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Efficiency of OLS Relative to C-0 for Trended x

and Positive Autocorrelation Coefficient

by Asraul Hogue*

Abstract: It is well known that the OLS estimator, though
unbiased, is inefficient in the presence of autocorrelated
disturbances. Further, it is also widely accepted that C-0
(Cochrane-Orcutt) estimator is more efficient than OLS
estimator. However, Kadiyala (1968) and Maeshiro (1976, 1978)
have argued that OLS is more efficient than C-0 when the
independent variable is trended and the autocorrelat ion
coefficient is positive. We re-examine this issue and show that
C-0 is more efficient than OLS for the model without an
intercept term.

I. Introduction

It is widely accepted that the OLS estimator, though unbiased is,

.in general, inefficient in the presence of autocorrelated disturbances.

In the case of AR(1) disturbances, Cochrane and Orcutt (1949) have

suggested an effective transformation of the model. It is believed that

OLS applied to the transformed model is more efficient than is OLS

applied to the original model. However, some researchers have cast

doubts on this belief, for example, Kadiyala (1968) and Maeshiro (1976,

1978). Kadiyala has shown analytically that when positive

autocorrelation is present in the errors, there exist cases in which the

efficiency of the estimator obtained by C-0 (Cochrane-Orcutt) method is

less than that of OLS. However, he is essentially estimating the

population mean when he considers the independent variable x to be a

* Department of Econometrics, Monash University, Clayton, Victoria,

Australia.
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column of n ones, and this case is not very interesting. Maeshiro

(1976) contends that if the independent variables are trended and the

autocorrelation coefficient is positive then OLS is more efficient than

the C-0 estimator. The reason is as follows: after the transformation

the total variation of the independent variable (i.e. X/X) is reduced

when the autocorrelation coefficient is positive leading to some loss in

efficiency; on the other hand, there is some gain in efficiency due to

the transformation and Maeshiro claims that this trade-off works in

favour of OLS. We re-examine this issue and show that C-0 is more

efficient than OLS in some cases.

However, this paper is not intended to argue that OLS is useless in

finite sample analysis. On the contrary, it could be very useful

especially in the context of dynamic models, for example, see Lahiri

(1975), Hogue (1985a, 1985b), Hogue and Peters (1986), Hogue et al

(1986), Carter and Ullah (1979), Maddala (1976), and Hogue et al (1988).

We only argue that OLS may not be more efficient than C-0 in all cases

even when the explanatory variable is trended and the autocorrelation

coefficient is positive.

Recently, Glezakos (1980) has made an attempt to show that the

conclusions reached by Maeshiro (1976) are not generally valid. He made

an experiment with the stochastic linear trend case and concluded that

OLS is not uniformly more efficient than C-0. Then he compared the

efficiency of OLS relative to GLS and found OLS to be uniformly less

efficient than GLS. Since the difference between C-0 and GLS lies in

the treatment of just one observation, Glezakos argued that C-0 should

be more efficient than OLS. Maeshiro (1980) does not agree with

Glezakos and mentions some further numerical calculations using US GNP

series supporting his previous conclusions. Regarding the superiority
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of GLS to OLS he fully agrees with Glezakos but he does not support his

view that lack of first observation in C-0 method may not make much of a

difference. I tend to support Maeshiro's view in this connection,

because the inclusion of first observation in the transformed model will

certainly enhance the total variation of the explanatory variable to a

great extent.

My purpose here is to explore some cases where Maeshiro's

conclusions may not be valid. All the basic assumptions of. Maeshiro are

maintained and both arithmetic and geometric trends are considered.

The only difference is that we shall not consider the intercept term.

But there are many economic models that do not consider the intercept

term like Friedman's consumption function and other functions

incorporating long term relationships. Since our results show that C-0

is uniformly more efficient than OLS both in linear and geometric trend,

Maeshiro's conclusions may not be useful in estimating the above class

of models.

Outline of the paper: In section II, we examine the efficiency of OLS

relative to C-0 under AR(1) disturbances and arithmetic trend. In

section III, we consider the efficiency of OLS relative to C-0 for

geometric;trend. In section IV, the numerical results are interpreted.

In section V, we provide a conclusion. Finally, we add an appendix in

which some primary estimates have been illustrated so that one can check

the results very easily.



II. Relative Efficiency for Arithmetic Trend

We consider the following model

Yt = Pxt "t '
t =
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where yt = yt - pyt_i and xt = xt - pxt_i.

Now, the variance of b is

Var(b) = c
2 
/ 
2 

• 2 22
(x

t 
+ p x

t-1 
- 2px

t
x
t-1
) (5)

Let us introduce the following two kinds of trend in x.

(a) x
t 
= 7t, 7 > 0 (6)

(b) x
t 
= Ox

t-1 
= Oxt-i, 0 > 0 (7)

To evaluate the efficiency of OLS relative to C-0 we define the

following ratio

e = var(13) / var(b)

If e is greater than one, OLS is less efficient than C-0 and vice versa.

We first consider the case when x
t 
= Tt. For simplicity, we take

= 1; however, a particular value of 7 does not affect our results.

Equation (3) can now be written (after simplification) as

where

var(g) = (7
2 
/ • t
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T
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1

Again, from equation (5)
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2 
/ [(1-p)
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+ d] Et

2

1
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where

d = (2p E t - T
2 

p
2 
- 1) / E t

2

For large T, d can be ignored and thus,

v(b) cr.
2 
/ (1-p)

2 
E t

2

1

Consequently, the efficienty of OLS relative to C-0 is obtained by

combining equations (9) and (11) which is

e var(ii) / var(b) Al 1

Therefore, for reasonably large T, the .OLS and C-0 estimators are

approximately equally efficient when xt = Tt and p is positive. This is

. supported by Hannan (1970) and Chipman (1979). We present the exact 

numerical values of e for different p and T using equations (8) and (10)

in Table A.

III. Relative Efficiency for Geometric Trend

We now consider the case when x
t 
= ex

t-1 
which can be equivalently

written as x
t-i 

= x
t 
/

i
.

Equation (3) can now be written as

where

A T
2

var(g) = a*
2 
/ E x

t 
. (1 + p* - C* + C*p* - 2p*

T
) / (1-p*) (12)

1

2 T-1
2 2 2

C* = [2p*x
2 
+ 2p*

2 
x
t 
+ 2p*

T-1
E x

t
] / E x

t1 
1 1 1

and p* = p/O.
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For reasonably large T, C* and p*
T 
can be ignored (assuming p* < 1) and

thus,

var(g) m
2 
/ E • x

2 
. (1+p*) / (1-p*)(1-p

2
)

1

Further, from equation (5)

where

2 • 2
var(b) = m

c 
/ E x

t 
(1 + p*

2 
- 2p* + d*)

1

2 2
d* = (2p* - p*

2 
- 1) x

1 
/ E x

t
1

Now, for large T, d* can be ignored and thus,

• 2
var(b) m

2 
/ E x

t 
(1-p*)

2

Hence, combining equations (13) and (15), we have

e (1-p / (1-p
2
)

(13)

(14)

(15)

(16)

Here e is greater than 1 when 0 is greater than 1 because in that case

2
p* is less than p

2
. However, when 0 is less than 1, e will be less

than 1 implying that OLS will be more efficient than C-0. Thus, in this

special case (0 < 1), Maeshiro's claim is absolutely valid. But this is

relatively uninteresting in the sense that this implies geometrically

declining time series which is very rare in economic variables.

However, values of 0 much away from unity to either side is unrealistic.

For practical purposes, 0, very close to one but greater than one (such

as 0 = 1.1) may be of interest.

We now present the exact numerical values of e in Table B for

different values of p* and T using equations (12) and (14). Here six
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values of 0 and p have been combined to generate six values of p*.

IV. Numerical Results

Looking at Table A we see that e is always greater than unity but

its value decreases for all p as T increases. Further, OLS gets worse

as ,p increases for a given T. We have already seen that for large T,

the OLS and C-0 estimators are approximately equally efficient when x

follows an arithmetic trend. This is confirmed by Table A where e

approaches unity as T grows large.

Table B gives two different pictures. For 0 < 1, e is always less

than 1 confirming Maeshiro's claim that OLS is more efficient than C-0

when x is geometrically trended and p is positive. This is also the

conclusion one can reach from our equation (16). But this case is

relatively less significant, since this implies geometrically declining

time series which is not common in economic variables. Now, for e > 1,

OLS becomes less efficient as p* increases and becomes increasingly

inferior to C-0 when sample size increases unlike the arithmetic trend

case. For 0 = 1.1 and 1.18, e is always greater than unity and

increasing with sample size. But the values corresponding to 0 = 1.18

may not be taken very seriously. Because this gives rise to unrealistic

economic time series. However, 0 = 1.04 and 1.1 could yield interesting

and useful series. For 0 = 1.04, e is less than 1 for two sample sizes,

10 and 20. But from sample size 20 e gets larger and exceeds unity

pretty quickly. Thus, Maeshiro may be correct for sample size up to 20

for 0 = 1.04. In general, his results do not hold for 0 > 1. Our

approximation in equation (16) confirms this.
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V. Conclusion

We have shown that C-0 method leads to more efficient estimator

than that of OLS even when x is trended and p is positive in the model

without the intercept term. Both for arithmetic and geometric trends

our results contradict both Kadiyala (1968) and Maeshiro (1976) who

claim that OLS is more efficient than C-0 for trended x and positive p.

However, in the geometric trend when 0 < 1, Maeshiro's claim is valid.

But this case is relatively uninteresting in the sense that this implies

geometrically declining time series which is not common in economic

variables. Chipman (1979) has also arrived at the same conclusion as

ours in connection with arithmetic trend. .
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Relative Efficiencies [V(OLS)/V(C-0]

Table A: Values of e for Arithmetic Trend

.2 .4 .6 .8 .9 .98

10 1.0056 1.0355 1.1027 1.4487 1.7105 5.3165

20 1.0048 1.0234 1.0669 1.1879 1.4071 3.3478

30 1.0035 1.0168 1.0482 1.1387 1.2971 2.5678

40 1.0027 1.0130 1.0379 1.1101 1.2326 2.1861

50 1.0023 1.0106 1.0306 1.0919 1.1953 1.9769

.60 1.0019 1.0089 1.0263 1.0781 • 1.1725 1.8206

Table B: Values of e for Geometric Trend

0
.2 .4 .6 .8 .9 .98
.8 .9 .98 1.04 1.1 1.18

T p* .25 .44 .61 .77 .82 .83

10 - -.5132 .5978 .6768 .7380 1.1310 5.5662

20 .5181 .6330 .7924 .9868 1.5798 7.4422

30 .5192 .6370 .8307 1.0725 1.6954 7.7903

40 .5194 .6372 .8484 1.1070 1.7187 7.8457

50 .5194 .6373 .8584 1.1211 1.7233 7.8547

60 .5194 .6373 .8602 1.1329 1.7283 7.8601
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Appendix

We have used the following equation to calculate the exact values of e

in Table A using equations (8) and (10):

e = V(p)/V(b) = (l+p-C+Cp-2p
T
)(1+p

2
-2p+d)/(1-p)(1-p

2
)

where C and d have been defined in the text. As an illustration, let us.

give the exact expressions for C and d for sample size 20. From

equation (10) we have

20 20
d = (2p E t - 20

2
.p
2 
- 1)/ E t

2

and from equation (8) we have

20 20 20 20
C = (2p E t + p(10 + 4 E t) + p

3
(28 + 6 E t) + p

4
(60 + 8 E

1 3 4 • 5

20 20 20
+ p

5
(110 + 10 E t) + p

6
(182 + 12 E t) + p

7
(280 + 14 E t)

6 7 8

20 20 20
+ p

8
(408 + 16 E t) + p9(570 + 18 E t) + p10(770 + 20 E t)

9 10 11

20 20 20
+ p

11
(1012 + 22 E t) + p

12
(1300 + 24 E t) + p

13
(1638 + 26 E t)

12 13 14

20 20 20
+ p14(2030 + 28 E t) + p

15
(2480) + 30 E t) + p

16
(2992 + 32 E t)

15 16 17

20 20
17
(3570 + 34 E t) + p

18
(4218 + 36 E t) + p

19
+ p (4940

18 19

20
+ 38x20)) / E t

2

1
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A sample calculation of C and d for T = 20 is given below:

.2 .4 .6 .8 .9 .98

.0457 .1617 .5388 2.5488 7.1550 18.4263

.0233 .0359 .0373 .0275 .0184 .0092

Further, for Table B we have used the following equation using equations

(12) and (14):

e = V(13)/V(b) = (14.p*_c*.f.c*p*_2p*T)(1410*2_2p*.f.d*)/(1_p*)(1-p2)

From equation (14) we have (for sample size 20, let us say)

20
d* = (2p* - p*

2 
- 1) x

2 
/ Z x

2
1

1

and from equation (12) we have

2 3 4 5
2 2C* = (2p*x

2 
+ 2p*

2 
E x

2 
+ 2p*

3 
E x

t 
+ 2p*

4 
Z x

2 
+ 2p* E x

t1
1 1• 1 1

6 7 8 9
2 2

+ 2p*
6 
E x

2 
+ 2p*

7 
E x

2 
+ 2p*

8 
x
t 
+ 2p*

9
 E xt

1• 
t

1 1 1

10 11 
2

+ 2p*
10 

x
2 
+ 2p*  

11 
E x

t 
+ 2p*

12 
1312 

E x
2 
+ 2p*

13 
E x

2

1 1 1 1

14 15 - 16 17
2 2

+ 2p*
14 

E x
t 
+ 2p*

15 
E x

2 
+ 2p*

16 
E x

t 
+ 2p 

17 
E x

2

1 1 1 1

18 19 20
8 2 2

+ 2p Z x
2 
+ 2p*

19 
E x

t 
/ E x

t
1 1 1
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A sample calculation for C* and d* for T = 20 is given below:

P .2 .4 .6 .8 .9 .98

e .8 .9 ..98 1.04 1.1 1.18

P* .25 .44 .61 .77 .82 .83

C* .285 .4708 .5391 .7906 .5934 .2771

d* -.2025 -.0604 -.0108 -.0011 -.0001 -.00001

-

15

\



Recent Working Papers
(Available on Request)

1987

1/87 Maxwell L. King and Merran A. Evans, "Locally Optimal Properties of the
Durbin—Watson Test".

2/87 R.D. Snyder, "Computational Aspects of Kalman Filtering with a Diffuse
Prior Distribution".

3/87 Merran A. Evans, "The Twelfth Order Analogue of the Durbin—Watson
Test".

4/87 Radhey S. Singh, "A Family of Improved Estimators in Linear. Regression
Models with Errors Having Multi—variate Student—t Distribution".

5/87 Radhey S. Singh, "Estimation of Error Variance in Linear Regression
Models with Errors Having Multi—variate Student—t Distribution with
Unknown Degrees of Freedom. "

6/87 Radhey S. Singh, "Melo and Empirical Bayes Estimators for Reciprocals
of Population Means and Regression Coefficients."

7/87 A.R. Tremayne, "A Synthesis of Econometrics and Time Series Methods to
Model and Forecast UK Demands for Imports".

8/87 Merran A. Evans and Maxwell L. King, "A Further Class of Tests for
Heteroscedasticity".

9/87 Asraul Hogue, "Size of Holding and efficiency in Bangladesh: An
Application of a Random Coefficient Model".

10/87 Brett A. Inder, "Bias in the Ordinary Least Squares Estimator in the
Dynamic Linear Regression Model with Autocorrelated Disturbances".

11/87 Russel J. Cooper and Keith R. McLaren, "Approaches to the Solution of
Intertemporal Consumer demand Models".

12/87 Esme Preston, "On Choosing a Technical Wbrdprocessor".

1988

1/88 John Preston and Esme Preston, "Two Papers on Simple Word Processors
for the PC".

2/88 Esme Preston, "Multilingual and Mathematical Text Processing".

3/88 Esme Preston and John Preston, "The Accountant's PC: Getting
Started".

4/88 Maxwell L. King, "Towards a Theory of Point Optimal Testing".

5/88 Ralph D. Snyder, "Statistical Foundations of Exponential Smoothing".

6/88 Grant H. Hillier, "On the Interpretation of Exact Results for
Structural Equation Estimators".


