999

.100 .174 .387 .631 .830 .945 .990 1.000

k=6

.155 .305 .622 .851 .964 .997 1.000 1.000

;155 .301 .589 .785 .893 .949 .976 .995

.153 .303 .621 .836 .941 .983 .996 1.000

.144 .288 .617 .851 .958 .992 .999 1.000

k=10

.261 .521 .861 .977 .999 1.000 1.000 1.000

.259 .509 .820 .936 .977 .991 .997 .999

.259 .521 .849 .960 .990 .998 1.000 1.000

.249 .513 .860 .971 .996 1.000 1.000 1.000
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TABLE 4

Comparison of the PE with the powers of LB, r0.5 and r0.8 tests

at the 5 percent significance level for m = 15

= .05 .1 .2 .3 .4 .5 .6 .8

Test k=2

PE .074 .105 .191 .315 .478 .668 .852 .999

LB .074 .104 .188 .299 .431 .569 .699 .889

05 
.072 .101 .186 .312 .478 .663 .833 .993

r0 8 
.070 .096 .174 .295 .464 .665 .851 .998. 

k=3

PE .098 .167 .359 .591 .804 .943 .994 1.000

LB .098 .165 .346 .547 .720 .844 .922 .985

0 
.096 .163 .358 .590 .792 .921 .979 1.000.5

0 8 
.092 .154 .343 .585 .804 .939 .990 1.000. 

k=4

PE .125 .237 .522 .783 .939 .992 1.000 1,000

LB .125 .235 .499 .724 .867 .942 .977 .997

05 
.123 .235 .522 .774 .920 .979 .996 1.000. 

r
0.8 

.118 .224 .514 .783 .935 .988 .999 1.000

PE

LB

0. 5

0. 8

k=6

.186 .388 .763 .947 .995 1.000 1.000 1.000

.186 .381 .726 .901 .967 .990 .997 1.000

.185 .388 .757 .932 .986 .998 1.000 1.000

.178 .378 .763 .944 .992 .999 1.000 1.000

k=10

PE .327 .650 .950 .997 1.000 1.000 1.000 1.000

LB .325 .635 .922 .985 .997 .999 1.000 1.000

05 
.326 .649 .940 .992 .999 1.000 1.000 1.000. 

0 8 
.320 .649 .947 .995 1.000 1.000 1.000 1.000. 
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TABLE 5

Comparison of the PE with the powers of LB, r
05 

and r
08 

tests
.. 

at the 5 percent significance level for m = 25

= .05 .1 .2 .3 .4 .5 .6 .8

Test k=2

PE .082 .126 .259 .449 .672 .868 .975 1.000

LB .082 .126 .253 .424 .609 .773 .889 .986

05 
.080 .123 .256 .449 .669 .854 .960 1.000

. 

0 8 
.078 .119 .246 .440 .670 .867 .972 1.000

. 

k=3

PE .115 .216 .499 .780 .946 .995 1.000 1.000

LB .115 .215 .480 .731 .889 .964 .990 1.000

05 
.114 .214 .499 .774 .932 .988 .999 1.000

. 

8 
.110 .207 .493 .780 .943 .993 1.000 1.000

0. 

k=4

PE .154 .320 .700 .930 .994 1.000 1.000 1.000

LB .153 .316 .670 .887 .970 .994 .999 1.000

05 
.152 .319 .697 .919 .987 .999 1.000 1.000

0 8 
.148 .311 .699 .928 .991 .999 1.000 1.000

. 

k=6

PE .243 .529 .912 .994 1.000 1.000 1.000 1.000

LB .242 .519 .884 .981 .997 1.000 1.000 1.000

05 
.242 .529 .905 .989 .999 1.000 1.000 1.000

. 

0 8 
.237 .526 .911 .992 1.000 1.000 1.000 1.000

k=10

PE .443 .820 .994 1.000 1.000 1.000 1.000 1.000

LB .440 .805 .987 .999 1.000 1.000 1.000 1.000

05 
.443 .817 .991 1.000 1.000 1.000 1.000 1.000

. 

0 8 
.440 .820 .993 1.000 1.000 1.000 1.000 1.000

. 
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