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ABSTRACT

This paper considers the problem of testing the null hypothesis of first-

order autoregressive disturbances in the linear regression model against

the alternative that the disturbances follow a joint first-order, simple-

fourth-order autoregressive process. The class of approximate point

optimal invariant tests are discussed and rules are given for choosing an

appropriate member from this class of tests. The beneficial nature of

these rules are illustrated by a limited empirical power comparison which

shows the recommended test has good small sample power properties.
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1. INTRODUCTION

For some time now, econometricians have recognized the possibility

that quarterly regression models may possess fourth-order autocorrelation

because of seasonal effects. This has largely been through the work of

Thomas and Wallis (1971), Wallis (1972) and others. Tests of the null

hypothesis of independent disturbances against the alternative of simple

fourth-order autoregressive (AR(4)) disturbances have been proposed by a

number of authors. They include the fourth-order analogues of the Durbin-

Watson test proposed by Wallis (1972) and Vinod (1973) and the point

optimal invariant test suggested by King (1984). A recent review of these

and other tests may be found in King (1987a, section 11.2).

The usual reason for including a disturbance term in the regression

is to account for the effects of omitted or unobservable regressors,

errors in the measurement of the dependent variable, arbitrary human

behaviour and functional approximations. In the context of a quarterly

regression model, it is not clear that these effects will give rise solely

to fourth-order autocorrelation. For example, one would expect the

omission of relevant variables with seasonal components to lead to both

first-order and fourth-order effects in the disturbances. Thus the

presence of first-order autocorrelation in a quarterly regression model

would be a good reason to suspect additional autocorrelation of a seasonal

nature. Having discovered first-order autocorrelation and decided to

model it as a first-order autoregressive (7½R(1)) process, it makes sense

to test the resultant regression for an additional simple AR(4)

component. This requires a test whose null hypothesis is a linear

regression with AR(1) disturbances and whose alternative is that the

disturbances are generated by a joint AR(1) and simple AR(4) process.

Such a test is proposed below.
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The method of test construction follows that suggested by King

(1987b) who gives a method of discovering whether point optimal tests can

be based on simple likelihood ratios. Point optimal tests are tests which

have optimal power at a predetermined point in the alternative hypothesis

parameter space. By a simple likelihood ratio, we mean the likelihood

ratio of two simple hypotheses. If simple likelihood ratios fail to

produce a point optimal test for a particular testing problem, King notes

that they could still be used to produce "approximate" point optimal

tests. One of the aims of this paper is to explore this latter option

further.

After reduction through invariance, the testing problem under study

becomes one of testing against a non-zero parameter (the AR(4) parameter)

in the presence of a nuisance parameter (the AR(1) parameter). Simple

likelihood ratios, therefore, are a function of three parameters; the

AR(1) parameter, 
p10' 

under the null hypothesis and the AR(1) and AR(4)

parameters, p
11 

and p
41' 

respectively, under the alternative hypothesis.

Each set of p
10
, p

11 
and p

41 
values corresponds to a simple likelihood

ratio, which, together with an appropriate critical value, could be used

as a test. A central question is - how should values for 
P10, 

p11 and p41

be chosen? This paper suggests the following solution. For

1 1given 
P11 

and p41 values, p and p say, plo should be chosen to make1 4

1 1the resultant test as close to optimal at as( P11 P41) = P1' P4)
1possible. For a given p

41 
value, p

4 
say, p

11 
is chosen to maximize the

minimum power on the subspace 
P41 = P 

in e alternative hypothesis14 
the 

parameter space. Finally, the 
P41 

value is chosen so that the maximized

minimum power has a value of one half. This represents a new approach in

the treatment of nuisance parameters in hypothesis testing. Those that

cannot be eliminated through invariance are used to advantage in the final

choice of test statistic.
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As we shall see, the proposed method for choosing p10, 
p11 

and 
P41 is

very computer intensive. Over the past decade, econometricians have seen

a rapid expansion in the availability of computer time. With further

improvements in computer software and hardware expected, there , is no

reason why this expansion will not continue well into the next decade. It

is quite possible that in the future, computational time will be a

relatively minor issue for econometricians.

The approach used in this paper obviously can be applied to a number

of other testing problems in which one has prior knowledge of the signs of

parameters. Examples include testing regression disturbances in the

presence of autocorrelation, heteroscedasticity, a random regression

coefficient or an error component, for higher-order effects or

combinations of these effects.

The organisation of this paper is as follows. In the following

section, the testing problem is defined and Point Optimal Invariant (POI)

tests are discussed. Because typically, one is unable to construct such

tests for our particular testing problem using current methods, the class

of "approximate" POI tests is introduced. Rules for choosing an

appropriate member of this class of tests are given. In section 3, the

benefits of using these rules are illustrated by a limited empirical power

comparison involving three choices of test. An example of the application

of the test is given in section 4 and some concluding remarks are made in

the final section.

2. THEORY

Consider the linear regression model
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y = X + u, (1)

where y is nx1, X is an nxk matrix that is assumed independent of u and of

rank k < n, 13 is a kx1 vector of parameters and u is the nx1 disturbance

vector. It is assumed that the model is based on n quarterly time-series

observations and that, as a consequence, u is generated by the stationary

seasonal-autoregressive process

(1 - p
1 
L)(1 - p

4
L
4
) u =e

t'

where

(2)

0 < p4 < 1 (3)

and

0 < p1 < 1 (4)

' are unknown parameters, L is the lag operator such that Lut = ut_i and

e = (e1''en)' N(0, a
2
I
n
). Note that (2) is the AR(5) process,

u
t = 

p1
 
u1 

P4ut-4 
- pi p4ut_5 + et.

Our aim is to test H
0 
: p

4 
= 0 against H

a 
: p

4 
> 0.

The restriction (3) reflects the view that typically one wishes to

test for extra positive correlation between the disturbances of the same

quarters of adjacent years. If required, an analogous test can be

constructed with the restriction -1 < p
4 

< 0 in mind. An example of such

a situation is given by Wallis (1972, p. 632). As we shall see, the

smaller the range of p, the more powerful the final test. We will
1

proceed under (4) because it is typically what is assumed. If need be, it,

could be replaced with -1 < pl < 0 or -1 < p1 < 1, without loss of

generality. For the purpose of test construction, we will find it
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convenient for the range of p1 to be a closed set. Because of this, we

will use 0 4 pi 0.99999 to approximate (4) in the remainder of this

paper.

Let G(p,p) be the pxp bi-diagonal matrix

G(p,p) =

1- p
2 0

0

•

-p

-P

0

• • •

0 1

1 0

-P 1

Set G p) = G(p,n) and, when n is an integer multiple of 4, let

G4( p) = G( p,n/4) 0 14 • (5)

If n is not an integer multiple of 4, G
4
(p) is formed by first rounding n

up to the next integer multiple, applying (5) and then deleting the

appropriate number of bottom rows and right-hand columns to convert back

to an nxn matrix.

The stationary process (2) is observationally equivalent to

u= e

so that

-Var(u) = a
21
G (p

4
)
-1
G
1
(p

1
)
-1
G
1
(p

1

-1
G
4
(p
4 

1

= a2Q(p
1 ,p4),

say.
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against

Observe that this testing problem is invariant with respect to

transformations of the form

y noy + Xn,

where no is a positive scalar and n is a kx1 vector. The mx1 vector

v = Pz/(z'P'Pz)
1
/
/
2

is a maximal invariant under this group of transformations where m = n-k,

z = My is the ordinary least squares (OLS) residual vector from (1), M =

In - X(X'X)-1X' and P is an mxn matrix such that PP' = Im and 
1:0.1) = M.

The probability density function of v under (1) and (2) can be shown to be

(King (1980))

f(v,p1,p4)dv,

(p ,p )p, 1 -1/2(v,(pw _ -1
= 1/2 r(m/2) 117m/2 P p, v -m/2dv

1 4 I

(6)

where dv denotes the uniform measure on the unit sphere. Note that the

only unknown parameters in (6) are p1 and pe

Thus our testing problem simplifies to one of testing

Ho : v has density f(v,pi„ 0 < < 0.99999

Ha : v has density f(v,p1,p4), 0 < < 0.99999, 0 < p4 < 1.

Consider first the problem of testing the simple null hypothesis

1
H : p

1
, p
4
)1 = ( p

10
,0) '

against the simple alternative hypothesis
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1

Ha : P1 P4) = ( P11 P41)

where 
° P 0 P41 < 1 

4 0.99999, 0 4 p11 4 0.99999 and 0 < are known
4 1 

and fixed. Let Q = 
0(p10 

,0) and Q = Sl(p ,p
41 
). The Neyman-Pearson

o 1 11 

lemma implies that a Most Powerful (MP) test within the class of invariant

tests can be based on critical regions of the form

s( P10' P11' P41) =

v' (Pn
1
P' )

-1
v

v'(PQ
o
P')

-1
v

where c is an appropriate critical value. One can show (see, for example,

King (1980, lemma 2)) that s(0 ,0 )
'10-11

-,
'
10 
41 

can also be written as

s( P101 P11' P41) =
u' c/

o

A 1 A
u' 

- 
u

(7)

where u and u are the generalized least squares residual vectors

assuming disturbance covariance matrices Q
1 
and 06, respectively. It is

worth noting that the numerator and denominator of (7) can be computed as

the sum of squared ordinary least squares residuals from

and

G
1
( p

11
)G
4
( p

41
)y = G

1
( p

11
)G
4 41

)Xf3 + G
1
( p

11
)G
4
( p

41
)u

G
1
( p

10 
)y = G

1
( p

10 
)x13 + G

1
(p10)u,

respectively. The statistic s(p 
10 
,p 

11 
,p 

41
) can also be written as

u'A u
1 

s( P101 P11' P41) = u' A u
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where

s 1 — -1
X(X' S/

-1
X)

-1
X' S/

-
.
1

for i = 0,1. It is, therefore, a ratio of quadratic forms in normal

variables and hence, like for the Durbin-Watson statistic, probabilities

of the form

Pr[s( I
P10"11"4 ) < c 

u N(0,E)]

= Pr[ut ( - cA
o
)u < c I u N(0, En

1/2 -1/2
= PrHu 

E-1/2 
)'(E

1/2
)'( - cA0) E E u) < c I u N(0, Ell (8)

can be found by computing

where

and

2
Pr [. E1 X. E. < 01=

• • • are the eigenvalues of

E
1/2
) '(A - c1

0
)E

1/2
1

(9)

(10)

are independent chi-squared random variables each with one

degree of freedom. Once A1 ,..., An have been calculated using standard

computer packagesl, (9) can be evaluated using either Koerts and

Abrahamse's (1969) FQUAD subroutine, Farebrother's (1980) PAN procedure or

Davies' (1980) algorithm.

Because the test procedure proposed below requires repeated

evaluation of (8), it is helpful to consider efficient methods of

computing (8), particularly when n is large. The 0(n3) arithmetic

operations needed to compute the eigenvalues of the nxn matrix, (10), is
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the main computational bottleneck.2 Alternative methods of computing (8)

without first calculating eigenvalues have been suggested by Palm and

Sneek (1984) and Shively, Ansley and Kohn (1987). Palm and Sneek's

approach involves using Householder transformations to tridiagonalize

(10). Shively et al. proposed the use of a modified Kalman filter to

calculate (8) in 0(n) operations. For large sample sizes, this should

result in considerable computational savings over eigenvalue methods.

where

As King (1987b) notes, if the critical value c is found such that

Pr[s(p
10 
,p 

11 ,p41 
<clu— N(0,0)1 = a,

1
a is the desired significance level, one has a test of H

o

against the more general alternative, Hai that is MP invariant (MPI) in

the neighbourhood of (p1,p4)' =
(P11")41)

For our problem (of testing

Ho against Ha), however, the use of s(p10,p11,p) generally will not

result in a test with optimal power at (p1 ,p4)'
= P11' P41)

because when testing Ho, the critical value is found by solving

sup Pr[s( p
10' 

p
11'

p
41
) < c

04p1 40.99999
= a

This is

for c
*
. In general, c < c

* 
so the two critical regions are different. As

the range of p1 is closed,

Pr[s(p10,p11-,p41 
) < c* 1 u Nco,n(p ,0)] = a

1

is true for at least one p
1 

value. If p
10 

can be chosen to be such a

value then c = c* and the test based on s( p
10 ' 
, 0

11 
, is MPI in the

*-' 
o
41) 

neighbourhood of ,p
11 

= (p
11
,p

41
)1. It is, therefore, a POI test.
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Unfortunately, there is no reason why such a p
10 

value should

exist. Furthermore, it may exist for some combinations of X, (p11 p41

and a values but not for others. Numerical experimentation suggested

that, generally, such a 
p10 

value does not exist. Any exceptions were

found to be rare and involved what might be regarded as extreme values of

(Pl-cP41)'•

Therefore, we will turn our attention to the class of approximately

POI tests discussed by King (1987b). For our problem, they are based on

s(p10 
,p 

11 ,p41 
) with c* determined by

sup Pr[s( p
10
,p

11
,P

41
) < c* I u N(0,C2( p

1 
'O))] = a.

0<p1 <0.99999

Such a test would be close to POI if

a- Pr[s(p
10
,p

11
1p

41
) < c* I u

is close to zero. This is because if we modify the Ho distributions to

make (11) equal to zero, then, for the new testing problem that results,

our test is P0I3. In this sense, the test may be regarded as

approximately POI, particularly if p
10 

is chosen to minimize (11).

Again, numerical experimentation was used to find 
p10 

values which

minimize (11). It became clear, at least for our chosen X matrices, that

when plo = 0.99999,

Pr[s( N(0, S2(
"11")41) < c u 

,0) ) (12)



1 1 .

is a monotonic decreasing function of P1
and hence the appropriate

critical value, c
* 

i, s determined at p
1 
= 0. Consequently, (11) is

relatively large for this choice of 
P10. P10

As is moved closer to

zero, the nature of (12) as a function of

turning point and, for values of p1

P1
changes. It develops a

close to 0.99999, is a monotonic

increasing function of p
1
. It, therefore, has local maxima at the two

end points of the range of P1 
Provided p

1 
= 0 remains the global

maximum, it determines the appropriate c
* 

value. Our experiments showed

that (11) is reduced by moving p
10 

closer to zero provided p
1 
= 0

remains the global maximum. Once p
1 
= 0.99999 becomes the global

maximum, it determines the c values. We found that moving p
10 

closer

to zero in such circumstances results in an increase in (11).

Our recommended choice of 
p10 

is that value which results in global

maxima at both pi= 0 and pi = 0.99999. In other words, that value of

P10 
that causes

* ,
Pr[s( I 

P10"311"341) < 
c u (13)

to be equal to a at both pi = 0.0 and pi = 0.99999. We will use p
10

to denote this value. Our experiments showed that any movement from P
10

resulted in an increase in (11). On a few rare occasions, pi = 0 was

always a global maximum, in which case setting p
10 = - 

0 yields a true POI

*
test. In such circumstances, p

10 
will denote the required p

10 
value.

Unfortunately, it is difficult to show analytically that choosing

P10 
such that (13) equals a at both p

1 
= 0 and p

1 
= 0.99999 always

minimizes (11). A complicating factor is that for those combinations of

X, pii and p41 for which a true POI test exists, such a plo value cannot

be found.
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The test statistic s(p
10
,p

11
,p

41
) is a function of and

P10, P11

In order to use it as a test of Ho against Ha, values of these

three parameters need to be specified. We recommend that 
P10 

be set

equal to 
P10 P1 1

The question then remains: what values should and

p
41 

take?

In the spirit of the point optimal testing approach (see Fraser,

Guttman and Styan (1976), Franzini and Harvey (1983), King (1983, 1984,

1985a, 1987b) and Evans and King (1985)),

1
particular value of p4, say p4. It is assumed that high power is

regarded as being important at this

we begin by focussing on a

1
P
4 P4

value, although need not be

the only value for which this is the case. Given that

11

p10 = p10 
and 

P41 
=p4,the power of our test at P4 = P4 

is

1, 1 1„
71.( P

ll 
P1'p4

) = Pr[s( p
10'

p
11'

p
4
) < c

* 
I u N(0, p

1 
p
4
)1

1
which, for any choice of p11 and p4, is a function of p

1 
and over the

range 0 < p < 0.99999 has a minimum. This minimum varies with the
1

choice of p11
 

value. It seems sensible to want this minimum to be as

large as possible. For this reason we suggest choosing

min
0<p1 <0.99999

1,
7T( p11 P1' P4'

1and denote this p
11 

value (given 
P41 = P4) 

by
 P11

P11,

P11
to maximize

Finally, there is the choice of 0
41 

value. This value, along with
' 

determines the point at which the test is attempting to optimize

power. Rather than select this point directly, we will adopt an indirect

approach that is finding favour in the literature (see for example, Davies
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(1969), King (1985b), Nyblom (1986) and Shively (1987, 1988)). It

involves deciding the level of power that would be most desirable to

optimize at. There seems little point in optimizing power when it is

already one or when it is close to a. Rather, it seems sensible to

optimize power at some middle level. For typical values of a of 0.10 or

1less, we suggest optimizing power when it is 0.5. In other words, p
4 

is

chosen so that the maximized minimum of

1
alternatively as that value of p

4 
for which

1
Tr(p11'10

1
'I)
4
)

„ * * 1, * , * 1.„
PrLs( p

10
1p

11
,p
4
) < c I u —N(0,Mp

11
,p
4
))i = 0.5 .

This choice of 
P41 

will be denoted p41.

3. EMPIRICAL POWER CALCULATIONS

is 0.5 or

The sizes and powers of three versions of the s(n
—10°311 

,p41) test

were computed in order to illustrate the effects of our choice of

p
10
, p

11 
and 0

41 
values as well as to assess the power properties of the' 

recommended test. The three tests are based on s(0.5,0.5,0.5),

s( p10,0.5,0.5) and the recommended test statistic,
* * *

s( pio'pil'P41)•
The s(0.5,0.5,0.5) test was chosen to illustrate arbitrary but

"representative" choices

s(P10'0. 
5,0.5) test seeks

p
10
, p

11 
and p

41
while the

to improve on this test by attempting to

maximize power at the arbitrary point
(P1 'P4)'

= (0.5,0.5)'. Sizes and

powers were computed at 01 = 0.0, 0.2, 0.4, 0.6, 0.8, 0.99999 when p
4

0.0, 0.2, 0.4, 0.6, 0.8 for the following two X matrices with n = 20, 60:
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X1 (nx3). A constant dummy, the quarterly Australian Consumer Price

Index commencing 1959(1) and the same index lagged one quarter as

regressors.

X2 (nx4). A constant dummy, quarterly Australian private capital

movements, Government capital movements and retail trade commencing

1968(1) as regressors.

The Australian Consumer Price Index has a small seasonal pattern while the

retail trade series shows much stronger seasonal behaviour. The two

capital movement series exhibit some large fluctuations and are strongly

seasonal with two seasonal peaks per year.

Exact critical values at the five percent level were computed using

the eigenvalue method and a modified version of Koerts and Abrahamse's

(1969) FQUAD subroutine with maximum integration and truncation errors of

10-6 to evaluate (9). Probabilities of rejecting H
0 when

u N(0, Q( p '104) ) using critical value c were computed by setting

E = Wp1,p4) and c = c in (8), (9) and (10). For any choice

*
of p11 and p41 values, the associated plo and exact critical values, c,

were found as follows:

(i) Guess a likely value of p 0, say p
10 

= 0.5.
1 

(ii) Use the secant method to solve

*
Pr[s( p

10' P11' p41
) < u N(0,C2(0,0))] = 0.05

for c .
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(iii) Evaluate

*

Pr[S(p10 
,p

11 1' 041- 
) 

<
U ,̂N(0,2(0,0•99999))] • (14)

If (14) equals 0.05, then the desired p
10 

value has been found. If

(14) is less (greater) than 0.05, make p
10 

smaller (larger)4 and

repeat (ii) and (iii).

The calculated sizes and powers for X1 are presented in tables 1 and

2 while the corresponding results for X2 may be found in tables 3 and 4.

Except at p1 = 0.0 and p1 = 0.99999, all sizes are less than the

nominal size of 0.05 and they decrease as the sample increases. This

decline is most noticeable for the s(0.5,0.5,0.5) test whose size for all

but one P1
value is below 0.001 when n = 60. At each value of p

1
* * *

(excluding endpoints), the 
s ' 
(0

10
,0

11'
10 41) size is always closest to the

— 

nominal significance level with the s( p10,0.5,0.5) size always being the

next closest.

Because all tests have sizes less than 0.05 at interior p
1 

values,

continuity implies that their powers at some points under Ha will be less

than their nominal sizes. Calculated powers below 0.05 occurred most when

n = 60, particularly for the s(0.5,0.5,0.5) test at p
4 
= 0.2 and 0.4.

Such low powers only occurred occasionally for the 
s(o10'°.5' 

0.5) test and' 

. never for the
* * *

s( P10' P11' P41)
test.

unusual feature of the s(0.5,0.5,0.5) test is that for

0 4 p1 4 0.8 and 0 < p4 4 0.6, its power declines as the sample size

increases. s( p10,0.5,0.5) exhibits this property only at

* * *
p
1 
= 0.6, 0.8 and p

4 
= 0.2, while the powers of the

s(P10"D11")41)

test always increase as the sample size increases.
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The power of the s(p
10
,0.5,0.5) test almost always dominates that

of the s(0.5,0.5,0.5) test and when n = 60, the differences in power can

be extremely large, ranging up to 0.799 for X1 and 0.821 for X2. The only

exceptions are X2 powers at p1= 0.99999 when n = 60.

* * *
Because the 

s(P1010.5'°.5) 
and s(0

'10
0
'-11

0
'-41

) tests only differ

in their choice of point at which they seek to optimize power, it is not

surprising that their power curves cross with the latter test having

greater power at higher p1 
values. For the 20x3 X1 matrix, there is

little difference between the two power curves. For X2 with n = 20, the

power differences in favour of the s(p 
10 
,0.5,0.5) test at p

1 
= 0, 0.2

* * *
are small relative to those differences in favour of 0 ( )

s--10'
10 
11,0-41- 

at

p
1 
= 0.6, 0.8, 0.99999. When n = 60, the power advantage of the latter

test is even more marked. It is only less powerful at p
1 
= 0 and never

by more than 0.05, while for p1 > 0.2, it dominates the s( 010,0.5,0.5)

test with power differences ranging up to 0.341 and 0.528 for X1 and X2,

* * *
respectively. Somewhat surprisingly, the 

s - 
(0

10'
-0
11'

-0
41 -
) test is more

*
powerful than the test at (0.5, 0.5)' whichs( 

( P1' P4) =

is where the latter test attempts to optimize power. This can be

explained by noting that (11) is quite large for this test and hence it

may be rather poor at optimizing power.

On the evidence available, it does appear that the recommended test

* * *
based on s( p , p

11 
,

10  41
has better power properties than the

s( * 0.5 0.5)
P10 

test which in turn must be preferred to the

s(0.5,0.5,0.5) test. The superiority of the recommended test becomes much

more obvious as the sample size increases.

Further power comparisons were made in order to investigate the

sensitivity of the choice of p1 ' point at which power is
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approximately optimized. This is of interest because the accuracy with

which p
11 

and p
41 

need to be determined, dictates the degree of

computational effort required. The small differences between the power

* * * *
curves of the s( p10, 

' P11, P41
0.5, 0.5) and s(p ) tests for the nx3 X1

10 
* *

matrix when 
p1 = ' 

0.8010 and 0
41 

= 0.5460 indicates that, at least' for1 
.*

this design matrix, 011 need not be determined accurately.

For the X1 design matrices with n=20 and 60, the powers of four

further s(p , p 
11 
, p

41 ' 
) tests were computed with p11 and 0

41 
set to the10 . 

p
11 

and p
41 

values with five percent errors either added or subtracted.

The calculated power curves proved to be very similar to those of the

s(p10-, p p
41 
) test, particularly at points away from boundary values11' 

of p and when n=60. The largest differences in power were less than1

0.015 for n=20 and 0.010 for n=60 and occurred at p1 = 0.99999. This

suggests that p
1 
and p

41 
need not be calculated with great accuracy.1

4. AN EXAMPLE

* * *
This section considers the application of the s(p

10 
,p

11 ,p41 
) test

to a quarterly regression model reported by Woglom (1981) that explains

the value of stocks in the U.S.A. This model, whose disturbances are

assumed to follow an AR(1) process, was used by Kramer and Sonnberger

(1986) to illustrate the use of diagnostic testing in practice. Using

Woglom's notation, the model is

logVSTt = + 132logMBt + f33log(1 + RTPDt) +

134log(1 + RTPS
t
) + 

5
logXBC + u ,

t t

u
t 
= pu

1 
+ ,

t- t,
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where VSTt is the current value of stocks, MBt denotes the adjusted

monetary base, RTPDt and RTPSt represent current dollar rents on

producers' durables and structures, respectively, XBCt is productive

capacity for business output and ut is the disturbance term. Quarterly

data for the period 1960(1) to 1977(3) (71 observations) are given by

Kramer and Sonnberger (1986, Table A.5), although in order to reproduce

their results, the values given for RTPDt and RTPSt need to be divided by

100.

It was decided to apply the test at the 5% significance level. The

* * *
first task was to find p , p and p

10 11 4
.
1

following hierarchical iterative process.

(i) Guess likely values
5 
of p

11 
and p

41.

This was done using the

(ii) For these values of p11 and p41, compute 
p10 

and the associated

critical value c as outlined in section 3.

(iii) By exploring the power curve of the resultant 
s(P10,p11,p41 

) test

at different values of p when p4=  p41,  find the p
1 

value which
1

gives minimum power.

(iv) The p
11 

value in (ii) is adjusted by moving it closer to this

value with the aim of increasing the minimum power.

1

(v) Steps (ii), (iii) and (iv) are repeated until the minimum power

cannot be increased further. At this point, p
41 

is adjusted to

make this maximum minimum power value closer to 0.5. If it is less

(greater) than 0.5,

(v) are repeated.

P41
is increased (decreased) and steps (ii) to
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(vi) The iterative procedure is complete when the maximum minimum power

value at Re p
41 

is equal to 0.5. The resultant p
11 

and p
41

values are the required p
11 

and p
41 

values while the 
p10 

and c

values come from the most recent evaluation of step (ii).

For our particular regression, this process gave

* * * *
p
10
= 0.8952021, p

11
= 0.93, p

41
= 0.28566 and c = 0.9709164. A by-

product of the calculations is that we gain some knowledge of the power

function of the chosen test. We know, for example, that the power at

p
1
= 0.717 and p

4
= 0.28566 is 0.5 and that this is the minimum power

value when p
4
= 0.28566. The value of our chosen test statistic,

s(0.8952021,0.93,0.28566), was computed as a ratio of sums of squared

ordinary least squares residuals from transformed regression equations

using the TSP computer package. Its calculated value was found to be

1.13854 which is greater than c* so that Ho : p
4
= 0 is not rejected at

the five percent significance level.

5. CONCLUDING REMARKS

This paper discusses the use of "approximate" POI tests when testing

for simple fourth-order autocorrelation in linear regression disturbances

when an AR(1) process is also present. The empirical power comparison

shows that it is essential to have a sensible set of rules for choosing

the appropriate member from this class of tests. The rules suggested

above give rise to a new approach to the treatment of nuisance parameters

in hypothesis testing. Those that cannot be eliminated through invariance

are used to advantage in the final choice of test statistic.

Unfortunately, these rules need to be applied individually to each

regression model and this requires a lot of computation. With continuing
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improvements in computer hardware and software, computation time is

rapidly becoming less of an issue in econometrics. Also, knowledge of the

test's power function is a valuable by-product of these computations.

The approach used in this paper can be applied to a number of other

testing problems. Obvious examples include testing regression

coefficients or regression disturbances in the presence of

autocorrelation, heteroscedsticity, an error component or a random

regression coefficient. Some of these are the subject of current

research.
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1. For example, the eigenvalues for the calculations reported in the next

section were found by first tridiagonalizing (10) using Householder's

transformation and then applying the QL algorithm. This was done

using Fortran versions of Martin, Reinsch and Wilkinson's (1968) TRED1

procedure and Bowdler et al.'s (1968) TQL1 procedure, respectively.

2. Considerable savings can be made when p 
10 
, p 

11 
, p

41 
and E remain fixed

in (8) and only c changes. Then, each of the n-k non-zero eigenvalues

changes by minus the change in c. Unfortunately, if any

E changes, the eigenvalues have to be completely
of P10, P11, P41 or

recalculated.

3. There is nothing new about modifying an hypothesis under test so that

test with desirable properties can be constructed. Durbin and

Watson (1950) followed this approach when constructing their test for

AR(1) disturbances.

4. The secant method was used to determine the new plo values.

5. Based on the p
1 
and p

41 
values for X1 and X2 with n=60 given in

1 

tables 2 and 4 = 0.96 and 
041

= 0.3 seemed like reasonable
P11 ' 

starting values.
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Test

TABLE 1

Sizes and powers of different versions of the

s(p10"311"341) 
test for X1 with n=20

Size Power

131 
0
4
= 0.0 0

4
= 0.2 0.4 0.6 0.8

s(0.5,0.5,0.5)

s(0.10'"5'°-5)
s( pI0, PV11, P

t

s(0.5,0.5,0.5)

s( q0'"5,°.5)

s( P*11, P*41)

s(0.5,0.5,0.5)

s( q0,0.5,0.5)

s( P*10' P*11, P*41)

s(0.5,0.5,0.5)

S(110,0.5,0.5)

S p* ,p* 
- 

)
10 1141

s(0.5,0.5,0.5)

s( q0,0.5,0.5)

s( P*10' P*11' P*41)

s(0.5,0.5,0.5)

s( q0,0.5,0.5)

s ( P*11 P*41)

0.0 .050 .154 .367 .656 .898

.050 .154 .367 .657 .899

.050 .146 .340 .619 .877

0.2 .040 .135 .348 .648 .898

.042 .141 .356 .656 .902

.042 .134 .334 .624 .884

0.4 .030 .111 .310 .615 .885

.034 .122 .329 .634 .894

.035 .120 .316 .613 .882

0.6 .022 .087 .260 .558 .855

.029 .105 .295 .596 .874

.030 ' .106 .294 .594 .874

0.8 .018 .069 .211 .481 .796

.031 .104 .277 .559 .841

.031 .107 .292 .587 .865

0.99999 .017 .058 .160 .346 .574

.050 .135 .299 .533 .769

.050 .146 .340 .610 .854

t p10 P 1 '
= 0.74386, = 0.8010, = 0.54601 041 
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Test

TABLE 2

Sizes and powers of different versions of the

s(p
10

-, 
1 

p ,p
41 
) test for X1 with n=60

1 

Al

Size Power

p
4
=0.0 p

4
=0.2 0.4 0.6 0.8

s(0.5,0.5,0.5)

s(070,0.5,0.5)

s( P.10, P11 p1 
)t

s(0.5,0.5,0.5)

s(PI0'"5'°-5)
s( (310, P.11, P11)

s(0.5,0.5,0.5)

s(pT0,0.5,0.5)

s P *10 P *11 p41 )

s(0.5,0.5,0.5)

s(pI0,0.5,0.5)

s( p10,P*11' P*41)

s(0.5,0.5,0.5)

s(pT0,0.5,0.5)

s P*10 
,p* p*

P*
 
41 )

s(0.5,0.5,0.5)

s( w10,0.5,0.5)

s ( P*10 
,p* ,n*

P*41 )

0.0 .000 .000 .021 .321 .888

.050 .354 .820 .986 1.000

.050 .329 .787 .979 .999

0.2 .000 .000 .014 .297 .887

.027 .279 .781 .982 1.000

.040 .319 .795 .982 1.000

0.4 .000 .000 .008 .245 .867

.010 .174 .681 .968 1.000

.028 .280 .777 .981 1.000

0.6 .000 .000 .005 .197 .834

.003 .083 .517 .929 .998

.017 .226 .737 .977 1.000

0.8 .000 .001 .031 .283 .835

.001 .048 .390 .869 .994

.014 .209 .731 .978 1.000

0.99999 .050 .168 .383 .654 .887

.050 .214 .555 .868 :977

.050 .394 .873 .994 1.000

p
10 

= 0.93812, p
11 

= 0.9580, p
41 

= 0.3165.
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TABLE 3

Sizes and powers of different versions of the

s p1 P11' P41) 
test for X2 with n=20

Size Power

1 
p
4
=0.0 p

4
=0.2 0.4 0.6 0.8

s(0.5,0.5,0.5)

s( p.10,0.5,0.5)

s' plo, 011, p1 
)t

s(0.5,0.5,0.5)

s( p.10,0.5,0.5)

s( P*10' P*11, P41)

s(0.5,0.5,0.5)

s( p10,0.5,0.5)

5( P*10' P*
 
11' P*

 
41)

s(0.5,0.5,0.5)

s( p,10,0.5,0.5)

s( P*  10' P*
 
11' P*41)

s(0.5,0.5,0.5)

s(Plo'"5'°.5)

s( p1, P'*41)

s(0.5,0.5,0.5)

s( P-70'°.5'°.5)

s( p*io' i1'P P*41)

0.0 .012 .043 .137 .343 .662

.050 .137 .310 .561 .821

.050 .121 .262 .490 .770

0.2 .009 .036 .123 .323 .646

.038 .113 .275 .528 .803

.043 .111 .254 .489 .773

0.4 .007 .028 .102 .286 .607

.026 .084 .225 .468 .762

.034 .095 .231 .467 .760

0.6 .005 .023 .083 .242 .547

.018 .060 .172 .389 .692

.026 .078 .203 .435 .739

0.8 .008 .028 .086 .224 .484

.016 .052 .142 .320 .593

.024 .073 .195 .428 .737

0.99999 .050 .117 .234 .408 .648

.050 .117 .237 .417 .656

.050 .140 .322 .587 .852

t p10 P 1 - 
o
41

= 0.85277, = 0.8390, = 0.6523.1 
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TABLE 4

Size and powers of different versions of the

s(P10"°11")41) 
test for X2 with n=60

Size Power

1 
p
4
=0.0 p =0.2 0.4 0.6 0.8

s(0.5,0.5,0.5)

s(pI0,0.5,0.5)

* 
s( P'10,111' P41

)t

s(0.5,0.5,0.5)

s(p* ,0.5,0.5)

St 
PIO' P.11' P*41)

s(0.5,0.5,0.5)

s( p.10,0.5,0.5)

s( P*11' P41)

s(0.5,0.5,0.5)

s( p.10,0.5,0.5)

s P*1 0 P*11 P41 )

s(0.5,0.5,0.5)

s( p110,0.5,0.5)

s( P11 P41 )

s(0.5,0.5,0.5)

s( p.10,0.5,0.5)

s( PIO' P*11' P*41)

0.0 .000 .000 .006 .180 .788

.050 .344 .802 .981 1.000

.050 .313 .756 .969 .999

0.2 .000 .000 .004 .157 .782

.024 .251 .740 .973 .999

.041 .304 .765 .973 .999

0.4 .000 .000 .002 .120 .747

.008 .135 .596 .941 .998

.028 .265 .742 .970 .999

0.6 .000 .000 .001 .091 .695

.002 .047 .370 .843 .990

.017 ' .211 .697 .964 .999

0.8 .000 .000 .011 .167 .713

.000 .013 .163 .613 .942

.013 .189 .685 .965 .999

0.99999 .050 .189 .447 .738 .938

.050 .153 .340 .591 .813

.050 .393 .868 .993 1.000

0.96223, = 0.9660, 
.P41 

= 0.3313.
t P10 = P11 
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