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Abstract

In this paper several heuristics are proposed for calculating the smoothing parameter
in exponential smoothing when forecasts of many 'closely' related series are required
on a regular basis. The methods are evaluated using both synthetic and real data.
They not only compare favourably against several other known forecasting techniques
but they are also simple and computationally efficient.
Keywords: Multi-series, time series, exponential smoothing.

1 Introduction

The performance of exponential smoothing as a forecasting technique depends critically
on the choice of the smoothing parameter. Holt(1957) treated the parameter as a constant
to be selected so as to minimize the sum of squared forecast errors. Brown(1963) recom-
mended a more flexible approach in business applications, suggesting that the choice should
be left to the discretion of management who would utilize market intelligence to anticipate
above normal levels of structural change and temporarily increase the parameter in such
circumstances. In a quest for greater automation Trigg and Leach(1967) introduced the
concept of the adaptive response rate. Since then there have been many variations of these
themes (e. g. see Dennis(1978), Ekern(1981), Gardner(1985), Snyder(1988), Taylor(1981)
and Whybark(1973)) but no particular approach has achieved universal acceptance. The
choice of the smoothing parameter still remains an issue warranting further attention.

In practice, the above methods are frequently applied in situations where many series are
forecast in parallel on a regular basis. Often the series under consideration are influenced
by the same external forces and exhibit common movements. For example, in the wool
industry, wool is graded into classes according to several factors such as fibre diameter and
colour. In this context it is reasonable to assume that factors such as floods, droughts,
wars and exchange rate fluctuations which affect one class of wool generally have a similar
effect on all other classes. This is reflected in the wool price data from Table 1, some of
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which after grouping have been plotted in Figure 1, where there is a clear visual evidence
of common cyclical movements. Yet the above methods, with their univariate orientation,
fail to exploit this cohesive behaviour.

The central theme of this paper is that information contained in closely related series
can be utilized in forecasting. In this setting, multivariate methods may prove especially
successful. Some progress towards this end has been made by Stevens(1964), Harrison
and Stevens(1976), Enns et al. (1982) and Harvey(1986). However, little attention has
been given to possibilities of adaptive response rates based on multivariate considerations.
In the following such possibilities are proposed and evaluated against more traditional
methods both on real data such as the wool series and synthetic data in a simulation
study.

2 Multi-series heuristics

In this paper the one step ahead forecast ±it+i of the value Xit+i of a series i is generated
by the recurrence relationship

= fCit ateit
where at is a common response rate at time t and eit is the forecast error given by

eit = Xit XA it•

(1)

(2)

In Table 2 a number of heuristics are outlined. These can be used to calculate the response
rate where N denotes the number of series. The formula for heuristic Al contains the sgn
function which takes the values 1 or -1 according to whether eit is positive or negative.
The rationale for such a formula is that when there is an unanticipated upturn(downturn)
across the whole set of series, most of the forecast errors will tend to be positive(negative)
and at will be close to one. On the other hand during periods of relative stability neither
the positive nor the negative errors predominate and at will be close to zero. Accordingly
during periods of structural instability the heuristic yields a large value for the smoothing
parameter, just when it is necessary for the forecasts to adapt to the change. However,
when there is structural stability, the value of the smoothing parameter is small, thus
ensuring that forecasts do not alter substantially in response to the changes which are
essentially random in nature.

Heuristic B1 considers the relative size of the error terms in calculating at. This formula
requires that Xit be non-zero for all i and t. It should also be noted that at in this case is
not necessarily between 0 and 1 any more. In order to restrict the value of at to between
0 and 1 and also take account of the relative size of error terms, heuristic Cl is proposed.

Finally, in the formula for heuristic D1, the error terms are divided by the progressive
estimate of the standard deviation of the error terms instead of Xit, where

(3)
j=2

Box and Jenkins(1976) when considering ARIMA(0,1,1) process, showed that exponential
smoothing is stable for smoothing parameter values that are in the range 0 to 2. Therefore



a second version of each of the above heuristics, where the formula in each case is multiplied
by a factor of 2, is also considered. They are labelled A2, B2, C2 and D2 respectively.

For all heuristics the procedure is initialised by setting Jt12 = Xil. In the case of D1 andD2 the initialisation also involves setting X13 = (X11 + X12)/2.

3 Evaluation

Although multi-series heuristics make intuitive sense it is necessary to check their per-formance on both simulated and real data. The statistical properties of the heuristicsare too difficult to establish using analytical methods. Hence, in this study we examinetheir performance using naive forecasting, progressively optimized exponential smoothing(POES) and adaptive response rate smoothing (Trigg and Leach) methods, as describedin appendix A, for comparison purposes.

The criteria used to evaluate the accuracy of the heuristics were:

1. the average of the mean absolute percentage errors taken over all the series accordingto the formula:
NT

GMAPE = 100(E E leitai4)/N(71 —1)
i=1 t=2

where T is the number of observations in each series;

(4)

2. the percentage PL of series that have a lower mean squared error than progressiveoptimised exponential smoothing (FOES).

3.1 Simulation

The simulation study was undertaken to determine the effectiveness of the heuristics un-der a range of conditions involving business cycles, step and ramp changes. For eachsimulation, monthly data for 50 series of six years duration were generated. Five differentamplitudes for the business cycle, ten different step sizes, and ramps with ten differentgradients were considered. The algorithms used to generate synthetic data are describedin detail in Appendix B.

The results of the simulation are shown in Table 3 where p is the factor which determinesthe amplitude of the business cycle, the size of step change, or the gradient of the ramp.It is evident that the heuristics perform reasonably well in comparison to their traditionalcounterparts, although no particular one is dominant throughout the entire study. HereB2, C2 and D1 have the lowest GMAPE values while Al performs well in terms of the PLcriterion.

3.2 Real data

The heuristics were also tested on the real data from Lehmer(1985) shown in Table 1.The results in Table 4 indicate that heuristics A2 and D2 are superior to progressively



optimized exponential smoothing and the Trigg and Leach method on this data. The
results in relation to the naive method are ambiguous, depending on whether GMAPE or
PL is employed as the performance measure, but they confirm the common finding that
this method generally performs well on price data.

4 Conclusion

In this paper heuristics have been presented for determining the response rate in applica-
tions of exponential smoothing. The distinguishing feature was the exploitation of common
movements in series to detect and adapt to structural change. In terms of forecast accu-
racy, the performance of the heuristics was shown to depend on the structure of the series.
However, in almost all circumstances, at least one of the heuristics produced results which
were better than progressively optimized exponential smoothing or the adaptive response
rate method of Trigg and Leach(1967).

Apart from the accuracy issue the heuristics have other advantages. They are elegantly
simple and easily computerized; they access only current data; they avoid the time con-
suming grid searches for optimal parameter values or the excessive storage requirements
of progressively optimized exponential smoothing. The heuristics therefore appear to hold
considerable promise and could become a significant addition to the applied statistician's
forecasting toolkit.

5 References

Box, G.E.P. and G. M. Jenkins, 1976, Time-Series analysis: Forecasting and control, Re-
vised ed. (Holden-Day, San Fransisco, CA).

Brown, R.G., 1963, Smoothing, forecasting and prediction of discrete time series,
(Prentice-Hall, Inc., Englewood Cliffs, N.J.)

Dennis, J.D., 1978, A performance test of run based adaptive exponential forecasting tech-
nique, Production and Inventory Management, 19, 43-46.

Ekern, S., 1981, Adaptive exponential smoothing revisited, Journal of the Operational
Research Society, 32, 775-782.

Enns, P.G., J.A. Machak, W.A. Spivey and W.J. Wroblesk, 1982, Forecasting applica-
tions of an adaptive multiple exponential smoothing model, Management Science, 28,
1035-1044.

Gardner, E.S., Jr., 1985, Exponential smoothing: The state of the art, Journal of Fore-
casting, 4, 1-28.

Harrison, P.J. and C.F. Stevens, 1976, Bayesian forecasting, Journal of Royal Statistical
Society, B38, 205-228.

Harvey, A.C., 1986, Analysis and generalisation of a multivariate exponential smoothing
model, Management Science, 32, 374-380.

Hausman, W.H. and R.M. Kirby, 1970, Estimating standard deviations for inventory con-

4



trol, AIIE Transactions, 2, 78-81.

Lehmer, C., 1985, Extrapolative forecasting techniques applied to Australian wool prices,unpublished M.Ec. Thesis, Monash University, Melbourne.
Shah, C., 1988, An evaluation of multi-series heuristics for exponential smoothing, unpub-
lished m.a. Thesis, Monash University, Melbourne.
Snyder, R.D., 1988, Progressive tuning of simple exponential smoothing forecasts, Journalof the Operational Research Society, 39, 393-399.

Stevens, C.F., 1974, On the variability of demand for families of items, Operational Re-
search Quarterly, 25, 411-419.

Taylor, S.G., 1981, Initialization of exponential smoothing forecasts, AIIE Transactions,13, 199-205.

Trigg, D.W. and A.G. Leach, 1967, Exponential smoothing with an adaptive response
rate, Operational Research Quarterly, 18, 53-59.

Whybark, D.C., 1973, A comparison of adaptive forecasting techniques, Logistics Trans-portation Review, 8, 13-36.

A Appendix

An outline of the forecasting methods used for comparing the performance of multi-seriesheuristic methods is given in this appendix.

A.1 Naive

This is a special case of simple exponential smoothing where the smoothing parameter isset equal to a constant one. The forecast, Xit+i, for series i in period t 1, is given by

= Xit (5)
where Xit is the observed value of series i, in period t.

A.2 Progressively optimised exponential smoothing(POES)

Twenty versions of simple exponential smoothing with varying values of the smoothingparameter are applied in parallel to each of the series. The forecast, Xiit+i, for series i inperiod t 1, using smoothing parameter ai, is given by

= ajeiit (6)
where ai is the jth smoothing parameter and

eisit = Xit — 5ijt (7)
is the one step ahead forecast error for series i when using the jih smoothing parameter.The ai are defined by

ai= j/10 for j = 1 to 20. (8)



A progressive total of the squared forecast error for each smoothing parameter is kept.
Therefore if Siit is the progressive total for series i using the jih smoothing parameter,
then after period t

= E
k=2

If jmin is such that

Sjt = min {Siit}
1<j<20

then the forecast for series i in period t 1 is

= Xiimint+1.

The procedure is initialized by letting 5iej2 = Xil for every j.

A.3 Trigg and Leach's adaptive response rate smoothing

Using notation already defined,

where

(9)

= aiteit (12)

'Cid/Mit if Mit > 0

1 if Mit = 07
(13)

The smoothed error, eit, and the smoothed absolute error, mit, are calculated using the
following:

et = (1 - 7)eit-i + 7eit (14)
mit = (1 - 7)m2t-i + 71eiti (15)

where 7 is the smoothing constant for the errors. The procedure is initialized by setting
X12 = Xil. Three different values of 7, .05, .1 and .5, are considered.

B Appendix

This appendix describes the way the synthetic data was generated.

B.1 Time series with a business cycle

If it is assumed that the business cycle follows a simple sine curve and there are no
seasonality or trend components, then the data generating function is given by

Xit = Ai -I- pAi sin(r(t - 1)/18) + siNit '(16)

6



where

Ai = mean level for the ith series

Nit= normally distributed variate with mean zero and

standard deviation one

si= standard deviation of the noise component

for the ith series

p = constant

The s?'s are determined using the following formula:

s? = — (pAi)2/2 (17)

where a is the variance of the ith series and the second term on the right hand side is

the variance of the business cycle. Hausman and Kirby(1970) derived empirical relations

between the mean level and the variance of a series. The one that has been used in this

study is
= .338,4290°. (18)

Figures 2 shows a typical series that was generated. It has a mean level of 145 and

p = .05. In Figure 3 the same series is shown with p = .22. As can dearly been seen that

the business cycle is more pronounced in this second case.

B.2 Time series with a step change

In this model a step change in the mean level of the series was assumed to occur at period

25. Using notation already defined, the data generating function is given by

where

xit = Ai + aiiNit if t < 25

pAi 7i2Nit if t> 25

standard deviation of the noise component of the

ith series before period 25

standard deviation of the noise component of the

ith series after period 25

p = step size.

(19)

ail and ai2 are determined using the following formulae:

= .3384® (20)

a12 = .338(pA1).9°°. (21)

Figure 4 shows a typical series that was generated. It has an initial mean level of 145 and

a jump in this level by 20% from period 25 on (p = 1.2). In Figure 5 a similar series with

p = 1.5 is shown.
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B.3 Time series with a ramp

A linear ramp for the mean level of the series was introduced between periods 24 and 36.The data generating function is defined as

where

lAi + ciiiN it if t < 24Xit = A1(3 — 2p + (p — 1)02) + aitNit if 24 < t < 36
pAi + ai2N it if t > 36

=

Cut

standard deviation of the noise component before
period 24 for the ith series
standard deviation of the noise component after
period 36 for the ith series
standard deviation of the noise component for period
t for the it" series where 24 < t < 36.

(22)

The standard deviations are calculated using the following formulae:

co if t < 24 
. = .338A;°°

(23)
Cri2 = .338(pAi) w if t > 36 (24)
Grit = .338(Ai(3 — 2p + (p — 1)t/12))-9°° if 24 < t < 36 (25)

Figure 6 shows a typical series with p = 1.2. The initial level of the series is 145 and theramp operates between periods 24 and 36. From period 36 on the mean level of the seriesis 20% more than its initial value. In Figure 7 a similar series with p = 1.4 is illustrated.It is obvious that the ramp is steeper in this case.
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Wool
Type
44
60
60B
76
76B
157B
61
61B
77
77B
158C
78
788
84B
159B
79
79B
85B
159AB
80
80B
aos
80C
164C
81
81B
81C
NB
160AC
432A
433
486B
653
434
444B
479
487B
654
435
435B
436
437
445B
480
655
283C
3040
5870

Quarter
1978

3 4 1
1979

2 3 4 1
1980

2 3 4 1
1981

2 3 4 1
1982

2 3 4 1
1983

2 3 4 1
1984
2 3376 373 400 491 513 555 589 619 585 575 545 572 564 564 578 *** 593 603 657 751 670 685 872 926 907371 389 398 478 501 550 584 602 579 558 539 558 542 540 569 614 604 596 634 695 677 667 806 872 914363 368 400 477 492 548 571 594 566 557 538 551 532 539 567 611 601 582 632 669 664 658 826 826 896363 383 395 476 489 533 563 573 556 539 524 547 526 527 563 607 601 579 616 661 646 646 750 787 894362 384 392 462 478 534 548 572 551 543 516 533 523 527 560 603 595 565 600 627 633 631 739 833 838329 338 352 407 400 432 481 471 456 472 473 475 479 487 492 496 484 487 512 525 532 544 597 658 667361 362 300 478 484 513 532 530 517 497 496 514 520 515 538 606 589 550 574 615 609 605 623 672 688360 360 395 468 482 519 529 527 514 496 494 511 518 514 540 602 581 546 573 600 601 600 628 655 694357 358 388 465 473 499 522 522 503 487 489 504 507 506 533 595 573 542 565 596 597 597 609 675 683358 358 385 466 476 502 518 517 505 486 484 498 507 506 531 588 572 537 561 582 593 593 602 620 650307 318 329 346 359 381 409 418 402 417 432 436 443 445 457 479 459 447 457 478 484 481 507 512 508349 349 377 438 442 460 480 490 468 468 477 488 493 491 521 576 541 523 546 565 567 563 576 588 592350 349 378 432 448 459 480 490 471 471 478 486 492 491 521 563 539 521 540 558 563 561 569 594 585349 348 373 424 439 453 468 483 466 468 471 479 487 482 509 546 525 511 530 548 554 548 564 573 575321 322 338 365 369 390 411 422 414 428 443 455 450 445 456 484 464 446 466 489 489 485 503 513 518342 342 385 397 404 421 450 458 441 448 469 476 483 480 507 534 511 504 528 547 548 547 552 560 555342 343 364 394 402 418 448 456 444 453 470 474 481 479 505 525 508 503 522 543 545 544 545 552 548341 344 362 389 395 412 439 450 438 451 463 464 477 472 499 516 500 495 515 533 538 535 538 540 539318 313 332 363 362 375 401 408 398 414 433 437 437 434 448 447 451 435 457 492 478 471 488 502 489335 333 352 371 370 396 422 419 413 430 456 457 466 466 491 484 487 488 507 528 527 527 529 533 527336 336 354 367 363 397 422 418 412 432 457 454 466 466 484 480 484 486 502 524 527 525 524 526 533337 334 355 366 369 396 423 412 410 432 455 448 463 463 486 478 477 480 498 519 520 518 526 522 514337 333 354 357 363 391 403 395 403 432 454 445 462 469 468 459 475 476 495 513 518 518 511 509 505293 293 310 329 325 351 385 370 370 379 409 393 404 389 400 388 378 376 399 433 437 426 436 426 410330 326 345 360 358 389 410 393 389 415 447 439 450 454 476 457 468 473 484 518 513 504 505 510 503333 330 348 358 360 393 414 393 393 421 448 437 455 459 474 450 464 469 478 512 514 504 501 501 499340 344 354 346 358 391 392 371 390 425 450 431 458 463 459 437 452 456 468 503 508 498 484 488 485332 329 347 348 363 393 409 382 387 423 452 429 454 458 469 441 447 454 471 506 510 494 491 481 475299 303 322 328 315 347 366 345 357 369 405 380 397 383 394 387 380 377 403 433 421 418 420 407 408329 326 343 368 358 387 405 394 395 413 449 449 450 451 476 473 461 468 486 520 512 503 506 506 505326 320 335 360 353 380 395 376 376 400 430 418 432 442 455 440 436 454 466 504 505 483 483 480 473295 297 309 330 329 355 367 345 331 343 364 371 381 371 375 363 368 371 373 415 409 398 408 428 413322 316 331 349 352 379 391 367 369 397 427 416 430 439 451 433 435 451 456 502 499 479 476 474 464311 305 321 347 343 372 374 353 351 369 384 371 399 415 403 391 369 394 401 436 452 435 430 417 399309 312 324 339 342 372 382 345 346 362 370 353 391 407 400 383 355 369 363 418 425 410 407 382 373306 290 296 326 341 349 348 329 318 324 314 304 320 329 332 360 335 330 339 357 347 353 354 371 351289 285 293 322 315 341 344 322 313 315 303 301 324 317 318 320 322 318 325 341 339 344 343 334 349302 304 317 339 339 369 371 345 343 362 376 364 392 407 398 377 361 387 392 430 443 428 421 413 394284 289 296 322 327 357 352 328 322 324 306 307 317 320 318 326 313 311 319 346 347 339 341 348 338284 294 296 319 326 362 356 326 323 322 305 306 321 313 317 323 312 308 316 348 344 338 337 341 335273 282 288 315 322 351 343 318 313 311 295 296 303 299 307 313 299 296 302 328 328 320 317 324 319263 275 285 312 323 346 337 313 306 301 289 291 297 294 297 296 289 290 295 316 322 313 310 312 311287 294 297 317 323 359 355 323 323 319 300 300 317 302 312 321 304 297 309 341 343 327 328 338 330277 280 283 315 318 342 329 312 295 307 286 286 295 346 288 299 290 279 291 319 325 310 318 336 342283 290 296 320 325 355 350 324 319 322 302 303 314 312 315 322 309 306 314 341 342 334 337 343 332264 277 294 294 290 301 317 314 303 326 343 340 330 315 317 313 299 299 311 327 323 321 328 323 310264 276 296 299 290 306 339 321 314 344 365 351 333 335 319 311 297 301 323 337 341 370 384 356 323260 273 282 280 285 308 316 298 294 305 315 297 293 295 292 271 260 270 279 312 315 334 342 310 308

Table 1: uarterly Wool Prices (Aust. cents per kg. of clean wool), 1978.3 to 1984.3. Source: AWC internal Sales Catal9gue Hiptory Records.



Heuristic Formula
Al at = I 

Ei 
4v,.. sgn(eit)I/N
iNB1 at -----: I Ei=1 eit/Xiti/N

Cl Nat = I Ei-,..1 eit I Xitli EL leitaid
DI. at = I Et-7-1 eidait-i I/ Ei4v-i leit/erit-i I. _

Table 2: Multi-series heuristics



Dr,ta
elti--ractmiztic p Al A2 B1 B2 Cl C2

Method

Trigg
D1 D2 Naive POES .05 .1 .5

Buain= .05 19.53(56) 20.15(26) 19.58(44) 19.41(42) 20.40(42) 18.98(76) 19.52(46) 20.37(16) 25.07(0) 19.72 19.99(44) 20.20(34) 22.98(2)
Cycle .10 19.11(46) 19.58(40) 19.22(56) 18.98(48) 19.92(38) 18.97(66) 18.93(52) 19.91(18) 23.90(0) 19.32 19.69(40) 19.45(40) 21.89(2)

.15 17.85(70) 18.34(46) 18.40(33) 17.87(62) 19.23(22) 18.65(38) 17.73(68) 18.72(28) 21.84(0) 18.24 18.90(24) 18.23(40) 19.99(2)

.20 15.63(80) 16.16(52) 17.12(20) 16.10(46) 18.74(2) 13.07(6) 15.59(80) 16.37(34) 18.64(0) 16.09 17.29(4) 16.31(36) 17.05(10)

.22 14.49180 14.95 42 16.45 8 15.18 36I_1_0_Lj.L?_!ID._1_4.Z.._...__.j.L._.._L,18.58(2)17.74(2)14.36 j-6 16.34 2 15.23 28 15.48(12
Step 1.1 20.13(53) 20.85(22) 19.81(60) 19.68(70) 20.40(43) 20.34(63) 20.09(46) 21.20(12) 25.63(0) 20.18 20.73(36) 21.06(22)

i
23.62(0)

change 1.2 20.043(60) 20.69(34) 19.72(54) 19.63(70) 20.58(32) 19.17(54) 20.03(50) 21.16(14) 25.45(0) 20.18 20.70(38) 21.00(26) 23.49(0)
1.3 20.09(58) 20.32(30) 19.70(52) 19.59(72) 21.07(16) 19.43(28) 19.96(52) 21.24(16) 25.31(0) 20.23 20.71(38) 20.97(28) 23.38(0)
1.4 20.01(76) 20.62(42) 19.70(62) 19.55(74) 21.65(10) 19.68(26) 19.90(58) 21.14(24) 25.20(0) 20.36 20.72(40) 20.95(44) 23.28(0)
1.5 19.95(82) 20.53(44) 19.70(64) 19.51(70) 22.20(2) 19.90(20) 19.85(70) 21.11(34) 25.11(0) 20.45 20.74(48) 20.95(44) 23.21(0)
1.6 19.00(84) 20.55(42) 19.69(68) 19.49(80) 22.73(0) 20.10(18) 19.80(80) 21.12(40) 25.03(0) 20.54 20.74(52) 20.94(52) 23.15(0)
1.7 19.87(84) 20.46(50) 19.68(68) 19.46(74) 23.22(0) 20.27(16) 19.75(78) 21.15(44) 24.96(0) 20.59 20.74(62) 20.92(56) 23.09(0)
1.8 19.82(84) 20.47(58) 19.66(76) 19.48(76) 23.67(0) 20.42(12) 19.70(82) 21.19(46) 24.80(0) 20.64 20.73(68) 20.90(64) 23.03(2)
1.9 19.62(86) 20.48(60) 19.64(76) 19.52(80) 24.09(0) 20.56(12) /9.66(86) 21.24(44) 24.83(0) 20.69 20.71(74) 20.87(70) 22.98(0)
2.0 19.76 88) 20.45 601 19.62 80 19.60 82 24.47 0 20.67 6 19.62 38 21.30 46) 24.77(2) 20.76 20.69(76) 20.84(74) 22.92(2)

Rarnp3 1.1 20.70(56) 21.18(30) 20.25(66) 20.12(64) 20.65(44) 19.74(62) 20.56(36) 21.40(12) 26.47(0) 20.68 21.13(40) 21.48(22) 24.40(2)
1.2 20.00(68) 21.(32) 20.22(60) 20.03(76) 21.08(28) 20.01(42) 20.49(52) 21.38(8) 26.27(0) 20.63 21.05(46) 21.38(24) 24.21(2)
1.3 20.45(82) 20.88(34) 20.23(56) 19.98(78) 21.73(2) 20.37(16) 20.41(60) 21.37(14) 26.10(0) 20.66 21.01(48) 21.27(28) 24.04(2)
1.4 20.44(34) 20.95(44) 20.26(54) 19.95(82) 22.43(2) 20.72(6) 20.33(72) 21.37(16) 25.94(0) 20.71 20.99(52) 21.21(40) 23.89(2)
1.5 20.41(78) 20.89(48) 20.30(54) 19.91(84) 23.15(0) 21.05(0) 20.26(74) 21.33(18) 25.79(0) 20.73 20.97(54) 21.17(36) 23.76(2)
1.6 20.37(82) 20.74(62) 20.33(52) 19.88(88) 23.83(0) 21.37(0) 20.19(84) 21.29(22) 25.66(0) 20.76 20.95(66) 21.12(42) 23.63(2)
1.7 20.31(88) 20.79(60) 20.36(52) . . 21.67(0) 20.13(86) 21.24(24) 25.54(0) 20.80 20.93(68) 21.08(48) 23.52(2)
1.8 20.28(36) 21.01(56) 20.39(52) 19.84(90) 25.05(0) 21.95(0) 20.07(86) 21.20(32) 25.43(0) 20.82 20.92(72) 21.05(48) 23.42(2)
1.9
2.0

20.24(90)
20.17(88)

20.76(64)
20.94(64)

20.42(48)
20.44(48)

19.82(00)
Ip18.1)(2a)

25.61(0) 22.22(0)
...211.±(2)32.47 0jI 

20.02(88) 21.17(32) 25.33(0) 20.84 20.90(74) 21.02(56) 23.33(2)
19.98 94 21.14 32 25.2_jL____ jL_, jLIIil__.8 20.89 78 20.99 56 23.24 2

Table 3: GMAPE and PL values in brackets) from simulation study



Fie-Fhod
Accuracy

Triggmeasure Al A2 B1 B2 Cl C2 D1 D2 Naive FOES .0.5 .1 .5GMAPE 4.34 3.36 10.65 8.24 8.85 6.72 3.70 3.40 3.55 3.78 3.97 4.05 3.89PL 18 76 o o 2 2 52 74 CO 38 40 40

Table 4: GMAPE and PL values for wool price data
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Figure 1: Quarterly prices (c/kg clean)
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Figure 2: Time series with business cycle (p = .05)



0-a_LLLLu_LLLLLLLLL,Li_LL,,.LuILw_u_LLLu_b ii Lu tj_LI_IIUj ill lit iii till I
1980 1981 1982 1983 1984 1985

YEAR

Figure 3: Time series with business cycle
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Figure 5: Time series with a step change (p = 1.5
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Figure 6: Time series with a ramp (p = 1.2)
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