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Abstract:

In this paper the exponential smoothing methods of forecasting are

rationalized in terms of a statistical state space model with only one

primary source of randomness. Their link, in general terms, with the

ARMA class of models ( both stationary and nonstationary cases) is also

explored.
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1. INTRODUCTION

When first developed, the exponential smoothing methods of

forecasting ( Brown, 1959; Holt, 1957; Winters, 1960 ) were presented as

heuristics. Their early dissemination concided with the computer

revolution in business where the emphasis on recursion to reduce

computational loads and on-line data requirements provoked considerable

interest. In most applications these techniques proved to be

satisfactory vis-a-vis the alternatives, a finding supported in more

recent times by the forecasting competition organized by Makridakis

(1981). Moreover, their relative simplicity meant that they could be

introduced into business organizations and accepted by staff with little

training in the formal methods of statistics.

The statistical foundations of the techniques proved to be more

elusive but one can discern in Gardner's ( 1985 ) comprehensive survey

of exponential smoothing the evolution of two distinct explanations. One

had its origins in the work of Box and Jenkins (1976) with special cases

of their integrated autoregressive moving average processes. The other

was tied to special state space models ( Muth, 1960; Theil and Wage,

1964, Nerlove and Wage, 1964; Harrison and Stevens, 1976; Harvey, 1984 )

where exponential smoothing is optimal in large samples.

Curiously, these statistical frameworks are not equivalent, as

exemplified by the simplest case of the exponentially weighted average.

In the Box-Jenkin's approach this type of average is rationalized in

terms of an ARIMA(0,1,1) model where stability is achieved while the

smoothing parameter a lies in the range 0 -1 a 2. However, the Kalman

filter associated with the traditional state space explanation only

converges to the error correction equations for the exponentially

weighted average in large samples with an a in the smaller range
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0 a 1. Gardner (1986) indicates that the latter range has dominated

most research on exponentially weighted averages but suggests that there

is little evidence to support it. Brenner ( 1968 ), who recognized the

possibility of the larger range, still rejected values above 1 on the

grounds that randomness in the data is then amplified. His argument,

however, has little credence when the data are highly correlated as

occurs in economic time series with a pronounced business cycle effect.

Then a value for a in excess of 1 is needed to ensure that the forecasts

do not lag behind the data. It may be counter argued that these medium

term cycles should be modelled explicitly rather than employing a large

a. But in the context of short term business forecasting the available

data is usually too short to permit reliable estimates bf such cycles so

that there is little choice in the matter. This illustrates that the

ARIMA framework provides greater flexibility which, under appropriate

conditions, translates into better predictions than those from the

traditional state space approach.

Needless to say, the relationship between the various forms of

exponential smoothing and their ARIMA foundations is rather obstruse and

this has undesirable pedagogic consequences. In this paper it is shown

that most of these methods can be rationalized in terms of an

alternative form of the state space framework reminiscent of the error

correction formulae of exponential smoothing but which is equivalent to

the entire class of ARMA models in its most general sense ( ie.

incorporating the nonstationary ARIMA models as a special case). As

will be seen the relationship with exponential smoothing is then

clearer and it enables users to develop models in more meaningful terms

with concepts such . as mean level, mean growth and seasonal indexes

rather than the more obscure difference equations of the ARMA framework.
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2. THE STATE SPACE FRAMEWORK

The state space framework is based on the idea that all the past

information contained in a time series y(t), y(t-1), . can be

condensed into the so called state vector gm with small dimension r

and that this, in turn, can be utilized to provide information about

future values of a series. Its most general time invariant form can be

written as:

y(t) = x' 13(t-1) + c(t) (2.1a)

= T g(t-1) + n(t) (2.1b)

where x is a fixed r-vector, T is a fixed, square matrix, the c(t) are

independent N(0072) random variables, the n(t) are independent N(0,T2Q)

random r-vectors, and the c(t) and n(t) are contemporaneously correlated

with covariance vector cr2q. It is further assumed that the initial state

vector gm is an N(0,T2C) random r-vector, and that n(t) is independent

of 13(t-1). The conventional state space explanations of exponential

smoothing have traditionally been based on the special case where q = 0

and C is diagonal to reduce the parameters to a manageable level eg. see

Harvey (1985). In this paper we consider another possibility where it

is assumed that n(t) = a c(t) where a is a fixed r-vector. The

framework then only relies on one primary source of randomness ( ie. the

c(t) ) and takes the inherently simpler form:

y(t) = x' g(t-1) + c(t) (2.2a)

= T g(t-1) + a c(t). (2.2b)

The a-vector determines the extent to which there is structural change

( ie. non-deterministic change ) in the model's coefficients and, as

will be seen later, its elements play the same role as the smoothing

parameters from exponential smoothing.

Because of its invariant nature ( ie. x, T and a are independent of

time), this version of the state space framework has generally been

reserved for modelling stationary time series (Koehler and Murphree,
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1988) with a particular emphasis on stationary ARMA models. However,

invariance does not imply stationarity and recent work ( Harvey and

Pierse, 1984; Kohn and Ansley, 1986 ) utilizing a slightly different

form of the above framework without the c(t) term in the measurement

equation (2.2a) suggests that it can also be used to represent

nonstationary ARIMA processes. Surprisingly, the likeness of (2.2b) to
•

the error correction forms of exponential smoothing has largely gone

unnoticed. It is this aspect of (2.2) which is explored in this paper.

The close link between the ARMA models and a state space framework

with only one primary source of randomness was originally established by

Akaike (1974). His results can be adapted to the version of the state

space framework of this paper also without recourse to his stationarity

assumption. More specifically, it can be established, as shown in the

appendix, that any model conforming to (2.2) can be converted to the

ARMA form

0(3).y(t) = e(B) c(t) (2.3a)

where B is the usual backward shift operator and

0(B) 
4. B 4. 

... + 0 BP (2.3h)
4'1 P

0(B) = 1 + 0 B + ... + 0 Bq. (2.4c)
1 q

In the process, it is demonstrated that the parameters of both

frameworks are related by the formulae:

0. = a. j = 1, r . .
J • 

(2.4a)

j-1
e = x'.E a TJ-I-1 a + a j = 1, r

1=o i 
(2.4b)

where the a. are the coefficients of the characteristic equation

a A
r
+a A

r-1 
+ + A0 =O= 0

0 1 
• (2.4c)

of the transition matrix T. Pearlman (1980) has established the

converse result. Taken together, they mean that both frameworks are

alternative but equivalent ways of representing the same processes.
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Although the number of autoregressive and moving average parameters are

both equal to r in (2.4), the result still effectively refers to the

general ARMA(p,q) framework where p and q need not be equal. To

illustrate, when it is a singular matrix, T has at least one

characteristic root equal to zero. In these circumstances Or = 0 without

necessarily having Or = 0.

This result is very important in the context of exponential

smoothing. As stated earlier, it will be shown that most of the

exponential smoothing methods can be rationalized in terms of the

framework (2.2). The formulae (2.4) therefore provide the effective

link between exponential smoothing and the general ARMA framework and

thus unify the work of Muth (1960), Harrison (1967), Nerlove and Wage

(1964), Theil and Wage (1964), Cogger (1974), Roberts (1982), Godolphin

and Harrison (1975), Goodman (1974), Ledolter and Box (1978), and

McKenzie (1974, 1976) which all consider special cases of this

relationship. It also confirms Cogger's (1985) assertion in his

comments on Gardner's(1985) paper "that every ARIMA model can probably

be described in exponential smoothing terminology".

3. EXPONENTIAL SMOOTHING

Given its diverse nature ( eg. see Gardner(1986) ) it is difficult

to give a completely comprehensive definition for exponential smoothing.

However, the following criteria encompass its linear forms.

Criterion 1

A forecast of the series in period t, denoted by y(t), is produced

from estimates b(t-1) of the state vector with the linear relationship

Y(t) = x' b(t-1) (3:1)

where x is a fixed r-vector.

6



•"

Criterion 2

The estimates of the state vector are revised, explicitly or

implicitly, by a linear error correction formula

b(t) = T b(t-1) + a e(t) (3.2)

where T and a are given, and e(t) is the one step ahead forecast error

e(t) = y(t) - x' b(t-1) (3.3)

Criterion 3

For given T, x, and a the associated discount matrix D, defined by

D = T - a x' (3.4)

must be stable, ie it must possess characteristic roots all lying within

the unit circle in the complex plane.

The criterion 2 is based on the observation of Harrison (1967) and

Gardner (1985) that most of the exponential smoothing methods can be

converted to equivalent error correction forms involving only the one

step ahead forecast error. Criterion 3 is required to ensure stable

forecasts. More specifically, substitute (3.3) into (3.2) to give the

recurrence relationship

b(t) = D b(t-1) + y(t) (3.5)

with the closed form solution
t -1

b(t) = Dt b(0) + Z DJ y(t-j). (3.6)
j =0

The solution is dependent on the seed estimate b(0) and the observations

y(1) ... y(t). Criterion 3 ensures that
t 
tends to a null matrix as t

increases, so that:

(a) the influence of the seed estimate b(0), which may be quite awry

given that it is normally made without access to any data,

disappears in large samples;

(b) older observations eventually have less weight than more recent

ones in the forecasting process.

Interestingly, (3.6) is reminescent of the formula for an exponentially



weighted average where the usual scalar discount factor is replaced by

the discount matrix D and where similar conclusions apply.

Exponential smoothing, as presented here, relies on the error

correction formulae (3.2) which has a remarkable likeness to (2.2b) in

the state space framework. Assuming that the latter represents the

generating process of the data, it is pertinent to examine the

performance of the b(t) as estimates of the state vectors g(t). It is

readily established that the estimation errors satisfy the recursion

g(t) - b(t) = D ( g(t-1) - b(t-1) ) (3.7)

with the closed form solution

g(t) - b(t) = Dt p(o) - b(0) ). (3.8)

Therefore the estimation errors are dependent on the initial estimation

error but they converge to zero if D is a stable matrix. Thus,

according to any well defined error criterion, exponential smoothing is

optimal for the state space framework in large samples provided that D

is stable.

4. OPTIMAL ESTIMATION IN SMALL SAMPLES

In small samples exponential smoothing is not an optimal estimation

procedure except in the special and rather unlikely case where 13(0) is a

perfectly accurate estimate of gm. It can be established that the

minimum variance estimates of gm, denoted by gm, can be computed

with the version of the Kalman filter in Snyder ( 1985). Here the

estimates are also obtained with an error corrrection formula where the

smoothing vector a is replaced by a time dependent r-vector a(t) called

the gain ie.

ii(t) = T + a(t) C y(t) - x' i'3(t-1) ) (4.1)

The distinctive feature of the Kalman filter is that the gain vector is

selected at each stage so as to minimize the mean squared one step ahead
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forecast error for given a and so the estimates obtained this way

consequently differ from those of exponential smoothing. However, it

can be established that if D is stable then a(t) tends to a as t

increases, which means that the Kalman filter collapses to the simpler

form of exponential smoothing in large samples.

5. SPECIAL CASES

The following cases illustrate but do not exhaust some of the

applications of the proposed state space framework. In each example it

is assumed that the reader can discern immediately the exponential

smoothing error correction equations without their being presented

explicitly.

5.1 Exponentially Weighted Averages

The exponentially weighted average can be rationalized in terms of

a model where it is only structural change which induces change in the

mean of the series ie.

y(t) = µ(t-1) + c(t) (5.1a)

µ(t) = µ(t-1) + a c(t) (5.1b)

where µ(t) is the current mean. Here x, T and a are scalars with

x = T = 1. Furthermore, the characteristic equation of T is A - 1 = 0 so

that a
1 
= -1. An application of (2.4) indicates that this simple state

space model is equivalent to the ARIMA model

( 1 - B ) y(t) = ( 1 + e B ) c(t) (5.1c)

where 0 = a - 1. The latter, or at least its closed form equivalent, was

originally proposed by Muth (1960) as a possible statistical framework

for the exponentially weighted average. Note, however, that (5.1a) and

(5.1b) is a simpler and more direct representation for pedagogic

purposes.

9



5.2 Trend Corrected Exponential Smoothing

Trend corrected exponential smoothing is based on the notion of a

local trend line which adapts over time to structural change. Letting

8(t) represent the current rate of growth, the model takes the form:

y(t) = A(t-1) + c(t) (5.2a)

A(t) = A(t-1) + g(t-1) + a
1 
c(t) (5.2b)

g(t-1) + a 
2 
c(t) (5.2c)

Hence

. FAR) ]
L 8(t)

[ 1 [ 1 1
x = T =

0 0 1 
a=[ 

a
l
2

The transition matrix is upper triangular with characteristic roots

equal to its diagonal elements of 1. The characteristic equation is

(A - 1)= (A
2 
- 2 A + 1 ) = 0. Hence, (2.4) implies that the above

model is equivalent to the ARIMA model

(1 - B)2 y(t) = (1 + el B + 02 B2) c(t) (5.2d)

where 0
1 
= a - 2 and 0

2 
= 1 - a + a

2
. This ARIMA model was originally1 1

proposed by Harrison (1967) as the rationale for an error correction

form, giving similar results to Holt's (1957) trend corrected

exponential smoothing.

5.3 Damped Trend Corrected Exponential Smoothing

A variation of trend corrected exponential smoothing entails

dampening the mean growth rate by a factor 0 in the range 0 < < 1.

The model in the previous section is amended to

y(t) = A(t-1) + c(t) (5.3a)

µ(t) = µ(t-1) + 8(t-1) + a c(t) (5.3b)

8(t) = 8(t-1) + a
2 
c(t) (5.3c)

The x, a vectors are the same as in section 5.2 The

transition matrix is given by

T = 
[ii 

]
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The characteristic roots of T are 1 and 0 so that its characteristic

equation is (A - 1) (A - 0) = A2 - (1 + 0) A + = 0. The application of

(2.4) indicates an equivalence with the ARIMA model

( 1 -B) ( 1 -0B) y(t) = C 1 +0 B+ 0
2 
B
2 
) c(t)

1
(5.3d)

where 0 =a -0- 1 and =a 
2 
+0-0a. The model is similar, but

1 2 1

not identical to, a proposal by Roberts (1982) to dampen the growth rate

and improve the forecasts given by trend corrected exponential

smoothing. Again the state space model has a more direct link with its

exponential smoothing analogue than the ARIMA model (5.3d).

5.4 Seasonal Models

The method outlined in Holt (1957) and Winters (1960) for seasonal

data posits a separate coefficient for each season which is untenable

from a computational and statistical point of view in applications

involving weekly data. Although the additive forms of such models can be

accomodated by the framework (2.2) we adopt the more satisfactory

strategy of Brown (1963) and Harrison and Stevens (1965) where

trigonometric functions are used to model the seasonal component.

Although models with mixtures of linear trends and seasonal components

are easily developed we shall expedite matters by considering only the

simplest possible case involving the harmonic terms cos( wt ) and

sin( wt ) where w = 2n/m with m representing the number of periods per

cycle. In this context the model involves the following components:

[ 131(t)
g(t)

13
2
(t) 

x =
]

cosw

[ 

sinw

-sinw cosw
[

where both elements of a are the same. Note that Tm = I so that the

characteristic roots of T all lie on the unit circle in the complex

plane and the characteristic equation is (Am - 1) = 0. The equivalent

ARIMA model is therefore

( 1- Bm y(t) = 1 +.E
1
. Bi c(t)

1=

11



where

= a ( cos(i-1)w - sin(i-1)w )

e
m 
= a ( cos(m-1)w - sin(m-1)w ) - 1

i = 1, .

6. INITIAL CONDITIONS

Before using the Kalman filter approach it is necessary to specify

the the prior distribution mg,c) for the model under consideration. To

this end, we make the assumption that data has only been collected from

period 1 onwards, but that the process has operated for m periods prior

to this. Backsolving (2.2a) gives
m-1 .

g(o) = Tm f3(-m) + E T' a c(-i)
i=0

(6.1)

which in turn has a mean and variance given by

g = Tm E( (3(-m) ) (6.2a)

C = Tm VAR( 13(-m) ) T'm + 0-2 
i
mi
0 
l Ti a a' T'i (6.2b)

=

Often m is unknown so that it is conventional to make it

arbitrarily large ie assume that the underlying process has operated

from the infinite past. When the series under consideration is

stationary, all the characteristic roots of T lie within the unit circle

and the quantities in question converge to well defined limiting values

when this is done. It then emerges that g = o and that C can be obtained

by solving the linear equations ( eg. see Gardner et. al. 1980 )

C = T C T' + a a'. (6.3)

However, as indicated by the previous examples, the characteristic roots

of T usually all lie on the unit circle and so the required convergence

is not obtained. In these circumstances the processes involve a diffuse

prior distribution N(0,kI) where k is an arbitrarily large number.

It is particularly interesting to consider the special case of

damped trend corrected exponential smoothing from section 5.3. As can

be seen from (5.3c), the distribution of the growth rate considered by

12



itself has a limiting form , yet (5.3b) indicates that the same cannot

be said of the mean level. It is readily established in these

circumstances that C has the general form

C = k C
l 
+ C

O 
(6.4)

where

1 

[

0

] 0
C = [

1
C 0 0

0 (a 
1 
+a 

2
0/(1-0

2
) )/(1-0)

(a1+a2 /(1-0)
2
)/(1-0) a

2
/(1-0

2
)

2

and k is arbitrarily large. Here we have an example of what is referred

to as a partially diffuse prior distribution.

When applying exponential smoothing, knowledge of the prior

distribution is not required. However, when reliable small sample

estimates are sought, then the prior distribution is needed to seed the

associated Kalman filter. The issue of initializing with partially or

fully diffuse prior distributions without numerical instabilities

arising from the use of a big k has been examined by Ansley and Kohn

(1985) who developed a modified Kalman filter for this purpose. The

generalization of their work in Snyder (1988a) together with its square

root equivalent is applicable in this context.

7. ESTIMATION OF PARAMETERS

Both exponential smoothing and the Kalman filter assume that all

the elements of T and a are known. But as indicated by the model

undepinning damped trend corrected exponential smoothing some elements

such as 0, al, a2 must be assigned values before these methods can be

used. Given that the forecasting performance of a model depends on our

choice, it is appropriate to investigate methods designed to select good

values.
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7.1 Exponential Smoothing

In the context of exponential smoothing it is a common practice to

evaluate trial values for the parameters using the sum of the squared

one step ahead forecast errors

S= E e(t) 
2

1 t=1
(7.1)

where n is the sample size. It is readily established from (3.8) that

the typical one step ahead forecast error can be written as

e(t) = x' Dt ( - b(o) ) + c(t) (7.2)

The one step ahead forecast errors, under normal conditions, are biased

estimates of the corresponding disturbances. However, when the discount

matrix D is stable, the bias disappears in large samples and the

resulting estimates approximate those obtained with the more usual

residual sum of squares criterion. One interesting point is that the

existance of this bias is not entirely disadvantageous. When values for

the unknown parameters are chosen which lead to an unstable discount

matrix D, according to (7.2) the forecast errors explode in size,

leading to a large value for the criterion function (7.1). Such values

are automatically penalized which means that any numerical optimization

procedure conveniently rejects them when they are found. There is then

no need to implement special procedures to constrain the parameters to

stable values.

7.2 Kalman Filter

When reliable small sample results are required then the Kalman

filter must be used in place of exponential smoothing. It is well known

that the one step ahead forecast errors e(t) from a Kalman filter are

independent N(0,v7
2
) random variables where the heteroskedastic factor

v
t 
can be obtained as a by-product of the associated computations. The

essential idea is that as the sample size increases, the estimates and

hence the forecasts become more reliable. This is reflected in the

values taken by vt which decline towards 1 as t increases. An

14



appropriate criterion, in these circumstances, for evaluating trial

values of the unknown parameters is
n

S = Ee(t)
2 
/ v.

2 t=1 t
(7.3)

The results obtained from numerically minimizing (7.3) can be shown to

be minimum variance estimators.

7.3 Mixed Method

Despite being more accurate in small samples, the Kalman filter

involves substantially higher computational loads than exponential

smoothing. Furthermore, because its forecast errors are unbiased, there

is no built-in penalty when a numerical optimisation routine strays

into an unstable region of the parameter values. To circumvent both

these difficulties, it seems sensible to divide the search into two

stages. The first would invoke exponential smoothing to minimize (7.1).

The resulting parameter values would then be used to seed the search

with the Kalman filter in order to obtain more refined results in the

second stage.

7.4 Single Pass Method

Because the method in section 7.3 employs a numerical optimization

procedure, it involves quite heavy computational loads which, with the

state of current computing technology, mitigates against its use in the

important area of sales forecasting in large scale inventory systems

with typically tens of thousands of line items. One possibility, in

these circumstances, is to recognize that the state space framework

(2.2) can be written in the equivalent form

y(t) = x' 13(t-1) + c(t)

T 0 g(t-1) a(t-1)

= 

c(t)
a(t) 0 I a(t-1) 0

(7.4)

This, itself conforms to a time variant counterpart of the framework

(2.2). Initializing the associated Kalman filter with a diffuse prior

15



N(0,kI) on a(0), each stage of this algorithm yields a new estimate of

a which can, in turn, be fed to the following stage. Thus in only one

pass of the filter, without the use of any cumbersome numerical

optimization procedure, this method yields estimates of the smoothing

vector a.

The statistical properties of the resulting estimates are

difficult to establish analytically because of the nonlinear nature of

the problem. Some preliminary results with an equivalent procedure but

confined to the model described in section 5.1 for the exponentially

weighted average are presented in Snyder (1988b). Here it was

established analytically that the estimates of the scalar a are

consistent. Furthermore, a simulation study concerned with their

statistical efficiency indicated that their rate of convergence to their

true values was only marginally lower than estimates from a progressive

implementation of the optimal method in section 7.2. Curiously, despite

this marginal loss in efficiency, the single pass method, more often

than not, gave marginally better forecasts.

One conceivable application of the single pass method is to employ

its results as seed values for the Kalman filter approach in section

7.2. Casual experience with a local pilot computer package for

estimating ARMA models based on this idea suggests that the seed values

can be quite close to the optimal values provided that the models

concerned are satisfactory representations of the data being analysed.

However, more systematic studies are required before drawing definitive

conclusions about the statistical properties of the estimators for more

complex cases.

8. CONCLUSIONS

In this paper we explored the relationship between a particular

version of the state space framework with only a single source of
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randomness and the forecasting technique of exponential smoothing. It

was shown that the framework was equivalent to the ARMA class of models

in its most general sense, representing an alternative, clearer

statistical basis for exponential smoothing.

The proposed approach was contrasted with its more traditional

state space counterpart containing many primary sources of randomness.

An example indicated that the proposed approach is more general and may

yield better forecasts. Other advantages flowed from the fact that the

smoothing parameters explictly appear in the framework. Not only does

this provide a clearer perception of the link with exponential smoothing

but it admits new possibilities for reducing computational overheads

with the mixed and the single pass methods described in sections 7.3

and 7.4. Taken together, the results suggest that the framework (2.2)

is the natural and most straight forward statistical explanation of the

linear exponential smoothing methods of forecasting.
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APPENDIX

Here we adapt the result in Akaike (1974) to the particular version

of the state space framework of this paper. Essentially we demonstrate

how the equations of any model conforming to the framework (2.2) can be

manipulated to eliminate the state variables and leave us with an ARMA

model. More specifically, we take the expression for g(t-j)

corresponding to (2.2b) and backsolve it to period t-r. We then

multiply the result by the corresponding coefficient a. from the

characteristic equation (2.4c) of T and sum with respect to j to give
r-1 r .

Ea (t-j) = (.Ea Tr-j ) 13(t-r) + Ea ETI-J-l ac(t-i)
j=0 j j=0 j j=o j

By the Hamilton-Cayley theorem any matrix satisfies its own

characteristic equation so that the term in brackets representing the

coefficent of 13(t-r) in the above expression equals zero. Furthermore,

the double summation can be rearranged so that we get
r j-1

.E
o
a
j 
g (t-j) = .E1(

i
 E

0
a

i 
T
j-1-1

) a ca-j) (Al)
j=== 

Then lag (2.2a) by i, multiply the result ai, sum with respect to i and

use (Al) to eliminate the offending 13(t-i), to give
r j-1

j 
j-i-

E 
o 
a. y(t-j) = x'

j
1 
) a ca-j) + .E 

o
a. c(t-j)

= j =
E

1 i=
( E

0
a

i j= j

Given that a
o 
= 1, this conforms to the ARMA model (2.3) where the

autoregressive and moving average parameters are given by (2.4a) and

(2.4b). This completes the proof but it should be noted that although

Akaike's (1974) original proof was undertaken in the context of

stationarity assumption.
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