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THE POWER OF STUDENT'S t TEST:

CAN A NON-SIMILAR TEST DO BETTER?

Maxwell L. King

Department of Econometrics, Monash University

Summary 

Lehmann and Stein (1948) proved the existence of non-similar tests

which can be more powerful than best similar tests. They used Student's

problem of testing for a non-zero mean given a random sample from the

normal distribution with unknown variance as an example. This raises

the question: should we use a non-similar test instead of Student's t

test? Questions like this can be answered by comparing the power of the

test with the power envelope. This paper discusses the difficulties

involved in computing power envelopes. It reports an empirical

comparison of the power of the t test and the power envelope and finds

that the two are almost identical especially for sample sizes greater

than 20. These findings suggest that, as well as being uniformly most

powerful (UMP) within the class of similar tests, Student's t test is

approximately UMP within the class of all tests. For practical purposes

it might also be regarded as UMP when moderate or large sample sizes are

involved.

KEY WORDS: Most powerful tests; Power envelope; Similar tests,

.Uniformly most powerful tests.



1. INTRODUCTION

When testing a composite null hypothesis against a composite

alternative, statisticians generally prefer to work with a similar test.

Such tests have the• same probability of a Type I error for all

distributions in the null hypothesis. If a test which is Uniformly Most

Powerful (UNP) within the class of similar tests can be found, then this

is nearly always regarded as the ideal test. Of course, the _class of

similar tests is only a subset of the class of all tests. It may be

that by restricting the choice of test to those that are similar, some

quite powerful tests are being ruled out unnecessarily. In other words,

there may be a cost, in terms of power, involved in restricting one's

choice of test to a similar test. Also, given that the aim in any

testing problem is to minimize the probability of making an error, it

may be advantageous to use a test whose probability of a Type I error

varies with the null distribution.

In a seminal paper, Lehmann and Stein (1948) proved the existence

of non-similar tests which can be more powerful than best similar tests.

This raises the question of whether UMP similar (UNPS) tests should

continue to be thought of as ideal tests . One of Lehmann and Stein's

examples is Student's problem of testing for a non-zero mean given a

random sample from the normal distribution with unknown variance. For

the one-sided testing problem, Student's t test is UMPS. Lehmann and

Stein showed that, provided the level of significance is less than 0.5,

Student's t test is not most powerful within the class of all tests.

Should we not look for a better test within the class of non-similar

tests?

This paper provides an answer to this question by empirically

comparing the power of the t test with the power envelope for, this
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problem. The power envelope traces out the maximum (or supremum) of the

powers of all tests over the alternative hypothesis parameter space. A

small difference between the power curve of the t test and the power

envelope would indicate that there is little to be gained by looking for

another test. A large difference, on the other hand, would suggest that

it may be worthwhile to look for another test. The next section

considers the problem of evaluating the power envelope while the results

of the comparison are discussed in section 3. They suggest that the t

test is approximately UMP within the class of all tests so there is

little point in looking for a better test.

2. THEORY

In order to compute the power envelope for testing a composite null

hypothesis against a composite alternative, one needs to construct the

most powerful (MP) test of the composite null against a simple

alternative and compute its power. The simple alternative hypothesis

represents the point at which the power envelope is being evaluated. An

equivalent approach is to choose a series of points at which the power

envelope is to be calculated. For each point, the point optimal test,

which optimizes power at that point (see King (1987)), is constructed

and its optimal power at the point evaluated.

The existence and form of MP tests of composite null hypotheses

against simple alternatives are discussed by Lehmann and Stein (1948)

and Lehmann (1959, pp.90-97) but few details are given on how such tests

can be constructed. In a survey on point optimal testing, King (1987)

explains how in some situations a most powerful test of a composite null

hypothesis can be constructed from likelihood ratio tests of simple null

and simple alternative hypotheses.
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a

Suppose we wish to test

H
0 
: x has density f(x,w),

where w is a vector of parameters restricted to the set 0, against the

simple alternative

H
a 
: x has density g(x).

Note that for the simpler problem of testing

H
1
0 
: x has density f(x,w

1 
)

against H
a
, where w

1
ci/ is fixed and known, the Neyman-Pearson lemma

implies that rejecting H for large values of

r(w1) = g(x)/f(x,wi) (1)

gives a MP test. The critical value for this test is found by solving

Pr[r(w
1
) > r' Ix has density f(x,w1

)] =

for r' where a is the desired level of significance.

(2)

For testing the composite null, H
0' 

against H
a 

(1) can be used as

a test statistic but its critical value must now be found by solving

sup Pr[r(wi) > r*Ix has density f(x,w)] = a (3)
wc0

for r*. If an w
1 

value exists such that (2) and (3) hold for r' = r*,

then the resultant test is the required MP test of Ho against H
a
. This

can be verified by noting that if a more powerful test does exist then

as a test of H
1 

against H
a
, it would contradict the Neyman-Pearson0

lemma. King (1987) discusses how Imhof's (1961) algorithm for computing

the distribution function of quadratic forms in normal variables can be

used to compute the probabilities required to solve (2) and (3) for a

range of statistical models with Gaussian error terms. These include

Box-Jenkins time-series models, linear and non-linear regression models,

linear dynamic regression models and simultaneous equation models. At

present, for most testing problems, the existence of an wi value such
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that (2) and (3) hold for r' = r* is uncertain and can only be confirmed

by numerical methods. In some cases, however (see for example Lehmann

and Stein (1948)), the existence of appropriate wi values can be proved

analytically. The problem of interest in this paper, that of testing

for a non-zero mean given a random sample from the normal distribution

with unknown variance, is one such special case.

Let x
1' • 

x
n 

be independent random variables distributed N(µ, T
2
)

where µ and T
2 

are unknown. Let

x = 2: x./n
i=1

and

- 2
= E (x.-x) /(n-1) .

i=1 1

Consider testing Ho : = 0 against H1 : µ > 0. The UMPS test for this

problem is to reject Ho for large values of

xis .

This statistic has a (central) Student's t distribution with n-1 degrees

of freedom under H
0 

and a noncentral Student's t distribution with

noncentrality parameter 8 = Vii/o' and n-1 degrees of freedom under H1.

Suppose we wish to evaluate the power envelope at µ = µ
1 

and

2
T
2 
= Then

and

2 n/2 f 1 2
g(x) 

(27m- 
exp - 

1
2T

1

2-n/2 1 2
a 

1
f(x,) (2nT )expl- Ex.

247
2
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For T
2 
= T

2 
(1) has the form

0'

1 
0 - 1(T

2
/T
2
)
fli2

exp
1 21

0 1 21 211
20-
0 

2T
1

Rejecting Ho for large values of (4) is equivalent to rejecting when

A11
- 

1 2
Ex - 2 -- Ex. c .

2 1 2 1

0
T
1 

T
1

(4)

( 5 )

2In order to find the MP test at µ = pi and T 
2 
 = Ti, we need to find an

w = T
2 

value such that (2) and (3) hold for r' = r* This requires1 0

beingabletoevaluatetheprobabilityof(5)beingtruewhenthex.are

independent N(0, 
2)
 random variables.

Lehmann and Stein (1948, p.507) note that if we set yi = xi/T, 1=1,

n, so that yi are independent N(0,1) random variables, then (5) can

be rewritten as

where

a

Vyi. - a)
2 

(11 - k)a
2

2

2 2 '
T(T

0 
- T

1
)

-CT
2
(a.
2 
- T

2
)

1 0 1
22
A
1
Cr
0

Thus, the required probabilities can be calculated by noting that

E(Y 
.-a)

2 
has a noncentral chi-squared distribution with n degrees ofi

freedom and noncentrality parameter 8 = Vria. Lehmann and Stein prove

the existence of an appropriate w
1 
= T

2 
value such that T

2 
> c

2
0 0 1.

The following numerical procedure was used to find w
1 
= c

2 
such

0

that (2) and (3) hold for r' = r*:

(i) Choose a
.2 

value such tha
t 
T
2 

> T
2 
.0 0 1

(ii) For T = T , solve
0

Pr[E(yi - a)
2 

(xi - k)a
2
] = (6)

for c where a is the desired significance level.
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(iii) Check whether

supPrMy.-a)
2

< (n - k)a
2
] = a (7)1

2
T

holds. If it does the w
1 
= T

2 
value has been found. If not,

0

change T
2 

by moving it closer to the T
2 

values which violate
0

(7) and repeat (ii) and (iii).

The noncentral chi-squared distribution function was calculated using

the IMSL subroutine MDCHN..

2
Once T has been determined, the power of the resultant test when

0

x. are independent 
N(µl' 

T
2
) random variables can be computed by noting
1

that then

EC . - a)
2

Yi

has a noncentral chi-squared distribution with n degrees of freedom and

noncentrality parameter Vii(µ /T - a).

3. POWER CALCULATIONS

Using the method described above, the power envelope (PE) was

computed and compared with the power curve of the one-sided Student's t

test at three levels of significance, namely a = 0.01, 0.05, 0.1. This

was done at T
2 
= 1.0 and µ

1 
= 0.1, 0.2, 0.3, ..., 1.0 for n = 10, 20;

1

µ
1 
= 0.1, 0.2, 0.3, ..., 0.8 for n = 30; µ1 = 0.05, 0.1, 0.15, ..., 0.5

for n = 50, 70; and µ1 = 0.05, 0.1, 0.15, ..., 0.4 for n = 100. Only

one value of T
2 

was used because it can be shown that both the power of
1

the t test and the power envelope depend only on µ/T under H1. The

power of the t test was evaluated using Bulgren and Amos' (1968,

pp. 1016-1018) algorithm for computing values of the doubly noncentral t

distribution function with the second noncentrality parameter set to

zero. The program used, reproduced Bulgren and Amos' table of doubly
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non-central t distribution function values exactly to six decimal

places.

The results of the power comparison for n = 10 and 20 are given in

Table 1. They show that there is very little difference between the

power envelope and the power of the t-test. The difference is greatest

for small n and low significance levels. It quickly disappears as n

increases and for n 30, the maximum difference is less than 0.005 for

all three significance levels. The fact that the difference decreases

as the significance level increases is consistent with Lehmann and

Stein's finding that a more powerful test exists only if the

significance level is less than 0.5.

These results suggest that, at the significance levels typically

used in practice, Student's t test is approximately UMP within the class

of all tests. For practical purposes it might also be regarded as UMP

when moderate or large sample sizes are involved.

It may be wrong to assume that the above conclusions also apply to

other cases involving UMPS or UMP invariant tests. An example of a wide

gap between a power envelope and a UMP invariant test is given by King

and Smith (1986). They considered testing linear restrictions on

coefficients in the linear regression model. Here the standard F-test

is UMP within the class of tests invariant to a set of four

transformations on the regressand (see for example Seber (1980, p.35)).

King and Smith used the point optimal approach to trace out the power

envelope for the class of tests invariant to two of the four

transformations. For a range of regression models they found that the

power of the F-test was almost never above 95 per cent of the power

envelope and reported power differences as high as 0.4.
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Table 1: Comparison of the power of Student's t test with

the power envelope for n = 10, 20 and a = 0.01, 0.05, 0.1.

pAr = 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

n = 10

a = 0.01

PE .020 .038 .066 .108 .167 .243 .335 .437 .543 .645

.020 .037 .065 .107 .165 .240 .331 .431 .537 .639

a = 0.05

PE .088 .145 .223 .318 .429 .545 .657 .756 .838 .899

.088 .145 .222 .317 .427 .543 .655 .754 .836 .898

a = 0.1

PE .164 .249 .354 .471 .590 .702 .797 .871 .924 .958

.164 .249 .353 .470 .589 .701 .796 .870 .923 .958

n = 20

a = 0.01

PE .028 .068 .141 .254 .403 .567 .720 .840 .921 .966

.028 .068 .140 .254 .402 .566 .719 .839 .920 .965

a = 0.05

PE .113 .217 .363 .532 .696 .827 .915 .964 .987 .996

.112 .217 .363 .532 .695 .827 .915 .964 .987 .996

a = 0.1

PE .199 .342 .512 .680 .818 .910 .962 .987 .996 .999

.199 .342 .512 .680 .817 .910 .962 .987 .996 .999
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