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Abstract
In this paper a square root algorithm is proposed for estimating

linear state space models. A particular feature of the approach is that
it contains special provisions for nonstationary time series with incom-
pletely specified initial conditions. It differs from earlier approaches to
the problem in that an additional property of the covariance matrix of
the state estimation error vector is exploited to further reduce storage
requirements and computatational loads in computer implementations.

Keywords: Kalman filtering; state space models; time series; square
root algorithm.

1 Introduction

It is widely accepted that Kalman filtering has a pivotal place in time series
analysis eg. see Harrison and Stevens (1976), Harvey and Phillips (1979),
Harvey and Peirse (1984), Harvey (1984), Ansley and Kohn (1985a). Much
effort has been devoted to the computational aspects of this method, in-
cluding the development of more accurate square root filters as outlined
in Kaminsky, Bryson and Schmidt (1971). In this paper it is argued that
one aspect still warrants further consideration: the issue of initializing such
filters with diffuse and partially diffuse prior probability distributions.

The Kalman filter is used to estimate statistical models which conform
to the so-called state space framework. The latter presupposes that the key
characteristics of the process under consideration can be summarized in typ-
ical period t by a random q-vector x(t) called the state vector. The process



is assumed to evolve over time according to the transition equation
x(t) = Fx(t — 1) + v(t) (1a)
where F is a fixed q x q transition matrix and the v(t) are statistically inde-
pendent, normally distributed, zero mean random q-vectors with a common
variance matrix Q. Each v(t) is statistically independent of the state vector
x(t — 1) from the previous period.

Only p of the q states can be directly observed where p < q. To facilitate
matters, but without loss of generality, it is assumed that the observable
states, denoted by a random p-vector y(t), are placed at the top of the state
vector x(t). In other words
y(t) = x(t) (1b)
where H = [ I 0 ], I and 0 being the identity and null matrices which, in
this context, are of order p x p and p x (q — p) respectively.

It is conventional to seed the Kalman filter with the mean and variance of
a marginal distribution of the initial state vector x(0). These quantities are
usually derived from the transition equation (la) on the assumption that the
process has operated over an infinite time span prior to the first measurement
period. To ensure that the framework accommodates nonstationary as well
as stationary time series, it can be established that the initial state vector
x(0) must have a variance matrix S with the general form

ns[i] s[o] (2)
where is an arbitrarily large number, and S[11 and S[0] are q x q matrices,
both of which are independent of tc. Equation (2) encompasses the variance
of diffuse priors when S[1] has full rank, partially diffuse priors when it is
rank deficient, and non-diffuse priors associated with stationary processes
when it is null.

It is no simple matter to implement the Kalman filter for the diffuse
and partially diffuse cases. A common practice, given the finite precision
of computers, was to treat n as a large rather than an infinite number in
the conventional filter. However, it was argued in Ansley and Kohn (1985a)
that this practice can be an unnecessary source of numerical errors and that
it is possible to devise an alternative strategy which completely avoids the
explicit use of the big-k and the associated errors. This strategy, which
has been restated in simpler terms in a later paper by Ansley and Kohn
(198513), together with its square root counterpart in Snyder (1988), are
both effective, in the sense that they solve the basic problem. However,
neither are particularly efficient. Not only are they more complicated than
their traditional counterparts, but they also require approximately double
the storage space and double the calculations in computer implementations
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during the initial 'run-in' phase while the distributions of the errors of the
estimates of the state vectors remain partially diffuse.

In this paper a reasonably conventional square root filter is initially spec-
ified. Utilizing a special property of the covariance matrix of the state esti-
mates error vector, it is then established that this filter requires only minor
changes to accommodate the diffuse and partially diffuse cases provided
some extensions are made to the formulae for the orthogonalization proce-
dure used to derive the required square-root decompositions. It is also shown
that the resulting algorithm requires less storage space and has lower com-
putational loads during the run-in phase than the earlier modified square
root filter in Snyder (1988).

2 The Kalman Filter

Models conforming to the state space framework can be estimated recur-
sively with the Kalman filter. In the following description x(tin) denotes
the estimate of the state vector x(t) from a sample of size n, while S(tin)
is used to represent the variance of its error x(t) — x(tin). Each pass of the
the algorithm involves the following steps:

Covariance Filter

Time Advance Stage

1. x(nin — 1) = Fx(n — lin — 1)
2. S(nin — 1) = FS(n — lln — 1)F' Q

Measurement Update Stage

1. G(n) = S(nin —1)111H S(nin 1)H1-1
2. x(nn) = *In — 1) G(n)[y(n) — Hx(nin — 1)]
3. S(nn) = — G(n).1115(nin — 1)[I — G(n)H]'

It can be established that by choosing the so-called Kalman gain matrix
G(n) according to step 1 of the measurement update stage, x(n1n) is a
linear, minimum variance estimate of x(n).

Special structural features of the problem can be exploited to reduce the
computational loads. Consider the partitions:

x(st) = 
[ xi(slt)

l x2(sit)
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where the xi(*) and x2(slt) are p and (q — p) subvectors respectively;

S(sit) =
[ Sii(sit) Sn(slt) 1

(3)S12(sit)/ 522(sit)
where the submatrices are p x p, p x (q — p) and (q — p) x (q — p) respectively;
and

Gi(n
G(n) = 

1
G2(fl)

where the submatrices are p x p and (q — p) x p respectively.
It can be established that Gi(n) = I, xi(*) = yn so that the vector
of estimation errors is [0, x 2(n) — x2(nin)Y with a corresponding variance
matrix

S(nin) 
=

[ 0 0
0 S22(70) I •

The measurement update stage of the covariance filter can therefore be
streamlined to:

Measurement Update Stage (revised)

1 G2(fl) S(. = i2 nin —
2. x2(nin) = x2(nin — 1) + G2(n)[y(n)— si(nin — 1)]
3. 5122(nin) = 5122(70 — 1) — G2(n)S12(nin — 1)

The accuracy of the Kalman filter can be doubled by using square root
methods as outlined in Kaminsky, Bryson and Schmidt (1971). Assume that
the q x q unit upper triangular matrix U and q x q diagonal matrix D of
the decomposition Q = U'DU is available, obtained where necessary by the
Cholesky procedure. Also assume that the q x q matrix R(nin — 1) and
the q x q diagonal matrix A(70 — 1) of the decomposition S(nin — 1) =
R(nin — 1)'A(nin — 1)R(nin — 1) are available from the previous iteration
of the algorithm. Each iteration of the square root filter then involves the
following steps:

Square Root Filter

Time Advance Stage

1. x(70 — 1) = Fx(n — 1)n — 1)
2. Form the matrices

Z(n) = 
[ R(n lin — 1)F'

- 
] 
and W(n) =

4

0
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Then apply an orthogonalization procedure to Z(n) relative to
W(n) to give the unit upper triangular matrix R(nin - 1) and
diagonal matrix A(nin - 1) of the square root decomposition
S(n(n - 1) = R(nin - 1)'A(nin 1)R(nin - 1).

Measurement Update Stage

1. G(n) = R(nIn - 1Y H[H R(nIn - 1)HV
2. x(nin) = x(nIn G(n)[y(n) - Hx(nin - 1)]
3. R(nn) = R(nin - 1)[/- G(n)HT and A(nin) = A(nin - 1)
where S(nin) = R(nin)'A(nin)R(nin).

The efficiency of this algorithm can also be improved. Consider the par-
titions:

R(sit) =

A(*) =

[Rii(sit) R12(sit) 1
0 R22(slt)

[Ai(sft) 0 I
o A2(slt)

where the submatrices of R(sit) and A(*) are conformable with the sub-
matrices of S(slt) above. The measurement update stage of the square root
algorithm can also be altered to a more efficient form.

Measurement Update Stage (revised)

1. G2(n) = R12(nin - 1)'Rii(nin - 1)-1
2. x2(nin) = x2(nin - 1) + G2(n)[y(n) - xi(nin - 1)]

0 03. R(nn) = R(nin - 1) and A(nin) =
[ 0 A22(nin - 1)]'

When initializing the Kalman filter it is conventional to let 522(010) =
522 where 522 is the variance of x2(0). The latter is found from the tran-
sition equation (la), on the assumption of an infinite past prior to the first
measurement period. Assuming that it is nonsingular, it must have the gen-
eral form, (possibly after permuting the rows):

[ 0
522 =Pt 

[ 
(4)

'12 4.J22
where E[1.1 and En are non-singular submatrices, both of which are indepen-
dent of K. The corresponding information matrix If obtained by inverting
S22 using partitioned inverse theory and then taking the limit with respect
to K is



[0 00 E2P21-1

and this is independent of all the submatrices in (4) except E. Since
any information filter seeded with If should yield the same results as the
corresponding Kalman filter, 1°1 d EP1En an 22 can be selected arbitrarily. Fur-
thermore, E[1.1 can be an arbitrary nonsingular matrix. Hence 522 can be
more conveniently written in the form

[nI 0
S22 = 

0 En  I •
The Cholesky decomposition of S is therefore
S = R'AR, (5a)
A being a diagonal matrix with the general form
A = kA[ii A[o] (5b)
where the unit upper triangular matrix R and the diagonal matrices A[11
and AM are all independent of tc.

Many common cases such as the various versions of exponential smooth-
ing and ARIMA processes have initial variance matrices conforming to the
structure of (4).

Example
A variation of exponential smoothing with a damped trend is
outlined in Gardner and McKenzie (1985). It involves an ob-
servable random variable y(t) which depends on a local level
p(t), a local growth rate OW, a dampening factor 0, smoothing
parameters ai and a2, and a disturbance e(t) as follows:

(6a)
it(t) = - 1) + 0(t -1) + aic(t) (6b)

= 0/3(t - 1) + a2c(t). (6c)
When the dampening factor lies in the range 0 < < 1 then it
is readily established from (6c) that the recurrence relationship
governing the variance of the growth rate is stable and that the
variances converge to a constant value. From a combination of
(6b) and (6c) a similar result can be obtained for the covariance
between the local level and growth rates. However, (6a) indi-
cates that recurrence relationship for the variance of the local
level is unstable and fails to yield bounded results. Accordingly,
it can be shown that the seed variance matrix takes the form:

(al -I- a20/(1 02))/(1 .S22 = [ 
( 1 + a20/(1 02))/(1 a3/(1 - ck2)
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This conforms to the structure of (4) and is an example of a pro-
cess with a partially diffuse prior distribution. Given the above
results, the off-diagonal terms are redundant and can be set to
zero. 522 then has a form which can be decomposed according
to (5).

When the square root filter is initialized with the decomposition (5) of
S all the quantities in it become functions of K. Given the result in the next
section about the effect of K on the orthogonal triangular procedures, the
following theorem can readily be established by induction.

Theorem 1 If the square root filter is initialized with R and A of the
Cholesky factorization (5) then at typical stage n the key quantities are,
apart from an error term 0(11K) which disappears as K becomes arbitrarily
large, either constant or linear functions of K ie.
x(tin) = x[il(tin) + 0(1/K)
R(tin) = RM(tin) 0(1/K)
A(tin) = KA[1](tin) AM(tin) + 0(11K)
for t = n,n 1 where the vectors and matrices with superscripts are all
independent of K.

This suggests that provided special provisions are made to store the A[11(tin)
in addition to the AM(tin) then the basic structure of the square root filter
remains unchanged.

3 Orthogonal Triangularization

In principle any suitable orthogonalization procedure can be applied in the
square root algorithm to obtain the required decomposition: the modified
Gram-Schmidt or Householder transformations are possibilities. However,
in this paper Givens transformations are used because, as it transpires, the
impact of a partially diffuse prior on the associated formulae is more easily
determined. Like all orthogonal triangularization methods, the basic idea
is to apply transformations to a 'data' matrix Z relative to a 'weight' ma-
trix W to obtain a unit upper triangular matrix R and a diagonal matrix
A such that VWZ = R'AR. An excellent introduction to the theory of
Givens transformations is presented in Golub and van Loan (1983). How-
ever, in this paper, the version from Gentleman (1973) is employed where Z
and W are implicitly assumed to have the general form
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Z =
[U [D 0 I

and W =
Z 0 W

where U is unit upper triangular, D and W are diagonal, and Z is rectan-
gular. The algorithm is initialized with R = U and A = D and is then
applied to each successive row z of Z with corresponding weight w from W.

Givens Transformations

FOR k REPEAT
Ak WZ/2c

C = Ak/Ak
= wc

S = wziciAk

FOR j= k +1,...,q REPEAT
-fki = crkj szj

= zj zkrkj

Note that at the end of each pass through these six steps, the old quantities
are replaced by their corresponding new values designated with a bar.

When the square root filter is seeded with a partially diffuse prior distri-
bution, the quantities in the Givens transformations formulae also become
dependent on n. The following results can be established by induction:
Ak = nA[11 4. A[0] + 0(1/K)

W = kw[111 w(hl 0(1/k)
[o] ,

3

rkj = rki -t-

z• = z[91 + 0(11K)
where the superscripted quantities are all independent of tc. In the process
it also can be shown that successive values of the superscripted quantities
are related by the formulae in the following algorithm which can be applied
to each successive row of Z:

1In regression applications it is normal to set U = I and D = 0 so that ZIWZ = ZIWZ
where Z and W are the data and weight matrices respectively.
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Modified Givens Transformations

FOR k= 1, . . . , q REPEAT

IF(Akill = 0 and w[1] = 0) THEN
T[o] [0] , [0]2
= k -7 W Z k

C = k k
,Tv—[0] = w[0]

s = w[0] 401 /"Xlic°]

IF (A[ki] > 0 or w[11 > 0) THEN
= A[k1] w[1]z[kop

= w [0] 4*

c =
TIN =

1--F[o] = w[i]Atkol/x[ici] w[o]A[k _

s =

FOR j = k+ 1,. . . ,q REPEAT

7
[
ico] = cr c()J sz[9]
7,[4] = z[9]3_ zio] [0]rk

This modified versionversion of the Givens transformations can be used in con-
junction with the square root filter in the previous section to accomodate
partially diffuse priors without the explicit use of the big-K.

4 Concluding Remarks

w[1]A[:1-A-1,°]/-A[,1]2

During the "run-in" period, the modified Kalman filter in Ansley and Kohn
(1985b) is based on the proposition that the variance matrix of the estima-
tion errors can be written in the form:

S(tin) = K S[1] (tin) + SP] (tin) + 0 (11 k)
where S[1](tin) and SP1(tin) are square symmetric matrices. In contrast to
the conventional Kalman filter, it is necessary to to revise two symmetric
matrices instead of one with consequent increases in computational loads
and the demand for storage space. The situation is essentially the same for
the earlier square root algorithm in Snyder (1988) except that it relies on
the triangular and diagonal counterparts of the component matrices above.
In contrast, the algorithm in this paper is different, in that it is based on
the observation that the error variance matrix can be written as:
S(tin) = Mit YkA[1](0) AM(tin)}RP1(tin) + 0(1/k) .

9



Hence it is only necessary to contend with the q diagonal elements of the
additional diagonal matrix A[1](tin) rather than an entire symmetric matrix
S[1](tin). Furthermore, given that each pass of the modified Givens trans-
formations involves only a few additional calculations, the modifications to
the conventional square root filter can be implemented with only a moderate
increase in computational loads.

Another approach outlined in Rosenberg (1973) for the case of a diffuse
prior distribution and extended in de Jong (1988) to accommodate arbitrary
priors, involves the following steps:

1. apply to the data a Kalman filter initialized with a null mean vector
and a null variance matrix to give biased estimates of the state vector;

2. also apply certain auxiliary transformations in parallel with step 1;

3. regress the one-step ahead prediction errors obtained from step 1
against the transformed data to estimate the initial state x(0),

4. utilize the result from step 3 to eliminate the bias in the estimates of
the state vector from step 1.

Although any square root version of this algorithm should yield the same
results as the method proposed in this paper, the auxiliary transformations
at step 2 require substantial additional computations and storage space .
The proposed algorithm is therefore better.

The state space model considered in this paper is time invariant in the
sense that both F and Q are independent of t. The effect of this is to limit
the methodology to mainly time series applications. However, the results
can be generalized quite substantially without any substantive changes by
subscripting these matrices with t. Such cases as conventional multiple
regression can then be accommodated within the framework.

Considerable computational savings can also be made by exploiting spe-
cial structural features in the problems under consideration. Usually, the
transition matrix F is quite sparse and substantial reductions can be achieved
by using sparse matrix arithmetic in those parts of the algorithm where it
occurs. Furthermore, in applications to such areas as regression analysis,
exponential smoothing and mixed autoregressive-moving average processes,
all of which conform to the special case of state space framework described
in Snyder (1985), all but one of the diagonal elements of D equal zero.
Since A(nin — 1) is initially set equal to D in step 2 of the time advance
stage of the square root filter, substantial computational savings can also be

10



achieved by employing a special case of the Givens formulae obtained after
the substitution of Ak = 0. The details can be readily determined by the
reader.

Finally, it should be noted that the framework can readily accomodate
missing values. By setting equal to c the diagonal elements of D corre-
sponding to the missing values , the algorithm automatically reverts to the
required form.

References

Ansley, C.F. and R. Kohn (1985a), Estimation, Filtering, and Smoothing
in State Space Models with Incompletely Specified Initial Conditions , The
Annals of Statistics, 13, 1286-1316.
Ansley, C.F. and R. Kohn(1985b), A Structured State Space Approach to
Computing the Likelihhod of an ARIMA Process and its Derivatives, Jour-
nal of Statistical Computation and Simulation, 21, 135-169.
De Jong, P. (1988), The Likelihood for a State Space Model, Biometrika, 75,
165-169.
Gardner Jr, E. S. and McKenzie, E. (1985) Forecasting Trends in Time Se-
ries , Management Science, 31, 1237-1246.
Gentleman, W.M. (1973), Least Squares Computations by Givens Transfor-
mations, Inst. Maths Applics, 12 , 329-336.
Golub, G.H. and C.F. Van Loan (1983), Matrix Computations, John Hop-
kins Press.
Harrison, P.J. and C.F. Stevens (1976), Bayesian Forecasting, Journal of the
Royal Statistical Society, B, 38, 205-228.
Harvey, A.C. and G.D.A. Phillips (1979), Maximum Likelihood Estima-
tion of Regression Models with Autoregressive-Moving Average Disturbances,
Biometrika, 66, 49-58.
Harvey, A.C. (1984), A Unified View of Statistical Forecasting Procedures,
Journal of Forecasting, 3, 245-275.
Harvey, A.C. and R.G. Peirse (1984), Estimating missing observations in
economic time series, Journal of the American Statistical Association, 79,
125-131.
Kaminski, P.G., A.E. Bryson Jr. and S.F. Schmidt(1971), Discrete Square
Root Filtering: A Survey of Current Techniques, IEEE Transactions on Au-
tomatic Control, AC-16, 727-135.
Rosenberg, B. (1973), Random Coefficient Models: The Analysis of a Cross-

11



section of Time Series by Stochastically Convergent Parameter Regression,
Ann. Econ. Social Meas., 2, 399-428.
Snyder, R.D. (1985), Recursive Estimation of Dynamic Linear Models, Jour-
nal of the Royal Statistical Society,B, 47, 272-276.
Snyder, R.D. (1988), Computational Aspects of Kalman Filtering with a Dif-
fuse Prior Distribution, Journal of Statistical Computation and Simulation,
29, 77-86.

•

12



1987

1/87

Recent Working Papers 
(Available on Request)

Maxwell L. King and Merran A. Evans, "Locally Optimal Properties of the
Durbin—Watson Test".

2/87 R.D. Snyder, "Computational Aspects of Kalman Filtering with a Diffuse
Prior Distribution".

3/87 Merran A. Evans, "The Twelfth Order Analogue of the Durbin—Watson
Test".

4/87 Radhey S. Singh, "A Family of Improved Estimators in Linear Regression
Models with Errors Having Multi—variate Student—t Distribution".

5/87 Radhey S. Singh, "Estimation of Error Variance in Linear RegressionModels with Errors Having Multi—variate Student—t Distribution withUnknown Degrees of Freedom. "

6/87 Radhey S. Singh, "Melo and Empirical Bayes Estimators for Reciprocalsof Population Means and Regression Coefficients."

7/87 A.R. Tremayne, "A Synthesis of Econometrics and Time Series Methods toModel and Forecast UK Demands for Imports".

8/87 Merran A. Evans and Maxwell L. King, "A Further Class of Tests forHeteroscedasticity".

9/87 Asraul Hogue, "Size of Holding and efficiency in Bangladesh: AnApplication of a Random Coefficient Model".

10/87 Brett A. Inder, "Bias in the Ordinary Least Squares Estimator in theDynamic Linear Regression Model with Autocorrelated Disturbances".

11/87 Russel J. Cooper and Keith R. McLaren, "Approaches to the Solution ofIntertemporal Consumer demand Models".

12/87 Esme Preston, "On Choosing a Technical Wordprocessor".

1988

1/88 John Preston and Esme Preston, "Two Papers on Simple Word Processorsfor the PC".

2/88 Esme Preston, "Multilingual and Mathematical Text Processing".

3/88 Esme Preston and John Preston, "The Accountant's PC: GettingStarted".

4/88 Maxwell L. King, "Towards a Theory of Point Optimal Testing".

5/88 Ralph D. Snyder, "Statistical Foundations of Exponential Smoothing".

6/88 Grant H. Hillier, "On the Interpretation of Exact Results forStructural Equation Estimators".


