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ABSTRACT

Most of the recent work in time series analysis has been done

on the assumption that the structure of the series can be

described by linear models such as Autoregressive (AR), Moving

Average (MA) or mixed Autoregressive-Moving Average (ARMA)

models. However, there are occasions on which subject matter,

theory •or data suggests that linear models are unsatisfactory

and hence it is desirable to look at non-linear time series

models.

In the last decade several non-linear time series models have

appeared in literature, specifically, bilinear time series

models, threshold AR models, exponential AR models, random

coefficient AR models, exponential moving average models and

other related models. In this paper we have reviewed various

non-linear time series models. We have also reviewed - various

tests of non-linearities developed by various authors. Since

the model specification is the most important step in any time

series model building, we have discussed the problem of model

specification in the context of bilinear and threshold models

in detail.



SOME RECENT DEVELOPMENTS IN NON-LINEAR TIME SERIES MODELLING

1. INTRODUCTION:

Since the appearance in 1970 of the book by Box and Jenkins

(1970,1976); the use of Autoregressive-Moving average (ARMA) models has

become widespread in many fields for the analysis and prediction of time

series data including economic forecasting. These models are commonly

referred to as Box-Jenkins models and the whole approach is usually

referred as the Box-Jenkins approach. The details of these models can

also be found in Chatfield (1980), Priestley (1981), Hannan (1962,70),

Anderson (1976), Cryer (1986), Vandaele (1983) etc. Box-Jenkins models

are linear in nature, but there are occasions on which subject matter,

theory or data suggests that linear models are unsatisfactory and the

time series in question cannot be adequately described by linear models,

hence it is desirable to look at non-linear time series models.

Non-linear time series models are usually non-Gaussian in nature and it

has been suggested that they can be transferred to Gaussian by using

certain transformations. However, it has been shown by Granger and

Andersen (1978b) that forecasts are usually biased and lead to higher

mean square errors if such transformations are made. In a study Davies

and Petrucelli (1985) analysed 234 real data sets and observed that 15%

of these series are non-linear in nature. In another study conducted by

the same authors, they analysed 160 real data sets and 67 of these were

detected as non-linear. Predictions were considerably improved when

non-linear time series models were used instead of ARMA models.
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Tong (1983) has summarised the following limitations on ARMA models:

(i) having symmetrical joint distributions; stationary Guassian ARMA

models are not ideally suited for data exhibiting strong asymmetry

e.g. hydrological data,

(ii) ARMA models are not ideally suited for data exhibiting sudden burst

of very large amplitude at irregular time due to non-normality,

(iii) ARMA models are not ideally suited for data exhibiting time

Irreversibility.

Subba Rao and Gabr (1980), Hinich (1982), McLeod and Li (1983),

Keenan (1985), Petruccelli and Davies (1986), Chan and Tong (1986a)

provided some tests for non-linearity which also suggests that many time

series found in practice (for example the "classical" sunspot data,

Canadian Lynx data, IBM daily common stock closing price data, etc.)

cannot be adequately described by linear models; hence it is desirable

to look at non-linear time series models. A brief review of these tests

has been given in this paper.

Keeping in view the importance of non-linear time series modelling

quite a few non-linear time series models have appeared in the

literature in the last decade. However, certain restrictions should be

imposed on non-linear models in order to make them useful. The first

restriction is that they should not have an explosive solution, i.e.

they should be stationary. A second limitation is that they are capable

of producing forecasts and for this the models should be invertible.

Besides, Tong and Lim (1980) proposed following requirements of,

non-linear time series models:

2



(a) identification of the model should not entail excessive

computation;

(b) they should be general enough to capture some of the non-linear

phenomenon;

(c) one step ahead prediction should be easily obtained from the fitted

model. If the model is non-linear, its overall prediction

performance should be an improvement over the linear model.

(d) they should possess some degree of generality and be capable of

generalisation in multivariate case,

(e) they should reflect the structure of the mechanism generating the

data and have some intuitive appeal.

Although the era of non-linear time series models started with

Wiener (1956) and was discussed by Nelson and Van Ness (1973) it is in

the last decade that most progress has been made in the field of

non-linear time series modelling. Granger and Andersen (1978b) and

Subba Rao and Gabr (1984) studied bilinear time series models in detail.

These models were originally developed by control engineers to describe

input-output relationships for a deterministic non-linear system. Tong

(1983) has discussed another class of non-linear time series models

commonly known as Threshold Autoregressive models. These models are

general enough to capture the notion of limit cycles which plays a key

role in the modelling of cyclical data and in physical and biological

sciences. Other non-linear time series models are exponential AR models

introduced by Haggan and Ozaki (1980,81), non-linear threshold models,

random coefficient AR models introduced by Nicholls and Quinn (1980),



exponential moving average and other related models introduced by

Lawrence and Lewis (1977, 1980, 1985) and some other non-Gussian time

series models introduced by McKenzie (1980) and Raftery (1982).

It may be mentioned that although many non-linear time series

models have appeared in the literature, bilinear and threshold time

series models have been discussed in detail by many authors and the

application on real data sets for these models have also been discussed.

In this paper we have reviewed various non-linear time series

models especially the developments in Bilinear and Threshold time series

models. Since the most important step in any time series model building

is the specification of the correct model, the specification problem of

these models has been discussed in detail. In section 2, we have

reviewed the various tests of non-linearity. In sections 3 and 4, we

have discussed bilinear and theshold models in detail. In section 5, we

have discussed some other non-linear time series models and in section

6, we have discussed state dependent models introduced by Priestley

(1980). Finally conclusion has been drawn in section 7.

2. TESTS FOR NON LINEARITY

Recently a number of tests for non-linearity has been proposed in

the literature. Some of these tests are based on a frequency domain

approach whereas others use the time domain approach. Chan and Tong

(1986a) argued the following reasons for developing the test of

non-linearity:

(i) the tests will throw some light on the incidence rate

non-linearity in real time series;
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(ii) suggest use of non-linear predictor in preference to linear ones;

(iii) what kind of non-linearity are present in the data.

Subba Rao and Gabr (1980) and Hinich (1982) have based their tests

on frequency domain whereas other tests are based on time domain. Subba

Rao-Gabr have constructed two tests aimed at detecting:

(a) whether the process is Gaussian, in which case given that it is

stationary it must necessarily conform to a linear model.

(b) if the process is non-Gaussian, whether it conforms to a linear

model.

The test is based on spectral and bispectral analysis of stationary

time series data. Hinich (1982) proposed an improved and robustified

version of the test. The main drawbacks of the test can be listed as

follows:

(i) series length needs to be large for the application which is the

usual drawback in spectral analysis.

(ii) great skill is necessary in applying it because of the large number

of parameters involved. The user has to decide choice of lag

window (Tukey, Parzen or Daniell), the truncation points and

placing of grids.

(iii) Hinich (1982) pointed out that Subba Rao-Gabr test can be sensitive

to outliers and hence proposed an improved and robustified version

of the test.
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(iv) the test may not work for the class of non-linear time series

models with symmetric joint distribution.

In the time domain approach Keenan (1985) has proposed a test for

linearity. He assumed that the series, having a Volterra expansion, may

be adequately represented by a second order expression

co CO co
Z
t 
= µ + E 0

u 
a
t-u 

E 0+ E a
uv 

a
t-u t-v

u=-c0 v=-co u=-co

The approximation will be linear if and only if the last term on

the right is zero, i.e. he is testing:

H
o 

Z
t 
= µ + Ea 

u 
a
t-u

u=o

M' M"
vs H

1 
Z
t 
= p + E a

u 
a
t-u 

+ E E a
uv 

a a
t-u t-v

u=o u=o v=o

( 2 . 1)

(2.2)

where {at} is a sequence of i.i.d. random variables and M, M', M" are

sufficiently high. The mechanics of the test is similar to Tukey's one

degree of freedom test for non-additivity and runs as follows using the

observations (Z1, Z2,...Zn),

40%

(a) Fit model (2.1) to the data and calculate the fitted value {Z
t} 

and

.0%

the residuals {a} fort = M+1,...,n, and the residual sum of square

"2
<aa> = Eat.

^2
(b) Regress,Z

t 
on 

{1,Zt-1'
...,Z

t-m
}. Let

t
I be the residuals.

(c) Let n = at •



, "2,
(d) Calculate F = n kr1-2M-2)

<aa>-11

under H
o 
: F F

1n-2M-2 .

The advantages of Keenan's test are that it is easy and quick to

implement involving little subjective choice of parameters. It

generally gives quite stable results. However, one major drawback of

Keenan's test is that it is valid only for the non-linear series having

Volterra expansion but all the non-linear time series models do not

possess Volterra expansion. For other drawbacks see Davies and

Petruccelli (1985).

McLeod and Li (1983) propose a portmanteau test for non-linearity

based on squared autocorrelation

-2
Q
aa 

= n(n+2) (k)/(n-k)
k=1 

aa

n-k
^2 -2 -2 -2 "2 -2 2

where 7(k) = E(a - T )(T - T )/ (a
aa 

- T
a
)

t a t+k a t 
t=1 t=1

-2 -2
where T

a 
= E a

t 
/ n

t=1

Davies and Petruccelli (1985) have compared the tests of

non-linearity developed by McLeod and Li (1983) and Keenan (1985). They

have checked the empirical significance level and reported power studies

when the tests are applied to bilinear and threshold models: They have

found that the performance of the test statistic developed by McLeod and

Li is poor except for large sample size whilst for Keenan statistic is

better both for bilinear and threshold models.



Petruccelli and Davies (1986) propose a new portmanteau test (CUSUM

test) for threshold type non-linearity based on cumulative sum of

standardised one step ahead forecasts from fitted AR models. The

authors have shown by evaluating the performance of the test on

simulated and real data sets, that it is a reasonable alternative to the

McLeod and Li and Keenan tests.

Chan and Tong (1986a) have discussed the development of a test of

H : b
(1)
. = b

(2) 
for i = 0, 1,...p,

o

within the class of SETAR models (the details of these models are given

in section 4).

zt =

(1) P (1)
b
o 

+ E b
i 

Z
t-i 

+ e
t 

if Z
t-d 

7
i=1

(2.3)

(2) P (2)
b
o 

+ Eb Z . +e if Z
t-d 

> 7
i t-1 t

i=1

Chan and Tong (1986a) have taken the conventional likelihood ratio

approach and the test statistic A is given by

-2 -2 N/2
A 
=NL/L 

1

-2
where N denotes the sample size, cr

NL 
is the usual mean residual sum of

^2
squares under 2.3 and cr

L 
is that under H. Chan and Tong (1986a) have

done a comparative study of Hinich, Keenan, CUSUM and their own test.

It may be mentioned that none of the tests is a sure-fire test and

none of the tests provides a basis for choosing a model among competing

non-linear models.
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Two ideas which look potentially useful, but have not been

exploited yet for testing non-linearity may be mentioned here.

In his book on threshold models Tong (1983) has used the regression

function at lag-j, i.e. E[Zt
/Z
t-j 

= a] for investigating non-normality

and non-linearity. For a particular value of j (say j=1), E[Zt/Zt-1= a]

is expected to be a linear function of Zif the process is linear but

not so if the process is non-linear (say bilinear or threshold). If the

process is linear this function will be linear for all j. Kumar (1986b)

has done some simulation studies to investigate the applicability of

this test and the results were found to be quite encouraging. In the

case of linear AR, MA or mixed ARMA model, the function gives more or

less a straight line pattern but quite different non-linear shapes -of

the function were obtained for bilinear and threshold MA models. It

would be interesting to study the behaviour of the function

theoretically for different models and to construct some test for

distinguishing between linear and non-linear functions.

n the case of linear time series models with Gaussian noise all

third order moments

A := EHZ 11) - g) (Z g)]
k,1 

Zt_ 
t 

- 
-t

are zero for all values of k and t but they will not be zero in the case

of many non-linear time series or for linear models having

(non-symmetric) non-normal noise. It may be worth trying to develop

some test based on third order moments in the time domain which is

equivalent to the tests based on bispectrum analysis.



3. BILINEAR MODELS.

Recently Granger and Andersen (1978b) (subsequently referred to as

GA) and Subba Rao (1981) proposed a special class of non-linear model

known as Bilinear time series models. This type of model has been

extensively discussed in control theory to describe input-output

relationships for a deterministic non-linear system; see for example

Mohler (1973). Bilinear models offer a class of model that are

potentially capable of analysis and they may pick up part of any

non-linearity in the data and thus could suggest improved methods of

forecasting. It has been shown by Subba Rao and Gabr (1984) that

bilinear models have some interesting properties which can match known

properties of real data. The outstanding advantage of the bilinear

model is that it involves only a finite number of parameters and hence

makes it feasible to consider the problem of fitting such models to real

data. In this respect bilinear models may be regarded as natural

non-linear extension of the ARMA models. It has been shown by GA that a

series which is white noise according to autocovariance (COVA) analysis

may well be forecastable from its own past using bilinear models and

hence they show the importance of bilinear models in practice.

3.1 Definition:

The general bilinear autoregressive moving average model of order

(13,q,P,Q) (abbreviated as BL(p,q,P,Q)) as defined by Subba Rao (1981) is

Q P
na+ZEg aia t_k Zt4= 0. Zt_i + t_i k=1 t=1

j=1 i=0

(3.1.1)

where {at} are independently, identically distributed normal random

variables with mean zero and variance a
2 
. These models are linear in

a

the Z
t
's and also in the a

t
's separately but not in both. The

completely bilinear model is given by (3.1.1) with p=q=0; so that
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P
E 2 
k=1 1

gkt at-k Zt-t at
Z=

(3.1.2)

• If 13kg= 0 for all k > t, the model is called superdiagonal, and if

= 0 for all k*t, the model is said to be diagonal. Finally if k<t,

the model is called sub-diagonal. The simple superdiagonal, subdiagonal

and diagonal bilinear models can be written as follows

13 t2. at-1 
+ a

t

Zt = 13Z1 at-1 at

_ gz a + a
- t-1 t-2 t

(superdiagonal model)

(diagonal model)

(subdiagonal model)

The models (3.1.3, 3.1.4 and 3.1.5) along with their generalisations

have been discussed in detail by Granger and Andersen (1978b). The

model (3.1.1) has been discussed in detail by Subba Rao and Gabr (1984).

GA and Subba Rao (1981) discuss the condition for stationarity and

invertibility of some simple bilinear time series models. The question

of invertibility which is. required if the models are to be useful for

forecasting purposes, is particularly interesting in this context. Let

c be an estimate of the innovation c
' 

then Granger and Andersen
t 

(1978a) call the model invertible if

- 
lim E[(c -c )

2 
] = 0

t400

when this condition is satisfied, the model can be projected forward in

an obvious way, with ct replacing ct, to obtain forecast of future xt.

Tong (1981) has discussed the condition of ergodicity of a specific

bilinear model. Stationarity and invertibility of simple bilinear time

series models has been discussed by Quinn (1982) and Tuan and Tran
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(1981). Ren, Zhi and Tong (1983) have studied the distribution of

simple stationary bilinear processes and Liu (1985) has studied

theoretical properties of some more general bilinear models BL(p,q,7,1).

Priestley (1980) has shown that bilinear time series models as well as

other non-linear time series models can be considered as special cases

of his state dependent models.

In their book on Bispectrum analysis and Bilinear time series

models, Subba Rao and Gabr (1984) have discussed the bispectrum analysis

and its application in developing a test of non-linearity in detail.

They have also discussed the general bilinear time series models and its

properties in detail including the conditions of its stationarity and

invertibility. To estimate the parameters of the bilinear model they

have used the Newton-Raphson method which has been used by Box and

Jenkins (1970) as well for estimating the parameters of the linear time

series models. In particular they have considered the problem of

fitting a BL(p,O; m,k) model

m k
Z + E a. Z = a + Eb.Z.e.+ e
t i=1 j=1

1 t-i ij t-1 t-j t
i=1 

and have outlined a procedure for obtaining the initial estimates of the

parameters. Subba Rao and Gabr have studied the sampling properties of

parameters estimate of some simple BL(1,0,1,1) model. Existence, strict

stationarity and ergodicity of bilinear time series models for a given

input white noise and paramater values are studied in detail in the

recent paper by Akamanam, Rao and Subramanyam (1986). The use of

ergodicity in the estimation of parameter is also hinted in the article.

Maravell (1983) provides detailed discussion of an interesting

application in which a bilinear model is fitted to an economic time

series.
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Subba Rao (1981) has pointed out that sometimes there may be more

paramaters in the full bilinear time series models and it may be

possible to look for subset bilinear time series models. Keeping this

in view Gabr and Subba Rao (1981) defined subset bilinear models and

then described an algorithm for the estimation of these models. The

method is illustrated with real time series data and the optimal several

steps ahead forecast of these time series models are calculated.

3.2 Specification of Bilinear Time Series Models.

The specification problem in Bilinear time series models can be

classified as

(i) how to distinguish bilinear models from linear models.

(ii) if the series is bilinear how to distinguish between various

classes.

(iii) how to distinguish between various lags once a particular class of

bilinear model has been specified.

So far in the literature GA (1978b), Subba Rao (1981), Li (1984),

and Kumar (1986a), have tackled the problem of identification of

bilinear time series models. While the method proposed by Subba Rao is

based on AIC (see Akaike (1977)) and is automatic in nature, the other

methods are semi-subjective in nature.

3.2.1 Subba Rao's method

Subba Rao's method for the identification of the order p,m,k of the

bilinear model BL(p,O; m,k) is to estimate the parameters of the model

for different values of p,m,k and in each case calculate the residual
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-2
variance c

e 
. The information criterion due to Akaike (1977) is defined

as AIC = -2(max log likelihood) + 2 (number of independent paramaters)

-
= (11 - 7)loga

2
 + 2 (number of independent paramaters)

and the normalised AIC (NAIC) is defined as

NAIC = AIC/(N-7)

^2
where c

e 
is the residual variance, (N-7) is the number of effective

observations. The chosen order is one for which AIC value is minimum.

The algorithm for choosing the order of the bilinear model

BL(p,O;m,k) consists of first choosing a fixed integer 7 which should be

greater than or equal to the order of the best AR model for the data.

Then fitting the linear AR(p) model and let the corresponding residual

-
variance be cr

2
e
(AR). Take the coefficients obtained from above as initial

estimates of the AR part of the BL(p,0;1,1) model and set b
11
=O.

^2
Calculate the corresponding a.

e 
and AIC values for the fitted model.

Using the coefficient so obtained fit the BL(p,0;2,1) and BL(p,0;1,2)

-2
model and calculate the corresponding cr.

e 
and AIC values for both fitted

models. Take the coefficients obtained from BL (p,0;1,2) or BL(p,0;2,1)

whichever has the smaller residual variance, as the initial values for

fitting the BL (p,0;2,2) model. The procedure is continued for all

possible combinations (m,k) s.tm,k < T. For other values of p =

1,2,-7 we repeat all the steps and the procedure stops if the residual

-2
variance c

e 
increases as m and k increases. Finally, we choose that

model for which the AIC is minimum. The details of the algorithm and

computer program is given in Subba Rao and Gabr (1984, pp. 176-77).

This approach requires tedious calculations and is difficult to

use. AIC has been criticised by Shibata (1976) and Kashyap (1980) for

its inconsistent behaviour in the case of linear model but nothing is

14



known about non-linear models. It may be mentioned that since the

distribution of bilinear models is not known, the AIC used here is

pseudo AIC.

3.2.2 GA's Method

GA have noted that in most cases, the autocorrelation for the

models defined in (3.1.2) will be zero or their structure will be

similar to MA(q) models and hence it will be difficult to distinguish

them from complete white noise or MA(q) models. The obvious moments to

be considered next are third order moments.

µ
k,t 

= EHZ
t 
- 

µ)(Zt-k 
- 

11)(Zt-t 
- µ)]

which will all be zero for complete white noise and also in the case of

pure AR, pure MA and mixed ARMA models with normal noise. But GA did

not use the third order moments on the grounds that for some bilinear

models like

a
t -1 

+ a
t

(3.2.1)

"all the third order moments will be zero" and hence they will be of no

use in discriminating between true white noise and bilinear models.

However, Kumar (1986a) has shown that GA's assertion regarding third

order moments for the model of type (3.2.1) is not valid. GA therefore

considered the fourth order moments or rather a small subset of them,

namely the autocovariance for the series {Z
2
}. These are all zero for

the white noise but typically not for series generated by (3.1.2). The

method given by GA is good enough to distinguish bilinear models from

linear models but it is difficult to distinguish between various

subclasses of bilinear models, or to identify appropriate lags using

this method.
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Recently Li (1984) looked further at the idea of considering the

autocorrelation of the square process {Z
2
} defined by

2 2
Cov(Z

t' 
Z )
t-j

t.
2

Var(Z
t
)

and tried to distinguish between bilinear models using :

He has claimed that these autocorrelations are vital in the

determination of k and t for simple bilinear model of the type

Z
t 

g Zt + atat t

3.2.3 Kumar's Method

Kumar (1986a) has shown that GAs assertion regarding third order

moments for the model of type (3.2.1) is not valid. In fact, some of

the third order moments do not vanish at all for non-diagonal and

diagonal bilinear models and the pattern of non-zero moments can be used

to discriminate between true white noise and bilinear models and also

between different subclasses of bilinear models. It has been observed

that lags k and t of the particular bilinear models can also be

identified by looking at the third order moments. If it is assumed that

the error terms {at} are normally distributed then the third order

moments n will be zero in the case of pure AR, pure MA and mixed ARMA
K,t

models but not for bilinear models. Kumar (1986b) has also obtained

third order moments for some general bilinear models and it has been

found that third order moments are successful in identifying these

models as well.

The main theoretical results given in Kumar 1986a) can be

summarised in the following lemmas:
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Lemma 1: For the bilinear model

Zt = g Zt-k' at-ti at

• when k'*e, pkt will not be zero when (k=k', 1741) or (k=V, t=k') and

it will be zero for all other points for which k 0, t O.

Lemma 2: For the bilinear model

Z
t 
= g 

Zt-k' 
a
t-t' 

+ a
t

when k'=t', pkt will take non-zero values when

(i) k=0, t=0

(ii) k=k',

(iii) k=0, b=t or k=k',

(iv) k=k'+1, b.-.V or (k=k', t=e+1)

(v) k=0, t=2,3,4,5,... or t=0, k=2,3,4,5,..

Other terms for which k 0, t 0 will be zero.

Kumar (1986b) has also obtained third order moments for some more

general bilinear models like

(i) BL(0,1,2,1) : Zt = el at_i + g zt_2 at_i+ at

(ii) Ren-Zhi and Tong (1983): Zt = OlZt_l + gZt_lat + at

(iii) BL(1,0,2,1) : Z. 
= ( 
6

t 1Zt-1 (3Zt-2 at-1 4. at

The procedure of specification for more general bilinear models as

given in Kumar (1986b) can be listed as
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(i) Obtain the ACF, PACF and construct the C-table using the method

given by Kumar (1987).

(ii) Identify the best linear model using the ACF, PACF and C-table.

Also identify the degree of the MA, AR or mixed ARMA model using

the ACF, PACF or C-table.

(iii) to identify the bilinear part obtain third order moments

kt =
t=1
E (Zt--2)(Z

t-k
-2)(Z

t-t

for different values of k and t, such that 0 k Ls t and arrange

them in a two-way table.

(iv) look at the pattern of third order moments in the resulting third

order moment table and match the pattern.

Another idea for the specification of mixed bilinear -models, which

looks quite plausible theoretically is to identify the best linear model

as discussed in step (ii) above. In the next step fit the linear part

and obtain the residuals. We can then calculate third order moments of

the residuals and can identify the bilinear model by matching it with

the third order moment table of super-sub-diagonal bilinear model.

Kumar (1986b) has done a lot of simulation studies to justify his

results and thus concludes that third order moments looks promising as

they can

(i) discriminate between bilinear and linear AR, MA, or ARMA model with

normal noise,

(ii) discriminate between various subclasses of bilinear models,
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(iii) discriminate between various lags within a subclass,

(iv) third order moments also play an important role in discriminating

between linear models having normal noise and linear models having

non-normal (skewed) noise.

Hence as far as third order moments can serve the purpose of

identification in bilinear models, there is no need to look at 4th order

moments. Third order moments have an advantage, since higher order

moments are more unstable than lower order moments.

The study of third order moments in bilinear time series models is

not new. Recently Sesay and Subba Rao (1986) obtained difference

equations for the third and fourth order moments when the time series

{Z
t} 

satisfies a bilinear model and is stationary up to fourth order.

The equations are similar to the well known Yule-Walker equations

available for linear time series models. They have also given an

alternative way of deriving third order moments, which leads to the

Yule-Walker type of difference equation in the cumulants. They have

also used these third order moments for distinguishing between a linear

ARMA(1,1) model and the bilinear model BL(1,0,1,1). It should be

mentioned that as far as the specification problem is concerned the

results obtained by Kumar (1986b) are more general than those obtained

by Sesay and Subba Rao (1986). Hinich and Patterson (1985) used third

order moments for identifying the structure of the quadratic model

R S
x(t) = e(t) + E E a(7,$) e(t-s) e(t-7-s)

7=1 s=0

where e(t) are independently, identically distributed random variables

with mean zero. Guegan (1982) and in subsequent papers has used third

19



and fourth order moments for distinguishing between various bilinear

models. Recently De Gooijer and Heuts (1987) and Nirmalan and Singh

(1986) have given some general results for specification of bilinear

models using third order moments.

3.3 Bivariate and Multiple Bilinear Time Series Models

Most of the work in bivariate and multiple time series modelling

has been done considering the relationships between the dependent

variables Y
t 
and the explanatory variable X

t 
as linear. But it is quite

possible that for some Y
t 
and X

t 
the relationship may not be linear, but

it may follow some other type of non-linear or say bilinear

relationship. It has been found by Subba Rao and Gabr (1984) that some

time series like monthly unemployment figures in West Germany are

non-linear and the forecasts obtained by bilinear models are better that

the forecasts obtained from linear models. However, it has been

observed by them that a series like unemployment is influenced by many

other variables and it would be interesting to study the multivariate

extension of bilinear time series models. Granger and Andersen (1978b)

considered briefly the possibility of extension of bilinear models to

bivariate bilinear models and have mentioned that"more extreme" examples

of the deficiencies of covariance technique occurs when bivariate

bilinear models are considered. Subba Rao (1986) has defined a

multivariate: extension of the bilinear time series models defined

earlier for the univariate case by Subba Rao (1981) and studied some of

the statistical properties of these processes in a particular case.

Kumar (1988) has defined and studied bivariate bilinear models in

detail. To specify these models he has extended the concept of cross

correlation function to third order cross moments which can be defined
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between variables x and y at lag (k,t) as

T (kJ) = E[(x
t 
- µ
xt+k

- µ
yt+t 

-
y
)]

xy

(k,t = 0,±1,±2,...)

and between variable y and x at lag (k, fl as

(k,t) = E[(y
t 
- µ
yi+k 

px)(x
t+t 

- Ax)]
yx

It was found that these moments are capable of distinguishing

between linear bivariate models and bilinear bivariate models.

Recently Stenshot and Tjostheim (1987) defined multiple bilinear

time series models. They have also obtained the sufficient condition

for the existence of a strictly stationary solution conforming to the

model, along with a brief description of the first and second order

structure. It may be mentioned that multiple bilinear time series

models defined by Stenshot and Tjostheim are very similar to those

defined by Subba Rao (1986).

4. THRESHOLD MODELS

In section 3, we have discussed an important class of non-linear

time series models namely bilinear time series models. An alternative

and equally important class of non-linear time series models has been

discussed by Tong and Lim (1980). These models, known as threshold AR

models postulate a finite set of possible AR models that a process may

obey at any point of time with threshold for the the passage from one

member of the set to another. If the passage is determined by the

location of the past data values relative to the thresholds these models

are said to be self exciting or SETAR models. The essential idea
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underlying the class of threshold models is the piecewise linearization

of non-linear models over the state space by the introduction of

thresholds. In fact the idea of using piecewise linear model in

systematic way for the modelling of discrete time series data was first

introduced by Tong (1977) and reported in Tong (1978, 1980). Tong and

Lim (1980) have shown that TAR models are general enough to capture the

notion of limit cycle which can only exist in non-linear systems and

plays the key role in the modelling of cyclical data and in physical and

biological sciences. Details of threshold models can be found in the

book by Tong (1983). Somewhat related ideas are employed by Lawrence

and Lewis (1977, 1980, 1985) and Wecker (1981) in building "asymmetric

time series model" which we have discussed in this section. The latest

review on the work done on threshold models can be found in Chan and

Tong (1986b) and Tong (1986).

4.1 Definition

This class of non-linear models was introduced and developed by

Tong (1980) and Tong and Lim (1980). This is the original threshold

model and other models mentioned in this section including threshold

moving average models' are special cases and ramifications of the

threshold models. Following them, let { 70,71,...at } denote an

ordered subset of real numbers s.t. T
o
< T

1 
< Tt where To and Tt are

taken to be -co and +co respectively. Let R 
=[T.11' 

T
i 
] then R

1'- 

R
2'
...R

t 
define a partition for the real line R, i.e.

R = R U
1 2

Then the process fxtl is called a self exciting threshold AR model of

order 
(tic1' 

k
2'
. ..k) to be written in short SETAR (t;k1,k2,...,k) if

't

it satisfies
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k.

Xt 
= 
ao
(j) 

+ E
J 
a.
(j) 

X + e 
(i)

if X
t-d 

c R
j 

j=1,2,. ..,t .
t-i t

i=1

where {et} is white noise and it is also assumed that fet
(J)

1 and

)
fe

t 
(Y

I are independent. The numbers
1"2'' ' -1

are called

"thresholds". Since for k 2 these models can give rise to limit cycle

behaviour, they may be expected to be particularly applicable to series

with a strong cyclical component. A simple SETAR (2;k1,k2) model can be

written as

(1) (1)
Z 

Zt 
+...+ + a

t 
if Z

t-d 
25. C 

4)1 t-1 k1 Zt-k
1

(2) (2)
Z + Z

t1 
+ 

k2 Ztk
2 
= µ2 + at if Zt_d > C

t 1 - 
+

-

Kumar (1986b) has developed threshold moving average models and

discused the specification problem of such models in detail. Moving

average models which were first introduced by Yule (1926) and studied in

more detail by Wold (1938), play a key role in econometric modelling and

may occur in economics in several ways. The essential idea underlying

the threshold moving average model is similar to TAR models; i.e.

different linear moving average models are used for different parts of

the data. The necessity arises as some economic time series may not be

represented by a single moving average model of order q (say) but may

require different moving average models (may be also of different

orders) for different parts of the data. A threshold moving average

model of order (2;q1,q2) can be defined as

Z = +a + 0 a +...+ 0 a if Z
t-d 

C
t t-1 q

1 
t-q

1

Z = µ
2 
+ a + O'a +...+ 0' a if Z

t-d 
> C

t t 1 t-1 q
2 

t-q
2
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where {at} is a sequence of 1.1.d. random variables.

Kumar (1986) has obtained the distribution of Z in the case of

TMA(2;1,1) model

Z
t 
= a

t 
+ 
01at-1 

if Z
t-1 

C

= a
t +1'at-1 

if Z
t-1 

> C

and it was found to follow a mixture of two normal distributions. ACF

of TMA (2;1,1) model is found to be same as MA(1) model. It may be

mentioned that for other TMA model when ql is different from q2 it may

not be possible to obtain the distribution and the ACF so easily.

Tong (1983) has illustrated the procedure for the estimation of the

paramaters of the SETAR (t;k1'k2'k) and has used the least squares

method for it. He has also studied the sampling properties of these

estimates and the details are given in Lim and Tong (1981)'. Tong (1983)

has given various areas like Radio Engineering, Marine Engineering,

Servo System, Oceanography, Biology, Economics, Medical Engineering etc.

where the notion of threshold dominates and threshold models can be used

successfully. Using threshold models Tong (1983) has done some case

studies and analysed some real data sets including some ecological data,

sunspot data, riverflow data and laboratory data. Tong and Wu (1982)

and Tong (1982b) have studied the multistep ahead forecasting of

cyclical data by threshold. Chan and Tong (1986) have discussed the

problem of estimating the theshold paramaters, i.e. the change point, of

a threshold AR model. The method is demonstrated by using the

artificial and real data sets. Andel and Barton (1986) have

investigated the marginal distribution and other properties of

threshold AR process of the first order with Cauchy innovation.
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For the SETAR (2;1,1) model

Z
t 

0
1
Z
t-1 

+ a
t(1) 

if Z
t-1 

7

Z
t at(2) 

if Z
t-1 

> 7
2Zt-1 

where { at(i)
} are i.i.d. random variables with mean 0 and variance

cr
2
(I), 1=1,2; Petruccelli (1986) has considered estimates of 01'02 

and 'y

which minimizes weighted sums of the sum of squares functions for a
2
(1)

and m
2
(2). These include as a special case the usual least squares

estimators.

4.2 Other Related Models

4.2.1 Asymmetric Time Series Models

A very similar and important model known as "asymmetric time

series" model was introduced by Wecker (1981). Asymmetric time series

respond to innovation with one of two different rules according to

whether the innovation is positive or negative. It has been observed

that when market condition changes, quoted prices are not revised

immediately. The delay operates more strongly against reduction in

price quotation than against increase. Asymmetric time series models

are fitted to several economic time series by Wecker and it has been

observed by him that they give particularly good fits to data on strong

market return. The asymmetric moving average process of order one is

given by

++zt ut + ut-1 ut-1.

where u
t 

is the sequence of i.i.d. random shocks;

u
t 

max (u
t'
0) the positive innovation

u
t 

min Cut, 0) the negative innovation
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g and g are fixed paramaters of the model. If e , the asymmetric

model reduces to symmetric model

Zt = ut + gut_i _.

Wecker has also mentioned the conditions of invertibility and a

test for asymmetry. A generalisation of the asymmetric moving average

model of order q is also given in the paper.

4.2.2 Exponential Moving Average Models

This class of models was introduced by Lawrence and Lewis 1977)

for the reasons stated below:

(i) as an alternative to the normality theory of time series;

(ii) as a model for correlated positive random variables with

exponential marginal distributions; and

(iii) as a simple point process model with which to analyse non-poisson

series of events and to study the power of poisson tests

particularly in situations where there is no physically motivated

model.

The first order exponential moving average model is formed from an

independent and identically distributed exponential sequence fc.1

according to the linear model

gc. with prob. g
co g 1, i=0,±1,±2,...)

gc. + c
1+1 

with prob 1-13
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It can be written as

X
i 
= 13c1 + I

i 
e
i+1

whereLare i.i.d. Bernoulli random variables which are 1 with
1

probability 1-13 and 0 probability g. In this model the stationary

sequence of random variables {X1} has exponential marginal distributions

and the X. are random linear combinations of order one of an i.i.d.
1

exponential sequence.

Later on (1980) this model was generalised by the same authors for

AR and mixed ARMA models. Tong (1983) has shown that the class of EAR

models and its extensions introduced by Lawrence and Lewis in a'series

of papers may be regarded as a subclass of the threshold models. -

Lawrence and Lewis (1985) have recently proposed a newly developed

type of second order AR process with random coefficients, called the

NEAR(2) model

g1xn-1 
w.p

132xn-2 
w.p cy2

0 w.p - .... a
2

+ e
n' 

n=0,±1,±2

One of the drawbacks of this type of model is its lack of

flexibility. There are also restrictions imposed by the relationships

between the a's and g's. These restrictions are all presumably a

consequence of the insistence on exponential marginal distribution. The

behaviour of X
n 

seems unlikely to occur for real data. Jolliffe and

Kumar (1985) have observed that TMA models with non-normal errors can

giveawiderangeofshapesforthernarginaldistributionofXn and will

be more flexible.
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4.2.3 Relative Comparison between these Models

The EMA model can be used as a basic model for positive time

series, e.g. response times at a computer terminal. However, EMA models

are a bit rare in practice and can be applied only in special

circumstances. It may be more of theoretical interest as no

application of EMA models has been cited by Lawrence and Lewis

(1978,80). EMA models can be considered as a subclass of TMA models.

It can be observed that while in ATS models the threshold is based on

the innovations; in TMA models, the threshold is based on Zt...1 (previous

observation), which may be considered more realistic. TMA models seem

to be more flexible than EMA and ATS model as we can use different order

of MA‘ models for different parts of the time series.

4.3 Specification of Threshold Model

Tong (1980) has used the AIC for the identification of TAR models

which already suffers from the drawbacks like excessive computation and

inconsistency as mentioned earlier in section 3. The whole procedure is

mentioned in detail in Tong (1983, Ch. 4). Terasivarta and Leukonin

(1985) investigated the performance of two model selection criterion AIC

and SBIC for distinguishing between the linear and threshold models.

They have shown through simulation studies that SBIC is clearly the

'better of these two alternatives. Kumar (1986b) has developed a very

simple procedure named as "SPLIT METHOD" for distinguishing between TMA

and MA models. The theoretical details can be seen in Kumar (1986b) but

the procedure is outlined here.

In this method the observations are split accordiingly as Zt_115- a

or Z
t-1 

> a where a may be median, lower quartile or upper quartile and

then we calculate the ACF and PACF of the two parts of the data. The

features of the procedure can be listed as follows:
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(i) One can distinguish between TMA and ordinary MA models by looking

at the ACF (of various orders) for Z
t-1 

a and Z
t-1 

> a .

(ii) If the model is MA, the magnitude of ACF for various orders should

be the same in both parts, i.e. Z
t-1 

a or Z
t-1 

> a but not so in

the case of TMA model.

(iii) For the TMA model if the order of MA is different according as Zt_l

a or Z
t-1 

> a, the different cutting off is revealed in the ACF

for two parts while for MA the cutting off is same in both parts.

(iv) In the case of TMA; if the order of MA is same in two parts, i.e.

TMA (2;1,1) the cutting off will be same in both parts but

magnitude of ACF will be different in two parts.

(v) The order of MA or the order/orders of TMA can be obtained by

looking at the ACF in two parts.

(vi) TAR models can also be identified by looking at the PACF in two

parts.

Hence the method can distinguish between

(a) ordinary MA or AR model with threshold model;

(b) TMA and TAR model;

(c) various orders of MA or AR models used for various parts.

However, there are certain limitations of this method. It is

difficult to specify the correct cutting off point a using this method.

Also when more than two models are involved it will be difficult to
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Also when more than two models are involved it will be difficult to

specify using this method.

5. SOME OTHER NON-LINEAR TIME SERIES MODELS

In this section we have briefly described two more non-linear time

series models namely Random Coefficient Autoregressive model introduced

by Nicholls and Quinn (1980) and Exponential AR models introduced by

Haggan and Ozaki (1981).

5.1 Random Coefficient AR Model

Random Coefficient AR models as developed by Nicholls and Quinn

(1980, 1981, 1982) are concerned with AR models in which the

coefficients are assumed to be not constant but subject to random

perturbations. The recent monograph by Nicholls and Quinn (1982)

summarises the current state of knowledge concerning these models. The

random coefficient AR model of order n generating a time series

fxt' 
-t=0,±1,±2,...) may be represented by

x
t 
= (gi + bi(t)) xt_i + ct

i=1

where the following assumptions are made

(5.1.1)

(1) {c; t=0, ±,1,±2...} is a sequence of identically and independentlyt 

distributed random variables with zero mean and variance cr 
2
 .

(ii) R. are constant

(iii) Let b
t = 

(b
n)'

b
1
(t))', {then 

bt ' 
• t=0,±1,±2,...} is a,

sequence of i.i.d. random variables with zero means and E(btbt') =

E, furthermore fbtl is independent of {et}.

30



(iv) The variance of a
2 
of e

t 
is bounded below by 8

1' 
while the smallest

eigenvalue of Z is bounded below by -8-2, where -8-1 > 0 and 82 > 0 are

both arbitrarily small.

(v) The parameters of g i=1,2,...,n and E are such that there is a

unique strict stationary solution to (5.1.1) which has finite

second moment.

Nicholls and Quinn (1981) have observed the similarity between some

bilinear models and random coefficient AR model. The important

difference, however, is that the randomness in the coefficient in a

bilinear model is produced by lags of the process fetl whereas in the

RCA model the randomness occurs by means of a process {pt} which is

Independent of (et). Nicholls and Quinn (1980) developed a two stage

regression procedure for the estimate of the parameters of the unknown

model. The estimates were found to be consistent. Nicholls and Quinn

(1981) used these estimates as starting value in a Newton-Raphson

algorithm which 'is employed to obtain the maximum likelihood estimate of

a class of random coefficient autoregression. The problem of testing

for randomness of the coefficient is also briefly discussed.

5.2 Exponential AR' Model

Many observed stochastic processes display random vibration which

is essentially non-Guassian in character. In most cases the analysis of

this kind of data has been made using linear time series models, which

can only provide an approximation to the true situation. In practice,

it is found that many random vibrations display essentially non-linear

behaviour. Haggan and Ozaki (1981) have introduced a discrete time

series model namely "amplitude-dependent AR time series model" which has

the properties similar to those of non-linear random vibrations. These
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models are of AR form with amplitude dependent coefficient. The

exponential AR model of order p is defined as

-r 2 
Z
t 

- 2 
= (0

1 
+ n

1 
e 

Zt-1)Zt-1 
+ + n

2 
er 

Z
t-1

)Z
t-2

+...+(e + n e-r Z2 )Z +e
P P t-1 t-p t

where 0
1' 

0
2' 

n n
2 

and r are constant.

Haggan and Ozaki (1980) have given the necessary condition for the

existence of the above model. The order p of the fitted model is

selected by use of the AIC criterion for non-linear time series models,

(see Ozaki and Oda (1978)) and is given by

AIC(p) = (n-m) log ;2 + 2(2p+1)

where m is the maximum order of the model to be considered, n is the

-2
total number of observation and T

p 
is the least square estimate of the

residual variance of the model. The estimation procedure for the model

and its application to Canadian Lynx data is given in the paper by

Haggan and Ozaki (1981).

6. STATE DEPENDENT MODELS

The scope of non-linearity in time series analysis is wide but

Priestly (1980) developed a general class of non-linear time series

models known as "state dependent models" (SDM) which includes as special

cases bilinear models, threshold AR models, exponential AR models as

well as standard linear time series models. These models are

essentially autoregressive-moving average models in which the parameters

are the functions of the past values of the time series. The model can

be stated in a state-space form and estimated through an algorithm
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similar to the Kalman filter. Haggan, Haravi and Priestley (1984)

extensively studied the application of state dependent models to a wide

variety of non-linear time series data and have emphasised the ability

of graphs of smoothed SDM parameter estimates to aid in identifying a

variety of subclass of non-linear models (bilinear, threshold, exp AR

etc.) which best fits the data.

If one considers the linear ARMA (k, fl model

+
1
Z
t-1 

+...+
k
Z
t-k = A et 4. 411 et-1 4.-4' et-t

at time (t-1) the future development of the process {Zt} is determined

by the values fe
t1' e2' 

e Z
1' '

Z
t-k

I together with
- t- ' t-t' t-

future values of et. Hence the vector Z
t-1 fet-1' • • 'et-t'

1"." 
Zt_k} may be regarded as the state vector of the process {Z

t
}.

t- 

The general non-linear SDM model may be expressed by allowing the

coefficients of the above model to become a function of the state vector

Z
t-1 

.

Z
t 
+ e1(Z 1)Z 1 +...+ k

(Z
t-1

)Z
t-k 

= µCZ
t-1 

+ e
t

111(zt-i)ct_i +...+

This is called state dependent model of order (k,t). By choosing

particular forms for the {0
u
} and {0

u
}, it is easily seen that the SDM

contained the linear ARMA models, the bilinear models, the threshold AR

models and the exponential AR models. The details can be seen in

Priestley (1980). Priestley has also discussed the problem of

identification, estimation and forecasting using state dependent models.
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7. CONCLUSIONS

In this paper we have reviewed almost all important non-linear time

series models that have appeared in the literature. The literature is

very vast and some sort of unification, similar to SDM of Priestley

(1980) or more development in this area (SDM) is needed. It may be

mentioned that there is no sure fire test of non-linearity and also

there is no test or unified criterion to distinguish between various

non-linear time series models.
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