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ABSTRACT

This paper puts the case for the inclusion of point optimal tests in the

econometrician's repertoire. They do not suit every testing situation but the

current evidence, which is reviewed here, indicates that they can have extremely

useful small-sample power properties. As well as being most powerful at a

nominated point in the alternative hypothesis parameter space, they may also

have optimum power at a number of other points and indeed be uniformly most

powerful when such a test exists. Point optimal tests can also be used to trace

out the maximum attainable power envelope for a given testing problem, thus

providing a benchmark against which test procedures can be evaluated. In

some cases, point optimal tests can be constructed from tests of a simple null

hypothesis against a simple alternative. For a wide range Of models of interest

to econometricians, this paper shows how one can check whether a point optimal

test can be constructed in this way. When it cannot, one may wish to consider

approximately point optimal tests. As an illustration, the approach is applied

to the non-nested problem of testing for AR(1) disturbances against MA(1)

disturbances in the linear regression model.
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1. INTRODUCTION

Given that the scientific method essentially involves the formulation of an

hypothesis followed by attempts to refute it using observed data, one might argue

that statistical hypothesis testing is the cutting-edge that allows the discipline

of economics to claim it is a science. Typically, when faced with the problem of

testing an economic hypothesis, the econometrician has a fixed amount of data

at his disposal. Furthermore, the data are generally gathered by observing the

economic process rather than by conducting controlled experiments. Hence it is

essential that test procedures using such data should be as powerful as possible.

In recent years there has been a rapid expansion in the availability of com-

puter time. Advances at all levels have reduced the costs of computing to such

an extent that highly computational procedures are becoming more and more

feasible. Indeed, vast amounts of computing can now be done for the sums of

money being spent on experiments in the physical sciences. It appears that

we are now reaching the stage where we should be asking: what kind of test

procedure would we wish to use if computation time were not a constraint?

One possibility is to use Bayesian posterior odds; the computer revolu-

tion has certainly helped remove the computational barrier that had previously

hindered their use. Yet there still seems to be a reluctance by many in the pro-

fession to use Bayesian methods. Reasons for this reluctance have recently been

discussed by Efron (1986). He notes that an important requirement of any sta-

tistical theory used in scientific work is that it results in widespread agreement

that the data have been interpreted fairly. Unfortunately there is the perception

that the outcome of a Bayesian analysis can be sensitive to the choice of prior

distribution. One researcher's prior may not be that of his readers. Possible so-

lutions to this problem might be to investigate the sensitivity of posterior odds

to the prior distribution or the adoption of public priors which are generally

accepted by the profession (see for example Doan, Litterman and Sims, (1984)).

But until this issue is resolved satisfactorily, econometricians will continue to

2



turn to non-Bayesian testing procedures' so we shall address our question to

these procedures.

Obviously, we would like to use a uniformly most powerful (UMP) test when

such a test exists, which does seem to be rarely. This implies that our preferred

test procedure should result in the UMP test when it exists. There may be much

less agreement about what the preferred test should be when no UMP test exists,

given that no single test can dominate in terms of power. Clearly, we should

rule out any test whose power curve can be dominated by the power curve of

another test. If we focus on one point in the alternative hypothesis parameter

space, then for a given significance level, all tests have a single power value at

this point. In theory, for a given class of tests, the maximum (or supremum)

of these power values exists and a test whose power attains this maximum is a

most powerful (MP) test in the neighbourhood of the predetermined point. We

shall call such a test a point optimal test.

An insightful way of looking at the problem of choosing a test procedure

is to regard each test, at a given significance level, as a power curve over the

parameter space. A choice of test is in fact a choice of power curve. If a UMP test

exists, the choice is straightforward because then one power curve dominates all

others. When no UMP test exists, the choice is very difficult because at different

parts of the parameter space, different tests will have highest power. Then any

test we choose will favour particular parts of the parameter space where the test's

relative power performance is best. Furthermore, typically we won't know over

which parts of the parameter space our test performs best. One can view the

class of point optimal tests as a collection of power curves which have highest

possible power at predetermined points in the parameter space. As we shall

see, they may also have optimum power at a number of other points and good

relative power over large parts of the parameter space. When we choose to use

a point optimal test, in effect we are nominating which part of the parameter

space we want our test to have good relative power.

1 Box (1980) advocates the use of Bayesian procedures for estimation and

sampling theory procedures for the diagnostic checking or "criticism" of models.
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Point optimal tests are useful in a number of ways. As tests they are most

attractive for problems in which the parameter space can be restricted in size

by theoretical considerations. For example, economic theory is usually good at

providing information about the signs of parameters. Because of their power

properties, point optimal tests are particularly attractive when testing one eco-

nomic theory against another, perhaps a new theory against an existing theory.

Based on the literature discussing the existing theory, one could nominate ide-

alized values of the alternative model's parameters. A point optimal test would

ensure optimal power at this nominated point and, depending on the structure

of the problem, could give good power over the entire parameter space. If the

critical regions of a point optimal test are invariant to the choice of point then

the test is UMP. For some problems, the point optimal test may be approxi-

mately UMP or UMP over certain subspaces of the alternative parameter space.

In such cases, the choice of point is not critical. For other problems, the test's

power may be quite different from the maximum attainable power as one moves

away from the predetermined point. In such circumstances, the choice of point

assumes much greater importance.

Point optimal tests can also be used to trace out the maximum attainable

power envelope for a given testing problem. The power envelope provides an

obvious benchmark against which test procedures can be evaluated. It is very

reassuring if one can show that the power of the test of interest is always close to

the power envelope, say not less than one or five per cent below it. On the other

hand, a large difference between the test's power curve and the power envelope

suggests that a more powerful test may exist.

It is not suggested that point optimal tests suit every testing situation

in econometrics. For example, they are not suited to problems in which the

alternative parameter space cannot be restricted by theoretical considerations

such as knowledge of signs of parameters. Also, little is known about their

performance in problems involving a moderate or large number of parameters.

The aim of this paper is to review and extend understanding of point op-

timal testing. The following section begins by describing the construction of a
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point optimal test from tests of a simple null hypothesis against a simple al-

ternative. It also explains how one can discover whether a point optimal test

can be constructed in this way for a wide range of econometric models. This

section closes by briefly considering Lehmann and Stein's (1948) and Lehmann's

(1959) general approach to constructing point optimal tests as well as approxi-

mate point optimal tests for situations in which it is extremely difficult to find

true point optimal tests. Currently, our knowledge of the small-sample power

properties of point optimal tests is confined to problems involving the linear re-

gression model. These studies are surveyed in section 3. In particular, attention

is focused on the use of the principle of invariance to reduce the parameter space

and methods of choosing the point at which power is optimized. The theory dis-

cussed in sections 2 and 3 is applied in sections 4 and 5 to the problem of testing

for first-order autoregressive (AR(1)) disturbances against first-order moving av-

erage (MA(1)) disturbances in the linear regression model. Section 4 discusses

the testing problem and the construction of point optimal tests while section

5 reports an empirical power comparison involving two point optimal tests and

two tests suggested by King (1983a) for this problem. Some concluding remarks

may be found in the final section.

2. THEORY

Let x be an observable n x 1 vector and suppose we wish to test,

1/0 : x has density f(x,w),

where c4.7 is a j x 1 vector of parameters restricted to the set S2, against

Ha : x has density g(x,0),

where is an i x 1 vector of parameters restricted to the set I. This is a

very general form of testing problem and includes both nested and non-nested

problems as special cases. It is assumed that any knowledge about the possible

range of parameter values has been used to keep the parameter sets, S/ and

as small as possible.



For the simpler problem of testing

against

: x has density f(x,cai)

: x has density g(x,01),

where wi E n and 01 E 40 are fixed and known, we have simple null and alter-

native hypotheses. Therefore, the Neyman-Pearson lemma (see e.g. LehmaRn

(1959, p.65)) implies that rejecting 1-18. for large values of

r = g(x,01)/i(x,wi)

is a MP test. If r is used as a test statistic for the wider problem of testing the

simple null hypothesis, H, against the composite alternative, Ha, then this test

is, by construction, MP in the neighbourhood of = 01. However, its use for

the more general problem of testing the composite hypothesis, Ho, against the

composite alternative, Ha, does not necessarily result in a test which is MP in

the neighbourhood of = 01. To see this observe that the critical value for the

former test is found by solving

Pr[r > I x has density f (x , wi)] = a

for r', where a is the desired level of significance. Because Ho is composite, the

distribution of r under Ho and hence the probability of a Type I error for the

latter test may be a function of w. The standard approach in this case (see for

example Lehmann and Stein (1948)) is to control the maximum probability of

a Type I error by ones choice of critical value. Hence, for the latter test, the

critical value is found by solving

sup Pr[r > r* I x has density f (x , co)] = a (1)
wEn

for r*. In general r' > r*. Note that if S2 is closed, then

Pr[r > r* I x has density f(x,w)] = a (2)
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will be true for at least one w E 11. If wi can be chosen to be such a value,

then r' = r* and the critical regions of the two tests correspond. The test of

Ho against Ha is then MP in the neighbourhood of = ch. If this were not the

case there would exist a test which was more powerful at (/) = 01 and such a test

would contradict the Neyman-Pearson lemma because, as a test of Hji against

Hal, it would be more powerful than the test based on r.

If such an wi exists, then we have a straightforward method of constructing

the point optimal test. In order to check for its existence, we need a method of

calculating the left hand side of (2).

Suppose y is an observable n x 1 random vector such that under Ho,

while under Ha,

y N (a(w), A(w)), E

y N(1)(0), B(0)), (1) E (10.

This formulation includes a wide variety of models of interest in econo-

metrics such as Box-Jenkins time-series models, Linear and non-linear regression

models, linear dynamic models after repeated substitution for lagged dependent

variables with yo assumed nonstochastic, and simultaneous and other systems-

of-equation models where y is the vector of stacked endogenous variable vectors.

It also allows any parameterization of the covariance matrix of the disturbances

in such models, and therefore permits a very wide range of nested and non-

nested testing problems. For ease of exposition, we shall assume both A(w) and

B(0) are nonsingular matrices, at least for w and .1) values of interest.

We wish to evaluate probabilities of the form

where

r =

Pr[r > r* I y N (a(w), A(w))], (3)

IB(001-112exP{—.(y — b(01))1-13 1(01)(y — b(00)}
IAP01-1/2exp{-10 — aPO)'A-1(coi)(Y — a(..i))}*

7
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If 4,0 B(01), an equivalent critical region is to reject for small values of

(y — b(MYB-1(01)(Y — b(01)) — (y — aPOYA-1(wi)(Y —

= (y d)'(B-1(01)— A-1(wi))(Y — — CB— (01) — 41-1 PIN

+bi (01)13-1 (00b(01) — d(wi)21-1(w0a(wi)

in which

ce = (11 (01).B— (ch) — d(cJi)A-1(coi))(B-1(01)—

or to reject for small values of

3(01,c0i) = (Y — d)'(13-1(01) —A 1

In other words, probabilities of the form

Pr[s(01,coi) < s* I y N (a(w), A())]

are equivalent to those of the form of (3).

We can write

where

and

1) )( — d).

8(01, wi) = D z

z = A-1/2(co)(y — d)

D = (A112 (u.)))1 (13-1 (01) —

Note that when y N (a(co), A()), z N (A-112 (co)(a(ca) — d), Is). Hence

Pr[8(01, W1) <? y N (a(cv), A(.4.))] = Pr[E Aid <

(4)

(5)

(6)

where Ai, ..., An are the eigenvalues of D and e?,...,en2 are independent non-

central chi-squared variates with one degree of freedom and non-centrality pa-

rameters

= [P4-1/2(w)(a(w) — d)]? ,

8
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in which P is the orthogonal matrix of eigenvectors of D. This probability can be

evaluated using Imhof's (1961) algorithm for computing the distribution function

of quadratic forms in normal variables. This may be achieved using Koerts and

Abrahamse's (1969) FQUAD subroutine or the version of Imhof's algorithm

'coded in Algol by Davies (1980). An alternative approach to calculating (6)

that should cut computational time, especially for large n, has been proposed

by Farebrother (1985).

If A(o.,1) = B(01), critical regions of the form r > r* are equivalent to those

which reject for small values of

2[a(wi) — b(01)P1-1( )Y — bi(01)A-1(cal)b(01) -1- ai(w1)A-1(w1)a(co1). (7)

The probability of rejection can be calculated by noting that (7) has a normal

distribution whenever y is multivariate normal.

Thus, for any testing problem that fits into this framework one can explore

whether an w1 value exists such that (2) holds for Li.) = wi subject to the con-

straint that (1) also holds. This involves the following iterative procedure: fix a

value for cal, find r* by solving (2) and then check to see if (1) holds. If it does,

we have found wi and r*. If not, choose a new value of col by moving it in the

direction of the c,.) values which cause (1) to be violated and repeat the process.

If we knew in advance that the testing problem was one for which an col

value exists, then we could proceed as follows. When the c,./1 value is known, we

can apply the test by first calculating 8(01, wi) for our given sample and finding

p = Pr[s(01,w1) < sc(01,w1) I i N(a(co1),A(.'I.))1,

where sc(01,wi) denotes the calculated value of s(01,w1). If p is less than our

desired level of significance, then we reject 1/0, otherwise 1/0 is not rejected.

Consider the case where c.,./1 is unknown. At the p significance level it will

be such that

Pr[s(01,w1) < sc(01,wi) yr') N(a(w), A(w))]

9



is maximized at co = w1. This implies that we can find both w1 and p by

maximizing

Pr[s(01, col) < se(01, ) I y N(a(wi ), A(wi.))] (8)

with respect to w1. This can be done using any standard non-linear optimization

computer package. For any given value of col, the objective function is evaluated

as follows:

(a) compute the calculated value of 8(01, coi), namely sc(01,u)i),

(b) find d and D for co = col using equations (4) and (5) with co =

(c) compute (8) either using the algorithm outlined by Farebrother or

by Koerts and Abrahamse's or Davies' algorithms after standard com-

puter packages have been used to find the eigenvalues and eigenvectors

of D and the noncentrality parameters 6?, ..., 61 have been calculated.

Note that the iterative maximization process can be stopped and H0 ac-

cepted whenever (c) yields a probability greater than the desired significance

level.

An obvious question is: under what conditions does such an col value exist?

One set of sufficient conditions for the existence of an coi value can be obtained

as follows. Given fixed values of a and ch and assuming S2 is closed, for any

E 12 let fa,01(coi) denote the value of co for which (2) holds subject to (1). If

necessary we assume fa,4,1(w1) has been made into a single valued function by

a suitable selection function in cases in which (2) has multiple solutions. Then

ja,01 is a mapping of fi onto itself. If II is a convex, compact subspace of a

Banach space and fa,oi is continuous then by Schauder's Fixed Point Theorem,

an appropriate col value will exist. While the first condition is easily verified,

this is not always the case for the second condition. If ft,(/,1 maps every w E S2 to

a single point, then obviously this is the desired col value. Also if one can show

that the left hand side of (2) has for any w, ch and r* only one local maximum

then f„,4), will be continuous.
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It is also worth noting that the problem we are attempting to solve is

one of finding the optimal test of a composite null hypothesis against a simple

alternative. This problem was first addressed by Lehmann and Stein (1948) who

were able to find such tests for a range of straightforward testing problems. They

gave some clues as to how such tests might be found but did not give a general

method of test construction. It turns out that all the tests they discussed could

have been constructed using the method outlined above. Their main aim was to

show that best similar tests are not always most powerful within the class of all

tests including nonsimilar tests. Consequently, they sometimes only showed the

existence of an w1 value without considering how it might be found. The above

method fills this gap.

Unfortunately, not all problems will be such that our desired cal value exists.

The Lehmann-Stein approach, which is further developed in Lehmann (1959,

pp.90-94), does not rely on such a value existing. Their approach involves finding

a probability distribution, A, defined over the null hypothesis parameter space,

S2, and then replacing Ho with the simple hypothesis, HA, that the density

function of x is given by

hA(x)= fof(x,w)clA(w).

If the most powerful test of HA against Hal of size a is also of size less than or

equal to a with respect to 1/0 then the resultant test is a point optimal test of

Ho against Ha. We have considered how one can look for and construct such a

test when A is the degenerate distribution at w = wi. It is not clear how one

can find A and conduct the test when A has some other form.

In such cases, in order to have an operational test, one may wish to consider

tests which are approximately point optimal. For example, a test based on r

with critical value r* determined by (1) could be considered to be approximately

point optimal if Pr(r > r* I HD is close to a, say within five per cent of a.

This is because if we modify2 the Ho distributions such that this probability is

2 Durbin and Watson (1950) used a similar approach in the construction of

their test for autocorrelation. They found a test which has optimal properties

for a modified version of their original testing problem.
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equal to a, then for this new problem our test is point optimal. Hence one may

wish to search for an wi value for which

a — Pr{r > r* x has density f (x,u0} (9)

is minimized. Furthermore, because (9) depends on ch, one might also consider

varying 01 in order to minimize this measure of approximation further.

Suppose after attempting to construct a point optimal test, one is forced

to consider an approximate point optimal test, and finds that, even after mini-

mization, (9) is closer to a than to zero. Although the resultant test might be a

long way from being an approximate point.optimal test, it can still have power

properties that make it worthy of use. A successful application of this approach

(King (1987c)) is discussed in the next section. This is a promising aspect of

point optimal testing theory that may reward further research.

The parameter vectors c,./ and may include common parameters which,

for our testing problem, are nuisance parameters. If the critical region r > r'

does not depend on the choice of values for these parameters in icki and w1 then

the final test is similar with respect to these nuisance parameters. If a search

of the parameter space, S2, is required to find an appropriate cal value, either

for a point optimal test or an approximate point optimal test, then it helps if

SI is as small as possible. One should check whether economic theory allows

one to impose restrictions on the ranges of the various parameters both under

Ho and Ha: One may also wish to use standard similarity arguments such as

conditioning on sufficient statistics of the nuisance parameters to help reduce

the dimension of the problem. See Hillier (1987) for an excellent survey article

on the construction of similar tests in econometrics.

In most of the examples of point optimal tests reviewed in the following

section, invariance arguments have been used to eliminate the nuisance param-

eter problem with considerable success. The reasoning behind this approach is

that if an hypothesis testing problem is invariant to a class of transformations

on the observed sample, it is desirable that the test procedure also have this

property. For example, the presence of serial correlation in the disturbances of

12



the standard linear regression model is independent of the scale of y and hence

we should only consider tests which have this invariance property.

A test can be viewed as a partition of the sample space into two regions,

a rejection region and a non-rejection region. If our observed sample (y in the

linear regression example) falls in the rejection region, Ho is rejected. Otherwise

1/0 is not rejected. An invariant test is one for which each pair of points in the

sample space that can be related by a transformation (i.e., one can be obtained

as a transformation of the other) either both fall into the rejection region or

both fall into the non-rejection region. We do not want to be able to move from

one region to the other by transforming y. Hence the problem of deciding how

to partition the sample space simplifies to one of deciding which sets of points

related by transformations should be in the rejection region and which should

not. Fortunately, instead of considering sets of points, we can use a convenient

summary statistic called a maximal invariant. A maximal invariant is a function

of the observations which is invariant to a class of transformations yet takes on

different values for any two samples that are not related by a member of the class.

Thus, instead of dealing with the observed sample we can base our inference on

the maximal invariant in the sense that we can treat it as our observed sample.

Hopefully its distributions under Ho and Ha will involve fewer parameters. A

drawback with this approach is that it is often difficult to find the distribution

of the maximal invariant under Ho and Ha. It is often necessary to write these

distributions as integrals over the group of transformations.

The invariance approach is illustrated in the next section in which we review

the literature on point optimal tests in the context of the linear regression model.

For further discussion of the theory of invariance see Lehmann (1959, chapter

6) and Cox and Hinkley (1974, pp.157-171).

13



3. POINT OPTIMAL TESTS OF THE LINEAR REGRESSION MODEL

3.1 Tests of the disturbance covariance matrix

3.1.1 Theory

We begin by considering tests of the disturbance covariance matrix of the

linear regression model

y = u, (10)

where y is n x 1, X is an n x k matrix that is assumed independent of u and

of rank k < n, is a k x 1 vector of parameters and u is the n x 1 disturbance

vector. The result which provides the key to much of what follows involves

testing

against

Ho : u N(0, aqn)

: u N(0, a2T),

where T is a known n x n positive definite matrix. Observe that this testing

problem is invariant with respect to transformations of the form

y -4 NY + (11)

where no is a positive scalar and i is a k xl vector. In other words, changing the

scale of y and adding a known linear combination of regressors to the rescaled

y does not change the truth of either Ho or H1.

Let m = n — k, M = I — X(X1X)-1X1, z = My be the ordinary least

squares (OLS) residual vector from (10) and P be an m x n matrix such that

PP' = Im and PP = M. Note that the m x 1 vector Pz is a LUS residual

vector3 given that under Ho, Pz N(0, aqm). The vector

v = Pz1(z1 pz)112

3 For an introduction to LUS residuals see Theil (1971, chapter 5) or King

(1987a, section 5).
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is a maximal invariant under the group of transformations given by (11) for our

problem. The density of v under H1 can be shown to be

1_r(m/2)7r—m/21pTpri/2(vt(pTpi)--1f(v)dv = v)_m/2dv, (12)
2

where dv denotes the uniform measure on the surface of the unit m-sphere. If

T = In, as it does under 1/0, (12) reduces to

1
f(v)dv = —

2 
r(Tri/2)7r—m/2dv (13)

which is the uniform density on the surface of the unit m-sphere. Observe that

invariance has removed the nuisance parameters and a2 as both (12) and (13)

do not involve any unknown parameters. Our problem has now become one of

testing a simple null hypothesis against a simple alternative with v representing

the observations. The Neyman-Pearson lemma implies that a MP test within

the class of invariant tests can be based on rejection or critical regions of the

form

= Vi(PTPi)ly < s*, (14)

where s* is a suitably chosen critical value. King (1980, Lemma 2) shows that

s can also be written as

= ÛIT-1 (15)

where ii is the generalized least squares (GLS) residual vector assuming covari-

ance matrix T.

This test was first constructed by Kadiyala (1970) using a different ap-

proach. He noted that if u was observable, a MP test can be constructed using

a result' due to Lehmann and Stein (1948). He then proposed that his analysis

start with the observable random vector of OLS residuals, z, rather than y, and

showed that a MP test with respect to this new problem is to reject Ho for small

values of s. That the two approaches yield the same test is not surprising given

that z is a maximal invariant with respect to transformations of the form

4 See section 3.2.

y --'Y+X17,

15
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where ri is a k x 1 vector. Kadiyala also showed the test to be unbiased and

noted that it could be derived as a likelihood ratio test. More recently, Dastoor

and Fisher (1988) observed that the test can be interpreted as a special case of

the Cox (1961, 1962) test of non-nested hypotheses.

The usefulness of the above result becomes evident when one wishes to test

1/0 against

Ha : u N(0, T(0)),

where 0 is a q x 1 parameter vector and T(9) is a symmetric matrix that is

positive definite for all 9E 0, where 0 denotes the range of 61 vectors of interest.

For any choice of 61 = 01 E 0 and 01 0 , rejecting Ho for small values of (15),

where T = TOO, is a MP invariant (MPI) test at 0 = 01.

We shall call such a test a point optimal invariant (POI) test. It is often

convenient to compute (15) using the Cholesky decomposition of T, i.e. L such

that

to transform (10) because the numerator of (15) is the sum of squared OLS

residuals from

Ly = LXf3 Lu.

Appropriate critical values can be computed by noting that (14) can be written

as

s = i(PTP1)-1Ve = > Aie/Ed,
i=1 :=1

where = {Pz/cr} N(0,Im) under Ho and A1, ..., Am are the reciprocals of

the non-zero eigenvalues of TM or, equivalently, the non-zero eigenvalues of

= T-1 _ T—ix(x/T—ix)—ix/T-1.

Thus, like for the Durbin-Watson (DW) statistic, a-level critical values of s can

be found by solving

Pr[E(Ai — s*)e < = a
i=1
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for s*. This can be done iteratively using either Koerts and Abrahamse's (1969)

FQUAD subroutine, Farebrother's (1980) PAN procedure or Davies' (1980) al-

gorithm to evaluate the left hand side of (17).

Alternative methods of computing Pr[s < s*] which do not require finding

eigenvalues have been suggested by Palm and Sneek (1984) and Shively, Ans-

ley and Kohn (1987). Palm and Sneek's approach involves using Householder

transformations to tridiagonalize A. Shively et al. explain how a modification

of the Kalman filter can be used to calculate the probability in 0(n) arithmetic

operations in contrast to the 0(n3) operations needed to compute eigenvalues.

As a result, one might expect considerable computational savings over methods

based on eigenvalues, especially for larger sized samples.

Observe that because MA = = AM, (15) can also be written as

= u'Au/u'Mu

=

= Az!

(18)

which is in a similar form to the DW statistic. Thus the following extension

to Durbin and Watson's (1950) lemma can be used to compute bounds for the

critical values that are independent of X or particular columns of X but which

depend on T(01), n and k.

Lemma: (King, 1981a). Consider the class of regression models (10)

whose design matrices can be partitioned as X = [X1:X2], such that

the columns of X1 span the same j-dimensional space, where Xi is

n x j and X2 is n x (k — j). If

are the reciprocals of the non-zero eigenvalues of TM (or, equivalently,

the non-zero eigenvalues of A) and if

< v2 < ••• < vn-i
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are the reciprocals of the non-zero eigenvalues of TMI, where

then

Corollary:

where

M1 = - Xl(XIX )-1

Vi < Ai < Vi+k-j•

sr, < s < au,

771 771

sL.Evte/Ee, Su = Vi+k-je I
i=1 i=1 i=1 i=1

and under Ho : u s N(0, cr2/n), N(0, /m).

Most commonly, X1 would be the n x 1 vector of ones representing the

constant regressor.

The fact that s can be written as (18) means that many of the methods of

approximating the critical value of the DW test (see King (1987a, pp.25-27)) can

be used to approximate s*. Evans and King (1985b) empirically compared the

accuracy of three of these methods, namely the normal, two-moment beta and

four-moment beta approximations, for a variety of POI tests against autocor-

relation and heteroscedasticity. Overall, these three approximations were found

to provide reasonably accurate critical values, with the four-moment beta and

normal approximations being the most and least accurate, respectively. Also the

approximations seemed to be more accurate for autocorrelation tests as opposed

to tests against heteroscedasticity. Skewness of the test statistic was found to

be a determining factor with respect to accuracy. It was suggested that if the

statistic's coefficient of skewness exceeds 0.14 in absolute value, one should think

twice about using the two-moment beta and normal approximations.
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It is worth noting that when q = 1 (i.e., 9 is a scalar), the limit of the

critical regions of a series of POI tests with 01 > 0 approaching zero is that

of the locally best invariant (LBI) test which is also known as the locally most

powerful invariant test. It is the test with the steepest sloping power curve at

Ho : 9 = 0 within the class of invariant tests of the same significance level. It can

also be viewed as the test which has optimal power within the neighbourhood

of Ho. King and Hillier (1985) show that the critical region of this test is of the

form

where

SO = z'Aoz/ziz < c,

A0 = aT-1(0)10010.0= —01.(0)10018.0,
z is the OLS residual vector from (10) and c is a suitably chosen critical value.

They also demonstrated the equivalence of this test to a one-sided version of the

Lagrange multiplier test.

In some situations, the POI critical region is invariant to the choice of 01

vector. When this is the case, the resultant test is uniformly most powerful

invariant (UMPI). For example, consider

T(9) = (h(0)In + f2(0)A)-1 ,

where Ii (0) and 12(0) are known non-zero scalar-valued functions of 0 such that

12(0) = 0 and A is a known n x n symmetric matrix such that T(0) is positive

definite. If the regressors of (10) are such that they can all be written as linear

combinations of k of the eigenvectors of A (i.e., the space spanned by the columns

of X is also spanned by k of the eigenvectors of A) then

and from (14) we have

(PT (0)1)1)-1 = PT-1 (0)P1

= (00z/ziz

= isi(01) f2(00z1Az/ziz.
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Therefore, for any 01 such that 12(91) > 0 (12(01) < 0), rejecting H0 for small

values of s is equivalent to rejecting H0 for small (large) values of z'AzI.zi.z and

is thus a UMPI test. This is an example of a point optimal test that is UMP in

certain circumstances.

3.1.2 The literature

An early suggested application of a POI test is provided by Spjotvoll (1967).

He considered testing .5 < 60 against 6 > (50, where 6 is the ratio of variances in

the one-way classification of the analysis of variance with variance components.

For this problem, the POI test which optimizes power at 6 = 51, also maximizes

the minimum power over 6 > 61.

Examples of point optimal tests were used by Davies (1969) to illustrate his

new class of optimal tests which he called beta-optimal tests. He constructed the

point optimal test of H0 : a = 0 against 0> 0 when yi /N(0,1-1-024), where

xi are known constants, and compared its small-sample power with that of the

locally best test and Wald's test. Davies' point optimal test, which optimizes

power at a power value of 0.8, seems to have the best overall power. He also

discussed the POI test of 1/0 : a = 0 against a > 0 when yi /N(xi3, 1+a2x),

where is an unknown scalar parameter.

A number of authors have proposed tests for AR(1) disturbances in the

linear regression model. Berenblut and Webb (1973) considered the problem of

testing H0 : p = 0 against p> 0 in the nonstationary AR(1) process

tit = Put-1 + Et) Ui = Ell Et r"' IN(0, a2), (19)

and proposed a test that optimized power at p = 1. A different approach was

taken by Fraser, Guttman and Styan (1976) who focussed on the stationary

AR(1) process

ut = Put-i Et, Et IN(0,a2). (20)

They constructed their Likelihood Ratio Observable (LRO) test by factoring

the distribution of w = ulcr into a distribution of the observable part of w and
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a conditional distribution of the unobservable part. Application of Neyman-

Pearson theory to the observable distribution results in a test which is a function

of p . In order to make their test operational, they suggested the point optimal

solution of setting p = 0.5 in the test statistic and called this test the LRO

(P1 = 0.5) test. The theory of test construction outlined in section 3.1.1 was

applied by King (1985a) to the problem of testing Ho against the alternative

that the disturbances of (10) are generated by the stationary AR(1) process

(20). The resultant test is identical to the operational version of Fraser et alt's

LRO test.

It is worth noting that for certain X matrices, POI tests are approximately

UMPI against positive AR(1) disturbances. Details for the nonstationary and

stationary cases are given by Berenblut and Webb (1973) and King (1985a),

respectively. These results indicate that, at least for certain X matrices, the

tests are insensitive to the choice of p value at which power is optimized. Also for

stationary AR(1) disturbances, Breusch and Pagan (1984) have shown that all

tests based on s as well as the DW and Berenblut-Webb tests are asymptotically

equivalent. Essentially, the latter two tests can be regarded as s tests which

optimize power at p = 0 and p = 1, respectively.

Empirical power comparisons (see for example King (1985a)) suggest that

for the majority of economic regressor sets, the difference in power between the

DW, Berenblut-Webb and POI tests is small. However, in some cases there can

be a clear power advantage to be gained over the DW test from using a POI

test which optimizes power at a middle value of p, say p = 0.5. This is especially

true for Watson's (1955) X matrix for which the OLS estimator has minimum

efficiency relative to the best linear unbiased estimator. Furthermore, some of

the regressors in Watson's X matrix are rather similar to time series comprised

purely of a business cycle and a seasonal component. Judge et al. (1985, p.330)

note the wisdom of using a POI test which optimizes power at 0.5 in preference

to the DW test. In most applications, the choice may not matter. On the other

hand, cases in which there is a large power difference are likely to coincide with

situations in which the OLS estimator is relatively inefficient and a powerful test

is needed most.
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Analogous results for the simple AR(j) case may be found in Webb (1973),

King (1984) and Evans and King (1985c).

A related problem is that of testing the null hypothesis that the disturbances

of (10) are generated by the Gaussian random walk process,

u t = Ut_i+ Et t= •••, n,

where et "d IN(0,a2), against the alternative of AR(1) disturbances. LBI and

POI tests have been proposed in the stationary AR(1) case by Sargan and Bhar-

gava (1983) and in the nonstationary case by King (1981b). Again, for certain

X matrices, these tests are approximately UMPI and empirical power compar-

isons suggest that POI tests have better small-sample power properties than

LBI tests. Variations and generalizations of these tests have been investigated

by Bhargava, Franzini and Narendranathan (1982), Bhargava (1986) and Dufour

and King (1986).

It would seem that the choice of 01 value for use in (15) can be more critical

for testing against processes other than simple AR(j) processes. Small-sample

powers of POI tests have been investigated by:

(i) King (1983b, 1985b) in the context of testing Ho : 7 = 0 against

: 7 > 0 (or : 7 < 0) in regression disturbances generated by

the MA(1) process

Ut = et + 7t-17 (21)

where e* = (Eo, ...,En)' ̂.1 N (0, (72 in+1);

(ii) Evans and King (1985a) when testing 1/0 : b = 0 against Ha :b > 0

assuming heteroscedastic disturbances with variances

var(ut) = (a + bzt)d, (22)

where zt is a known exogenous variable, d 0 is a known scalar while

a and b are unknown scalars;

(iii) King (1986) when testing for autocorrelation in regression distur-

bances which are the sum of independent white noise and AR(1) com-

ponents and therefore a special case of an ARMA(1,1) process (q = 2);
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(iv) King and Skeels (1984) in the context of testing for joint AR(1)

and heteroscedastic regression disturbances (q = 2).

These studies all found that certain POI tests have more desirable small-sample

power properties than their competitors including LBI tests. As might be ex-

pected, in each case the relative performance of the LBI test was best for pa-

rameter values close to Ho while that of the POI test was best in a region of the

parameter space that includes the point at which power is optimized. A choice

of middle value for this point often resulted in a POI test with relatively good

power over the entire parameter space.

A further class of POI tests for testing against (22) when zt is unknown

but the ranking of cri is known are discussed by Evans and King (1988). These

tests are constructed by reordering the observations so that ai is an increasing

function of t and then approximating the unknown zt with t. The tests, therefore,

are point optimal in a parameter space which includes zt, t = 1, n, as well

as b and d. An advantage is that bounds, independent of the regressors and zt,

can be tabulated for the critical values of these tests. Evans and King report

evidence that suggests the small-sample power of these tests is superior to that

of other tests which only assume knowledge of the ranking of ai, although it does

seem that the relative performance of LBI tests is better when zt is unknown.

It also appears that the less one knows about zt in (22), the more advisable it

is to optimize power at a smaller b value.

There is a growing literature which considers the application of POI tests

to problems which involve testing for random coefficients in the linear regression

model. As we shall see in section 3.3, this literature has made a number of

advances in determining how the point at which power is optimized should be

chosen.

With respect to the time series-model comprising the sum of trend, seasonal

and irregular components, Franzini and Harvey (1983) constructed point optimal

tests for deterministic trend and seasonal components. Their testing problem

can be formulated as one of testing 1/0 : 9 = 0 against Ha : 9 > 0 in the

context of (10) with u N(0, er2T(0)), where 0 is a 3 x 1 vector of non-negative
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variances. They also investigated testing for a partially deterministic model and

recommended the application of POI tests to the first differenced model.

A special case of Franzini and Harvey's time-series model, namely

Yt Pt + et, (23)

tit = + + (5t7

where Et N(0, a2) and Ot N(0,72), t = 1, n, are mutually independent,

was considered by Nyblom (1986). He investigated testing p = 72 172 = 0 against

p > 0 and compared the small-sample power of various forms of LaMotte and

McWhorter's (1978) test with the LBI and two POI tests, one of which is the

Franzini-Harvey POI test. The two POI tests were found to have superior power

over a wide range of the more interesting alternatives.

The Hildreth-Houck (1968) random coefficient model assumes regression

coefficients in (10) of the form

Pit = 13i + sit) t = 1, •••, n,

where eit /N(0,(7?). When the first regressor is the intercept term, test-

ing Ho : = 0, i = 2, ..., k, is equivalent to testing for a specific form of

heteroscedasticity which, when k = 2, is a special case of (22). Milan (1984)

compared the small-sample performances of some POI tests for this problem

with a range of alternative tests for heteroscedasticity. The POI test based on a

91 value which assumes a? = = ol and a coefficient of variation of the implied

disturbances of 0.5 was found to be best in terms of power.

Shively (1986a) turned his attention to testing for a random walk coefficient

in the model

yt = xitg ztat + et, (24)

at = at—i + Ot, t= 1,...,n, (25)

where et N(0, c2) and öt N (0, Acr2), t = 1, ..., n, are mutually independent,

St is a (k 1) x 1 vector of fixed regressors and zt is a fixed regressor. He

compared the small-sample power of two versions of the POI test of A = 0
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against A > 0 with the power envelope. Both tests were found to have powers

very close to the power envelope. Consequently, as Shively observes, they can be

regarded as approximately UMPI tests. He was also able to confirm Nyblom's

(1986) finding concerning the superiority of POI tests over the LBI and LaMotte

and McWhorter's tests in the context of (23).

A related problem is that of testing for a stochastic coefficient based on

Rosenberg's (1973) "return to normalcy" model. Here, (25) is replaced with

(at — /2) = 46(at—i — it) t 1,•••,n,

where again St N(0, 0.2) and Ot N(0, Acr2),t = 1, n, are mutually indepen-

dent. Shively's (1986b, 1987) simulation results indicate that if Oi = (01, AO' is

chosen carefully, the resultant POI test outperforms Watson and Engle's (1985)

test of A = 0 against A > 0 as well as King's (1987b) LBI test. Shively also

computed the small-sample powers of a POI test of A = 0 when at in (24) is

generated by the ARIMA(1,1,0) process,

at = at—i 0(at—i — at-2) -I- öt, t = 1, •••, n,

with Et N(0, a2) and St N(0, Aa2), t = 1,...,n, mutually independent.

Again he was able to conclude that if Oi is chosen carefully, the resultant POI

test has high power across most ARIMA(1,1,0) alternatives.

In the context of testing Ho : p4 = 0 against Ha : p4 > 0 when the

disturbances of (10) are generated by the special AR(5) process

ut = piut_i + p4Ut-4 — PiP4ut-5 + et, (26)

King (1987c) found that the method outlined in section 2 nearly always fails to

allow the construction of point optimal tests. This testing problem is invariant

to transformations of the form of (11) so that v is a maximal invariant with

density given by (12) where T is the covariance matrix of the AR(5) process

(26). Hence, after reduction through invariance, the testing problem becomes

one of testing p4 in the presence of a nuisance parameter, pi. In the notation

of section 2, c,.; = pi and so is a scalar while q5 = (pi,p4)' is a 2 x 1 vector.
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The likelihood ratio of simple hypotheses, r, therefore is a function of three

parameters; pio which is the c4.) = pi value under Hji and pii and p41 which

are the pi and p4 values under H. King turned to the class of "approximate"

point optimal tests discussed in section 2 and investigated their small-sample

power properties for this testing problem. He found that with pio chosen to

minimize (9) and using sensible rules for choosing pii and p41 (see section 3.3),

"approximate" POI tests have good small-sample power. This is despite (9)

generally being closer to a, the significance level, than to zero which makes it

difficult to claim that the tests are approximately optimal.

Clearly this approach shows considerable promise and could readily be ap-

plied to a number of other testing problems. Some of the more obvious exam-

ples include testing regression disturbances in the presence of autocorrelation,

heteroscedasticity, a random regression coefficient or an error component for

higher-order effects or combinations of these effects. While prior knowledge of

the sign(s) of the nuisance parameter(s) is not necessary, it does seem that prior

information about the sign(s) of the parameter(s) being tested is essential for

the method to work successfully.

3.2 Other tests

Lehmann and Stein (1948) provide a number of examples of point optimal

tests which did not require the use of invariance or conditioning on sufficient

statistics to construct. Their aim was to show the existence of non-similar tests

which can be more powerful than best similar tests. Hence they did not generally

advocate the use of point optimal tests nor did they compute small-sample

powers. However, they did note that the use of such tests might be desirable

in situations in which no similar test exists or when the class of alternatives is

sufficiently restricted.

In the context of x being an n x 1 random sample from the N(e, (72) distri-

bution, Lehmann and Stein constructed tests of

Ho : = ao against H, : = =
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and

Ho : = 0 against H1:= 1,=o1.

They also discussed point optimal tests for the Behrens-Fisher problem and for

testing

when xi, i = 1, ..., m, are ni x 1 random samples from the Mei, al) distribution.

Another problem of some interest is that of testing

Ho : x N (0, cr2 A) against Hi : x N (0, GIB),

where x is n x 1, A and B are known n x n positive definite matrices and o2 > 0

is an unknown scalar while of > 0 is a known scalar. In this case, they showed

that rejecting Ho for small values of

x' A-1 x
x' B x

yields a MP test. Observe that because the critical region is invariant to the of

value, the point optimal test of

against

Ho : x N(0, cr2A)

: x N(0,72B),

where both cr2 and 72 are unknown, gives rise to a UMP test. An implication of

this result is that the POI tests discussed in section 3.1 are optimal within the

class of tests invariant to transformations of the form of (16). This represents a

wider class of tests than those invariant to transformations given by (11).

Another application of point optimal testing not concerned with the covari-

ance matrix of the linear regression model involves testing whether a subset of re-

gression coefficients are jointly zero assuming knowledge of the coefficients' signs.

King and Smith (1986) showed that a one-sided t-test applied to a weighted sum

of the associated regressors is UMPI along the ray whose direction is defined by

the weights. Hence, we have an example of a point optimal test whose power is
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optimal over a subspace of the alternative hypothesis parameter space. Various

forms of the test were used by King and Smith to trace out the power envelope

for a range of testing situations thus providing a benchmark against which the

performance of point optimal tests (with given choices of weights) and other

tests can be evaluated. King and Smith's comparison indicates that point op-

timal tests can have power within five per cent of the power envelope over a

wide range of the parameter space, especially when the associated regressors are

correlated. In contrast, the power of the F test was almost never found to be

within five per cent of the power envelope. Hillier (1986) gives an alternative

derivation of the test and shows that within the class of similar tests, it is UMP

along the ray whose direction is defined by the weights.

3.3 The choice of point at which power is optimized

When discussing the problem of testing a simple null against a composite

alternative for which no UMP test exists, Cox and Hinkley (1974, p.102) consid-

ered three possible approaches. These are (a) the point optimal solution which

involves picking "somewhat arbitrarily a 'typical' point", (b) removing this arbi-

trariness by choosing the point to be close to the null hypothesis which leads to

the locally best (or locally most powerful) test and (c) choosing the test which

maximizes some weighted average of powers. Thus one non-arbitrary choice of

point is to optimize power at the null hypothesis resulting in the locally best

test. In some cases, this approach works well, while in others, such as testing for

Gaussian random walk disturbances against non-stationary AR(1) disturbances

in (10), it leads to a test with disappointing power away from the null hypoth-

esis (see King (1981b)). Unfortunately, locally best tests optimize power where

high power is needed least. Current empirical evidence plainly suggests that, by

shifting the point at which power is optimized a small distance away from the

origin, the small-sample power performance of the test is improved.

If there is a natural outer boundary to the parameter space under the al-

ternative hypothesis, then an alternative approach is to choose a point on this

boundary. Power is now optimized at a point at which high power is required

while some of the arbitrariness of choosing a point is removed. Berenblut and
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Webb (1973) favoured this approach for testing against (19) in (10) as did Sar-

gan and Bhargava (1983). Again, current empirical evidence suggests that the

performance of the test is improved by choosing a point slightly closer to the

_null hypothesis. In addition, for reasonably sized samples, power may be one at

the outer boundary for a range of other point choices, so that nothing is gained

by optimizing power at this point.

The most popular approach has been to recommend a choice based on

an empirical comparison of the small-sample powers of two or more choices of

"representative" or "mid-range" points with the powers of competing tests such

as the locally best test. A good example of this approach is King's (1983b) study

of POI tests against MA(1) disturbances (21) in the linear regression model

(10). After comparing the power functions of the LBI and POI tests which

maximize power at 7 = 0.25, 0.5, 0.75 and 1.0, over a range of X matrices, King

recommended 7 = 0.5 as a good choice of point at which to optimize power.

However, he did note that a case could be made for 7 = 0.75 in very small

samples (n < 15) and -y = 0.25 in large samples (n > 60). Others who have

followed this approach include Franzini and Harvey (1983), King (1981b, 1984,

1985a, 1986), Evans and King (1985a, 1985c, 1988), King and Skeels (1984) and

King and Smith (1986). We shall call this the empirical approach.

Obviously, there is a degree of arbitrariness in the empirical approach, given

that choices need to be made concerning which points to include and under what

circumstances (sample sizes, data sets, etc) powers are compared. In the context

of testing the covariance matrix of the linear regression model (10), it does seem

that a good choice of 01, for use in (15), should depend upon n and perhaps

also k. This point is taken up by King (1985b) who re-examined his previous

(1983b) study of POI tests against MA(1) disturbances. Using arguments similar

to those Davies (1969) used to introduce beta-optimal tests, King concluded that

01 should be chosen such that the optimized power is between the size of the test

and one. He showed how, in theory for a given X matrix and the scalar 0 case,

one can find a value of 01 such that the power of s at 01, is some predetermined

value, say pi. Assuming the power function of (15) is always a monotonically
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non-decreasing function of 0, which is probably not unreasonable in many cases,

the resultant test is also a beta-optimal invariant test.

Unfortunately, such a 01 value will vary with X, and the choice of pi and

significance level while also requiring a large amount of computation to find. Rec-

ognizing this, King gives formulae for approximate 01 values for testing against

> 0 and 7 < 0, respectively, in (21). These formulae were computed based

on actual 01 values for a representative class of X matrices, pi = 0.65 and the

five per cent significance level. The pi value of 0.65 was chosen after initial

experiments with pi = 0.5 suggested that a higher value would be more appro-

priate in view of the greater importance of detecting larger 171 values. Note that

this choice of pi value is midway between 0.5 and the value of 0.8 suggested by

Davies (1969) when introducing beta-optimal tests.

In the context of testing for a random walk coefficient in (24) and (25),

Shively (1986a) compares POI tests based on pi = 0.5 and pi = 0.8. He finds

his POI tests are reasonably insensitive to the choice of 01 value. The POI test

which optimizes power at 0.5 is favoured because of the overall closeness of its

power curve to the power envelope.

Nyblom (1986) suggests that Pitman asymptotic relative efficiency offers

a good method of determining 01 as a function of sample size. This approach

requires a sequence of 01 values for which 01 0 as n --+ oo, such that the

limiting power stays below one for a fixed significance level. For testing p = 0

against p> 0 in (23), the special case of Franzini and Harvey's time-series model,

Nyblom finds

Pi = 5/n2 -I- 0(n-2),

where 5 is chosen to give a limiting power of pi at significan,ce level a, to be such

a sequence. He notes that the Pitman efficiencies are rather insensitive to the

choice of a and pi and suggests the use of a = 0.05 and pi = 0.8. As Nyblom

observes, this approach can be generalized to the 0 vector, although possibly not

uniquely.

When testing zero restrictions on nonnegative regression coefficients, the

POI test is UMPI along a ray from the origin (see King and Smith (1986) and

Hillier (1986)). Thus the choice of point in this case is effectively a choice of
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direction from the origin in the parameter space. While King and Smith consider

an empirical approach to this problem, Hillier suggests a minimax solution.

It involves choosing that direction which maximizes the minimum power on a

relevant subset of the surface of a unit sphere in a transformed parameter space.

The "approximately" POI tests of Ho : p4 = 0 against H : p4 > 0 when the

disturbances of (10) are generated by the special AR(5) process (26), investigated

by King (1987c), involve the choice of three parameter values, namely Pio, Pii

and p41. The value of pio is always chosen to minimize (9) while the p11 and

P41 values determine the point at which the test "attempts" to optimize power.

King found that the following rules for choosing the latter values result in a test

with good small-sample power properties. Because we are interested in testing

for non-zero p4 values, for any p4 > 0, say p:, we would obviously like the

minimum power along p4 = p: in the (p1, parameter space to be as large

as possible. Hence, for a given p:, an obvious choice of pii value is that which,

with p41 = 14, maximizes the minimum power along p4 = p:. Thus, for any P41

value, we have rules for determining p11 and pio. The p41 value is then chosen so

that the maximized minimum power has a value of 0.5. This represents a new

approach in the treatment of nuisance parameters in hypothesis testing. Those

that cannot be eliminated through invariance are used to advantage in the final

choice of test statistic.

Unfortunately, rules which involve optimizing or "approximately" optimiz-

ing power at a predetermined level generally require a high degree of computation

to apply. They frequently need to be applied individually to each model and

for each level of significance. On the other hand, knowledge of the test's power

function is a valuable by-product of these calculations. Improved computer algo-

rithms (see for example, Shively (1987) and Shively et al. (1987)) and advances

in computer hardware may do much to reduce this computational burden.

4. TESTING AR(1) AGAINST MA(1) DISTURBANCES

The majority of the successful applications of point optimal tests reviewed

in the previous section involve testing a null hypothesis which, after reduction
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through invariance, is a simple hypothesis nested in a composite alternative. The

discussion in section 2 applies to the construction of a point optimal test for a

general testing problem which involves a composite null hypothesis that may or

may not be nested. In the remainder of this paper, we illustrate this approach by

applying it to the problem of testing AR(1) against MA(1) disturbances in the

linear regression model (10). After reduction through invariance, this involves

a non-nested composite null hypothesis and a composite alternative, each of

which is characterized by a single parameter. This problem has previously been

investigated by King (1983a) and King and McAleer (1987). King proposed a

test similar to that discussed in section 2 but with 01 and wi set to arbitrary

values so that the resultant test is not necessarily MPI in the neighbourhood

of q5 = Oi. King and McAleer compared the small-sample sizes and powers of

this test with those of the Cox test, some linearized Cox tests and the Lagrange

multiplier test of AR(1) disturbances against ARMA(1,1) disturbances. This

comparison showed King's test to have the best power properties and the Cox

and linearized Cox tests to be somewhat unreliable in small samples.

AR(1) disturbances of the form (20) imply u N(0, a2E(p)), where

E(p) = 1/(1 — p2

/ 1 p p2 •

p 1 p
p2 p 1

pn-1

pn

while for MA(1) disturbances generated by (21), u N(0, a2A(7)) in which A(7)

is the tridiagonal matrix whose main diagonal elements are 1+72 and whose off

diagonal elements are 7. Following King (1983a) and King and McAleer (1987),

we shall be concerned with testing

against

Ho: N(X0,472E(P)), 0 < p <1

Ha :y N(X0,(72A(7)),
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4.

This problem is invariant to transformations of the form of (11). Using the

approach discussed in section 3.1.1, one can show that for the simpler problem

of testing

against

: y rs, N(X1),(72E(M.))

Ira : y N(X0,(72A(71)),

where 0 < pi < 1 and 0 <71 < 1 are fixed and known, MPI critical regions are

of the form

r(71, = feA-1(7i)ü/iVE-1(p1)il < ca, (27)

in which ft and ii are the GLS residual vectors from (10) assuming covariance

matrices A(71) and E(p1), respectively, and cc, is an appropriate critical value.

King suggested the use of r(71, p1) as a statistic to test Ho against Ha.

Note that the resultant test is not necessarily a POI test of Ho. This is because

cc, may not be the appropriate critical value for testing 1/0. The distribution of

r(71, P1), and hence its probability of a Type I error, is a function of p under

Ho. While ca is determined by solving

Pr[r(71,P1) < cu ̂, N(O, E(P1))] = a, (28)

the appropriate a level critical value for testing Ho is obtained by solving the

conditional probability inequality

Pr[r(71,p1) < u N(0, E(p)), 0 p < 1} < a (29)

for the largest possible value of cic, . Therefore c cc,,. ca. As discussed in section

2, if we can choose pi such that cic, = cc, then the test based on (27) will be POI.

For any given value of p

Pr[r(71, P1) <c} = Pr[u'r (71, Phec,)u < 01

= pr[E cte <01,
t=1
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where

Pi, cice) = A-1(71) — A-1(70X(X1A-1(70X)-1X'A-1(71) — c{E-1(pi)
E-1(pi)x(rE-1(pi )x rixIE-1(pi)},

,c, are the eigenvalues of r(71, pi, ci0E(p) and e = (el, ..., G)' N(0, in).

Thus (30) is of the form of the left hand side of (17) and can be evaluated using

any of the algorithms discussed in section 3.1.1.

For any given 71 value, our aim is to find p1 and cc, values such that (28) and

(29) with cf„ = c,„ hold simultaneously. When this is the case, we have a test

of Ho against Ha which optimizes power at 7 = 71 and is thus POI. Of course,

there is no guarantee that such values do exist. If they do not, our method of

constructing a POI test breaks down, although we are still left with the option

of constructing an approximately POI test. There is also the question of how 71

should be chosen. Because of the exploratory nature of this study, the empirical

approach is used to recommend an appropriate 71 value for practical use. An

obvious alternative is to choose the 71 value that gives a predetermined level of

power at 7 = 71, of say 0.5 or 0.65.

After some experimentation, it became obvious that for any fixed 71 and

Pi values, (30) is a well behaved function of p, typically increasing and then

decreasing as p increases from zero. The p value at which (30) is maximized

holds the key. If this can be made to coincide with the choice of pi, then (28)

and (29) with cfc, = cc, will hold simultaneously.

One method of iterating to the required p1 and cia values is as

follows:

(i) Pick a p1 value and solve (28) for cc,.

(ii) For cia = cc„ evaluate (30) at p values around pi. If (30) is a

maximum at p = pi, we have the required solution.

(iii) Otherwise move p1 towards the p value which maximizes (30) and

solve (28) for c„. Beginning at (ii), repeat the process.

Because one may not always wish to tackle the amount of computation

involved in solving for ca and pi, it is convenient to have available, solved values

for an X matrix which is representative in some sense. Such values might be
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used to apply an approximate test. At the very least, they should provide good

starting values for the iterative process of solving for cc, and pi. Our choice

of representative X matrices are those comprised of the eigenvectors associated

with the k smallest eigenvalues of the n x n matrix

Ai =

/1 —1 0 . O\
—1 2 —1 0
0 —1 2

\o o
2 —1 ,

• —1 1 /

Dubbelman (1972) and Dubbelman, Louter and Abrahamse (1978) present em-

pirical evidence which suggests that in economic time-series regression analysis,

it is often likely that the space spanned by such eigenvectors is a good approxi-

mation to the column space of the X matrix. Similar views have been expressed

by Theil and Nagar (1961), Hannan and Terrell (1968), Abrahamse and Koerts

(1971) and Abrahamse and Louter (1971). The approximation is likely to be

particularly good if the regression has an intercept and if the regressors are few

in number and smoothly evolving.

Values of cice and pi at the five per cent significance level for selected n x k

matrices comprised of the eigenvectors associated with the k smallest eigenvalues

of Ai and for 71 = 0.5 and 71 = 0.75 are presented in Tables I and II, respectively.

They were computed using a modified version of Koerts and Abrahamse's (1969)

FQUAD subroutine.

In the remainder of this paper we shall denote by rp(71) the test of Ho

against Ha that is MPI in the neighbourhood of 7 = 71.
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TABLE I

Calculated values of pi and ca for the r(0.5)

test at the five per cent significance level

n

k = 2

pi Ca

k = 3

pi Ca

k = 4

111 Ca

k = 5

pi Ca
k = 6

pi Ca

15 .425 .838 .485 .798 .593 .721 .820 .572 .999 .470

16 .423 .844 .475 .809 .568 .743 .755 .651 .940 .503

17 .420 .850 .468 .818 .547 .762 .695 .657 .900 .528

18 .418 .856 .460 .827 .530 .777 .655 .688 .860 .554

19 .416 .861 .455 .834 .517 .790 .620 .715 .815 .585

20 .416 .865 .451 .841 .506 .802 .595 .736 .760 .622

22 .414 .873 .444 .852 .489 .820 .557 .770 .671 .687

24 .412 .880 .438 .863 .476 .836 .530 .795 .616 .731

26 .411 .887 .434 .871 .466 .848 .512 .814 .579 .763

28 .410 .893 .431 .878 .459 .858 .498 .829 .552 .788

30 .410 .898 .428 .885 .453 .867 .486 .842 .531 .808

33 .409 .905 .425 .894 .446 .878 .474 .858 .510 .830

36 .409 .911 .423 .901 .441 .888 .464 .870 .494 .847

40 .408 .918 .421 .909 .436 .898 .455 .884 .479 .865

45 .409 .926 .419 .918 .432 .909 .447 .897 .466 .883

50 .409 .933 .418 .926 .428 .918 .442 .908 .457 .896

55 .409 .938 .417 .932 .426 .925 .438 .916 .450 .906

60 .410 .943 .416 .938 .425 .931 .434 .924 .446 .915

65 .410 .948 .416 .943 .424 .937 .432 .930 .442 .922

70 .410 .951 .416 .947 .422 .942 .430 .936 .439 .929

80 .411 .958 .416 .954 .421 .950 .428 .945 .434 .939

90 .411 .964 .416 .960 .420 .959 .426 .952 .432 .947

, 100 _ .412 .969 .416 .965 .420 .962 .424 .958 .430 .954
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TABLE II

Calculated values of pi and ca for the r(0.75)

test at the five per cent significance level

n

k = 2

Pi Ca

k = 3

pi Ca

k = 4

pi ca

k = 5

pi ca

k = 6

pi Ca

15 .540 .738 .641 .674 .851 .545 .976 .470 .999 .458

16 .537 .751 .628 .693 .815 .575 .965 .483 .999 .463

17 .535 .762 .617 .710 .780 .604 .960 .495 .999 .469

18 .534 .773 .607 .725 .749 .632 .953 .507 .999 .476

19 .534 .783 .600 .739 .722 .657 .930 .527 .999 .483

20 .533 .793 .593 .752 .700 .680 .910 .547 .999 .489

22 .532 .811 .584 .775 .670 .715 .840 .603 .982 .512

24 .533 .827 .577 .796 .650 .744 .780 .654 .953 .542

26 .533 .842 .572 .814 .632 .770 .736 .696 .910 .580

28 .534 .855 .568 .830 .620 .792 .705 .730 .855 .626

30 .535 .868 .566 .845 .612 .810 .683 .757 .805 .670

33 .536 .885 .563 .865 .601 .835 .658 .792 .747 .726

36 .538 .901 .561 .882 .594 .857 .640 .821 .710 .767

40 .539 .919 .560 .903 .587 .881 .625 .851 .677 .809

45 .542 .939 .559 .925 .582 .906 .611 .882 .651 .850

50 .544 .957 .559 .944 .578 .928 .602 .908 .634 .881

55 .546 .973 .559 .961 .576 .947 .596 .629 .622 .907

60 .547 .987 .559 .976 .574 .963 .592 .948 .614 .929

65 .549 .999 .560 .989 .573 .978 .589 .964 .608 .947

70 .551 1.010 .560 1.002 .572 .991 .586 .979 .602 .964

80 .554 1.030 .562 1.022 .572 1.013 .583 1.003 .597 .991

90 .556 1.047 .563 1.040 .571 1.032 .581 1.023 .592 1.013

100 .558 1.061 .564 1.055 .571 1.048 .580 1.040 .589 1.031
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5. AN EMPIRICAL POWER COMPARISON

In order to assess the small-sample performance of the rp(-yi) test as well

as to help with the choice of -yi value, the tests' sizes and powers were computed

at the five per cent significance level for 71 = 0.5 and 0.75 and compared with

those of King's (1983a) g(0.75,0.75) and g(1/3,0.3) tests. For computational

reasons, King originally assumed an approximate AR(1) process under Ho but

following King and McAleer, we shall use the g(71, pi) tests which assume true

AR(1) disturbances under Ho. In their empirical power comparison, King and

McAleer found that the g(0.75,0.75) test generally dominates the Cox and lin-

earized Cox tests and, of the tests they considered, was the best overall. The

g(1/3,0.3) test was included in the current comparison because King (1983a,

p.49) recommended its use when "one strongly suspects a value of 7 between

0.3 and 0.5 under Ha." Both tests can be regarded as approximately POI.

The sizes and powers were computed at p = 0.0, ...,0.9 under 1/0 and 7 =

0.1, ..., 0.9 under Ha using the methodology outlined by King but with true

rather than approximate AR(1) disturbances. The following design matrices

chosen by King were used in the comparison.

Xl: (n x 3; n = 15,30,60). The first n observations of Durbin and

Watson's (1951, p.159) consumption of spirits example.

X2: (n x 3; n = 15,30,60). A constant dummy, the quarterly Aus-

tralian Consumers' Price Index commencing 1959(1) and the same in-

dex lagged one quarter as regressors.

X3: (n x 5; n = 15,30,60). X2 with the Australian Consumers' Price

Index lagged two and three quarters as additional regressors.

X4: (n x 3; n = 15,30). A constant and logarithms of Chow's (1957,

Table 1) automobile stock per capita and personal money stock per

capita variables for the United States 1921-1950.

These design matrices were also used to assess the usefulness of the ap-

proximate rp(0.5) and rp(0.75) tests which result from using the p1 values and

nominal five per cent significance points from Tables I and II, respectively. In

each case, the maximum probability of rejecting Ho when Ho is true was found,
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this being the true size of the test. These results are presented in Table III and

are discussed first.

TABLE III

True sizes of approximate rp(0.5) and r(0.75) tests applied

using pi and five per cent critical values from Tables I and II.

approx. rp(0.5) test
,

approx. rp(0.75) test

n= 15 30 60 15 30 60

Design matrix

Xl(n x 3) .025 .039 .047 .028 .040 .048

X2(n x 3) .028 .039 .045 .034 .046 .057

X3(n x 5) .000 .020 .035 .008 .030 .052

X4(n x 3) .026 .039 — .029 .039 —

With one exception, the true sizes move towards the nominal size of 0.05 as

the sample size increases or the number of regressors decreases, ceteris paribus.

Again with one exception, the rp(0.75) sizes are closer to 0.05 than the corre-

sponding rp(0.5) sizes. Also the true sizes are almost always below the nominal

size. At least for the particular X matrices of this study, it seems that the

approximate rp(0.75) test has reasonable sizes for samples of 60 observations or

more as does the approximate rp(0.5) test when k = 3.

Selected sizes and powers for design matrices X2 and X3 calculated using

exact five per cent critical values may be found in Tables IV and V.

Under Ho the tests' size functions are well behaved, first increasing as p

moves away from zero, and then, after reaching 0.05, decreasing as p continues

to increase. The point of inflection, which is of course pi, always occurs at a

larger p value for the rp(0.75) test than for rp(0.5). For both tests, the point of

inflection tends to decrease as the sample size increases, more so for rp(0.5) than

for rp(0.75). For p> 0.5, the power functions of all tests decrease towards zero

as n increases. The desirability of this property is discussed by King (1983a).

39



TABLE IV

Calculated sizes and powers for X2 at the five per cent significance level.

Ho : ut = put-i + Et, p > Ha : ut = Et + e t_1,7 > 0

P=

Tests

0.9 0.7 0.5 0.3 0.1 7 = 0.1 0.3 0.5 0.7 0.9

n = 15

✓ (0.5) .036 .045 .050 .047 .036

✓ (0.75) .042 .049 .049 .042 .030

g(0.75,0.75) .035 .044 .050 .048 .038

g(1/3,0.3) .039 .047 .050 .044 .031

n = 30

rp(0.5) .012 .030 .048 .047 .029

✓ (0.75) .023 .043 .050 .039 .023

g(0.75,0.75) .009 .024 .044 .050 .038

g(1/3,0.3) .008 .022 .043 .050 .036

n = 60

rp(0.5) .002 .017 .046 .045 .021

✓ (0.75) .009 .038 .049 .033 .014

g(0.75,0.75) .001 .013 .041 .049 .032

g(1/3,0.3) .000 .006 .031 .050 .032

.038 .071 .141 .252 .344

.031 .062 .133 .265 .401

.040 .071 .137 .255 .371

.032 .066 .137 .245 .327

.032 .094 .265 .541 .706

.025 .073 .232 .588 .869

.041 .094 .239 .531 .762

.039 .102 .251 .447 .556

.024 .126 .482 .864 .957

.016 .084 .403 .910 .998

.035 .124 .429 .865 .977

.037 .149 .431 .703 .801
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TABLE V

Calculated sizes and powers for X3 at the five per cent significance level.

Ho : ut = put-i + et, p > 0 Ha :ut = Et + > 0

P =-

Tests

0.9 0.7 0.5 0.3 0.1 7 = 0.1 0.3 0.5 0.7 0.9

n = 15

✓ (0.5) .044 .048 .050 .046 .036

✓ (0.75) .047 .050 .048 .040 .029

g(0.75,0.75) .045 .049 .049 .043 .033

g(1/3,0.3) .049 .050 .045 .036 .023

n = 30

rp(0.5) .015 .033 .048 .046 .030

✓ (0.75) .026 .044 .050 .039 .024

g(0.75,0.75) .011 .027 .045 .049 .038

g(1/3,0.3) .011 .026 .045 .049 .035

n = 60

✓ (0.5) .002 .017 .046 .045 .021

✓ (0.75) .010 .038 .049 .034 .015

g(0.75,0.75) .001 .012 .040 .049 .033

g(1/3,0.3) .000 .006 .031 .050 .033

.038 .064 .112 .179 .228

.030 .056 .107 .186 .252

.034 .060 .110 .185 .247

.024 .050 .102 .176 .231

.033 .090 .242 .492 .652

.025 .071 .214 .535 .815

.041 .090 .221 .484 .709

.038 .097 .233 .419 .528

.024 .123 .460 .841 .945

.016 .083 .385 .891 .996

.037 .122 .408 .839 .968

.038 .145 .411 .674 .773
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Under Ha, the power functions of all tests increase as 7 increases. All tests

have power less than 0.05 at 7 = 0.1 and occasionally also at 7 = 0.2. This is

not a particularly troublesome feature because AR(1) and MA(1) processes are

good approximations to each other for p and -y close to zero. Also the Monte

Carlo study by Griffiths and Beesley (1984) suggests that, 'wrongly assuming

an AR(1) process when the disturbances of (10) follow an MA(1) process with

small 171, improves the efficiency of the 3 estimates. Except for 7 = 0.1 and,

in the case of r1,(0.75), 7 = 0.2, the power functions of all tests increase as n

increases or k decreases, ceteris paribus.

The power functions of the two rp(71) tests always cross somewhere between

• = 0.6 and 7 = 0.7 with the rp(0.5) test being more powerful for small 7 values

and rp(0.75) being more powerful for 7 > 0.7. The results suggest that rp(0.75)

is the better overall test when n = 15, 30 because the gains in power generally

far outweigh the losses. For example, the maximum power differences in favour

of the r(0.75) test are 0.073 and 0.158 for the 15 x 3 and 30 x 3 X1 matrices,

respectively, while the corresponding differences in favour of rp(0.5) are 0.009

and 0.035. The same reasoning leads one to conclude that rp(0.5) is the better

overall test when n = 60. This test has a maximum power advantage for the

60 x 3 X1 matrix of 0.084 while that in favour of the rp(0.75) test is 0.051.

Similarly, the g(0.75, 0.75) test has better overall power than the g(1/3,0.3)

test. Typically, the latter test has a slight power advantage for 0.2 < 7 < 0.5

although this is not the case for the X2 and X3 matrices with n = 15. This

power advantage is clearly negated by the large power loss which occurs for

• > 0.7 and is generally greater than 0.1 for n = 30 and 60.

The rp(0.75) test is typically more powerful than the g(0.75, 0.75) test for

• > 0.6 with the reverse being tree for smaller 7 values. At least for n = 15 and

30, one can argue that the rp(0.75) test has better overall power because the

gains more than compensate for the losses, although for the 15 x 5 X3 matrix

and, to a lesser extent, the 15 x 3 X2 matrix, there is very little difference

between the two power curves. It is not obvious which is the better test when

n = 60. The g(0.75, 0.75) test might be marginally preferred for the 60 x 3 X1
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and X2 matrices but not for the 60 x5 X3 matrix. In one sense, this is reassuring

because g(0.75, 0.75) can be regarded as an approximate point optimal test.

The rp(0.5) test is almost always more powerful than the g(0.75, 0.75) test

for 0.4 < -y < 0.6 and frequently also for 7 = 0.3 and 0.7. Except when n = 60,

one may wish to favour the g(0.75, 0.75) test because of its greater power for

larger 7 values, especially 7 = 0.9.

Thus, assuming all values of 7 are equally likely, the best of the four tests

would appear to be the rp(0.75) test when n = 15 or 30 and rp(0.5) when n = 60.

If, however, one strongly suspected that under Ha 7 might lie in a particular

range, then it would make sense to apply the rp(-yi) test with 'yi chosen to be

the mid-point or perhaps slightly beyond the mid-point.

In theory, the approach outlined in sections 2 and 4 could be used to con-

struct tests of higher-order autoregressive disturbances in (10) against higher-

order moving average disturbances. However, it does seem that prior information

about the signs of the parameters5 of the moving average processes being tested

is essential for the resultant test to have useful power properties. For example,

one might expect the approach to provide a good test of the null hypothesis

that the disturbances of (10) are generated by the special AR(5) process (26)

where 0 < pi < 1 and 0 < p4 < 1 against the analogous MA(5) process with

similar restrictions on its parameters. On the other hand, the approach is not

recommended if one wishes to test for general AR(j) disturbances in (10) against

general MA(j) disturbances.

6. CONCLUDING REMARKS

The computer revolution has meant that we can now begin to ask, what

kind of test procedure would we like to apply, rather than, what procedure can

5 Prior information about the signs of the low-order autocorrelation coeffi-

cients of the processes being tested might also satisfy this requirement.
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we apply? When, as is usually the case, no UMP test exists, there is no sim-

ple answer to the former question. In this paper we have put the case for the

inclusion of point optimal and approximately point optimal tests in the econo-

metrician's repertoire. They seem best suited to testing problems which involve

a small number of parameters and prior knowledge of the signs of the parameters

under the alternative hypothesis. In econometric applications, knowledge of the

parameter's signs often can be deduced from the underlying economic theory.

Also, the number of parameters in a testing problem, particularly if it involves a

linear model, can sometimes be reduced by the use of invariance or by condition-

ing on sufficient statistics. The available evidence concerning this category of

testing problem indicates that point optimal and approximately point optimal

tests can have extremely useful small-sample power properties. A point optimal

test is UMP when such a test exists. They can also result in tests which are

UMP in a subspace of the alternative hypothesis parameter space. However, it is

plain that they do not suit all testing problems. Also, little is known about their

performance in problems involving a moderate or large number of parameters.

A possible objection to their use is that they require the researcher to nomi-

nate the point at which power is to be maximized. As noted in the introduction,

any choice of test when a UMP test does not exist will frequently favour certain

parts of the parameter space over other parts of the space. Worse still, we are

often ignorant of which parts of the space our chosen test favours. By using a

point optimal test, the researcher is forced to think about where he wants his test

to have best possible power and to justify his choice. If good power is required

over a wide range of the parameter space, then the researcher should consider

checking the small-sample properties of his chosen test, whether it be a point

optimal or some other test. As indicated in section 3.3, a good deal of recent

research has focussed on making less arbitrary choices of point. Hopefully, we

can look forward to further developements in this area in the future.

As well as providing possible tests, point optimal tests have another use

in that they allow one to trace out the maximum attainable power for each

point in the alternative hypothesis parameter space. By comparing two such
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power envelopes, one can uncover the potential loss of power that results from

restricting attention to similar tests or tests with a particular invariance prop-

erty. For example, the familiar F test of parameter restrictions in the linear

regression model is UMP within the class of invariant tests where invariance is

with respect to four different transformations (see Seber (1980, p.35)), some of

which may seem unnatural. The power envelope calculations reported by King

and Smith (1986) give some indication of the potential improvement in power

that might result from a partial relaxation of the invariance requirement. A

further use might be to assess the potential of a new or currently favoured test

by comparing its small-sample power with that of the power envelope.

This paper reports some progress in the search for a complete theory of

point optimal testing. We find that in some cases point optimal tests can be

constructed from tests of a simple null hypothesis against a simple alternative.

For nested or non-nested testing problems involving a wide range of models of

interest to the econometrician, we show how one can check whether a point

optimal test can be constructed in this way. When it can, exact critical values

can be computed. When it cannot, one may wish to consider approximately

point optimal tests.

As an illustration, the approach was applied to the problem of testing for

AR(1) disturbances against MA(1) disturbances in the linear regression model

with encouraging results. This is a non-nested testing problem for which the

Cox and related tests have been found to perform poorly in small samples.

ACKNOWLEDGEMENTS

The research reported in this paper was supported by the Australian Re-

search Grants Scheme and the ESRC under grant HR8323. An earlier draft was

written while I was visiting the Department of Economics at the University of

Southampton. I am most grateful to Nicole Avery, Beryl Leavesley and Phillip

Wright for research assistance, to Tom Hettmansperger, Grant Hillier, Esfandiar

45

•



Maasoumi, Jukka Nyblom, Dale Poirier and four referees for helpful suggestions

and to Gene Savin for coining the phrase "point optimal test".

k

REFERENCES

Abrahamse, A.P.J. & Koerts, J., (1971). New estimators of disturbances in
regression analysis. Journal of the American Statistical Association, 66, 71-
74.

Abrahamse, A.P.J. Sz Louter, A.S., (1971). On a new test for autocorrelation in
least squares regression. Biometrika, 58, 53-60.

Berenblut, 1.1. Siz Webb, G.I., (1973). A new test for autocorrelated errors in
the linear regression model. Journal of the Royal Statistical Society B, 35,
33-50.

Bhargava, A., (1986). On the theory of testing unit roots in observed time series.
Review of Economic Studies, 53, 369-384.

Bhargava, A., Franzini, L. & Narendranathan, W., (1982). Serial correlation
and the fixed effects model. Review of Economic Studies, 49, 533-549.

Box, G.E.P., (1980). Sampling and Bayes' inference in scientific modelling and
robustness. Journal of the Royal Statistical Society A, 143, 383-430.

Breusch, T.S. & Pagan, A.R., (1984). Model evaluation by differencing trans-
formations. Paper presented at a conference in honour of Denis Sargan.

Chow, G.C., (1957). Demand for Automobiles in the United States. Amsterdam:
North Holland.

Cox, D.R., (1961). Tests of separate families of hypotheses. Proceedings of the
Fourth Berkeley Symposium on Mathematical Statistics and Probability, 1,
105-123.

Cox, D.R., (1962). Further results on tests of separate families of hypotheses.
Journal of the Royal Statistical Society B, 24, 406-424.

Cox, D.R. & Hinkley, D.V., (1974). Theoretical Statistics. London: Chapman
and Hall.

Dastoor, N.K., & Fisher, G., (1988). On point-optimal Cox tests. Econometric
Theory, 4, forthcoming.

Davies, R.B., (1969). Beta-optimal tests and an application to the summary
evaluation of experiments. Journal of the Royal Statistical Society B, 31,
524-538.

Davies, R.B., (1980). Algorithm AS155: The distribution of a linear combination
of X2 random variables. Applied Statistics, 29, 323-333.

46



Doan, T., Litterman, R. & Sims, C., (1984). Forecasting and conditional pro-
jection using realistic prior distributions. Econometric Reviews, 3, 1-100.

Dubbelman, C., (1972). A priori fixed covariance matrices of disturbance esti-
mators. European Economic Review, 3, 413-436.

Dubbelman, C., Louter, A.S. & Abrahamse, A.P.J., (1978). On typical charac-
teristics of economic time series and the relative qualities of five autocorre-
lation tests. Journal of Econometrics, 8, 295-306.

Dufour, J.M. Sz King, M.L., (1986). Optimal invariant tests for the autocor-
relation coefficient in linear regressions with autocorrelated errors. Mimeo,
Universite de Montreal.

Durbin, J. & Watson, G.S., (1950). Testing for serial correlation in least squares
regression I. Biometrika, 37, 409-428.

Durbin, J. & Watson, G.S., (1951). Testing for serial correlation in least squares
regression II. Biometrika, 38, 159-178.

Efron, B., (1986). Why isn't everyone a Bayesian? The American Statistician,
40, 1-5.

Evans, M.A. & King, M.L., (1985a). A point optimal test for heteroscedastic
disturbances. Journal of Econometrics, 27, 163-178.

Evans, M.A. & King, M.L., (1985b). Critical value approximations for tests of
linear regression disturbances. Australian Journal of Statistics, 27, 68-83.

Evans, M.A. & King, M.L., (1985c). Higher order generalisations of first order
autoregressive tests. Communications in Statistics: Theory and Methods,
14, 2907-2918.

Evans, M.A. & King, M.L., (1988). A further class of tests for heteroscedasticity.
Journal of Econometrics, 37, forthcoming.

Farebrother, R.W., (1980). Algorithm AS153: Pan's procedure for the tail
probabilities of the Durbin-Watson statistic. Applied Statistics, 29, 224-227
and 30, 189.

Farebrother, R.W., (1985). Eigenvalue-free methods for computing the distribu-
tion of a quadratic form in normal variables. Statistische Hefte, 26, 287-302.

Franzini, L. & Harvey, A.C., (1983). Testing for deterministic trend and seasonal
components in time series models. Biometrika, 70, 673-682.

Fraser, D.A.S., Guttman, I. & Styan, G.P.H., (1976). Serial correlation and
distributions on the sphere. Communications in Statistics, A5, 97-118.

Griffiths, W.E. & Beesley, P.A.A., (1984). The small sample properties of some
preliminary test estimators in a linear model with autocorrelated errors.
Journal of Econometrics, 25, 49-61.

47



Hannan, E.J. & Terrell, R.D., (1968). Testing for serial correlation after least
squares regression. Econometrica, 36, 133-150.

Hildreth, C. & Houck, J.P., (1968). Some estimators for a linear model with
random coefficients. Journal of the American Statistical Association, 63,
584-595.

Hillier, G.H., (1986). Joint tests for zero restrictions on non-negative regression
coefficients. Biometrika, 73, 657-669.

Hillier, G.H., (1987). Classes of similar regions and their power properties for
some econometric testing problems. Econometric Theory, 3, 1-44.

Imhof, P.J., (1961). Computing the distribution of quadratic forms in normal
variables. Biometrika, 48, 419-426.

Judge, G.G., Griffiths, W.E., Hill, R.C., Liitkepohl, H. & Lee, T.C., (1985). The
Theory and Practice of Econometrics. 2nd ed. New York: John Wiley.

Kadiyala, K.R., (1970). Testing for the independence of regression disturbances,
Econometrica, 38, 97-117.

King, M.L., (1980). Robust tests for spherical symmetry and their application
to least squares regression. Annals of Statistics, 8, 1265-1271.

King, M.L., (1981a). The Durbin-Watson test for serial correlation: Bounds for
regressions with trend and/or seasonal dummy variables. Econometrica, 49,
1571-1581.

King, M.L., (1981b). Testing for random walk disturbances in the linear regres-
sion model. Mimeo, Monash University.

King, M.L., (1983a). Testing for autoregressive against moving average errors
in the linear regression model. Journal of Econometrics, 21, 35-51.

King, M.L., (1983b). Testing for moving average regression disturbances. Aus-
tralian Journal of Statistics, 25, 23-34.

King, M.L., (1984). A new test for fourth-order autoregressive disturbances.
Journal of Econometrics, 24, 269-277.

King, M.L., (1985a). A point optimal test for autoregressive disturbances. Jour-
nal of Econometrics, 27, 21-37.

King, M.L., (1985b). A point optimal test for moving average regression distur-
bances. Econometric Theory, 1, 211-222.

King, M.L., (1986). Efficient estimation and testing of regressions with a serially
correlated error component. Journal of Quantitative Economics, 2, 231-247

King, M.L., (1987a). Testing for autocorrelation in linear regression models:
A survey. In M.L.King and D.E.A.Giles, eds., Specification Analysis in the
Linear Model. London: Rutledge and Kegan Paul, 19-73.

48



•

King, M.L., (1987b). An alternative test for regression coefficient stability. Re-
view of Economics and Statistics, 69, 379-381.

King,M.L., (1987c). Testing for fourth-order autocorrelation in regression dis-
turbances when first-order autocorrelation is present. Mimeo, Monash Uni-
versity.

King, M.L. & Hillier, G.H., (1985). Locally best invariant tests of the error
covariance matrix of the linear regression model. Journal of the Royal Sta-
tistical Society B, 47, 98-102.

King, M.L. & McAleer, M., (1987). Further results on testing AR(1) against
MA(1) disturbances in the linear regression model. Review of Economic
Studies, 54, 649-663.

King, M.L. & Skeels, C.L., (1984). Joint testing for serial correlation and het-
eroscedasticity in the linear regression model. Paper presented at the Aus-
tralasian Meeting of the Econometric Society, Sydney.

King, M.L. & Smith, M.D., (1986). Joint one-sided tests of linear regression
coefficients. Journal of Econometrics, 32, 367-383.

Koerts, J. & Abrahamse, A.P.J., (1969). On the Theory and Application of the
General Linear Model. Rotterdam: Rotterdam University Press.

LaMotte, L.R. & McWhorter, A., (1978). An exact test for the presence of ran-
dom walk coefficients in a linear regression model. Journal of the American
Statistical Association, 73, 816-820.

Lehmann, E.L., (1959). Testing Statistical Hypotheses. New York: John Wiley.

Lehmann, E.L. Sz Stein, C., (1948). Most powerful tests of composite hypotheses
I. Normal distributions. Annals of Mathematical Statistics, 19, 495-516.

Milan, L., (1984). Testing for the Hildreth-Houck random coefficient model.
Unpublished M.Ec. thesis, Monash University.

Nyblom, J., (1986). Testing for deterministic linear trend in time series. Journal
of the American Statistical Association, 81, 545-549.

Palm, F.C. & Sneek, J.M., (1984). Significance tests and spurious correlation in
regression models with autocorrelated errors. Statistische Hefte, 25, 87-105.

Rosenberg, B., (1973). The analysis of a cross-section of time series by stochasti-
cally convergent parameter regression. Annals of Economic and Social Mea-
surement, 2, 399-428.

Sargan, J.D. & Bhargava, A., (1983). Testing residuals from least squares re-
gression for being generated by the Gaussian random walk. Econometrica,
51, 153-174.

Seber, G.A.F., (1980). The Linear Hypothesis: A General Theory. 2nd ed.
London: Griffin.

49



Shively, T.S., (1986a). An exact test for a stochastic coefficient in a time se-
ries regression model. Australian Graduate School of Management, Working
Paper 86-008.

Shively, T.S., (1986b). Issues in the analysis of stochastic coefficient regression
. models. Unpublished Ph.D. thesis, University of Chicago.

Shively, T.S., (1987). An analysis of tests for regression coefficient stability.
Mimeo, University of Texas at Austin.

Shively, T.S., Ansley, C.F. & Kohn, R., (1987). Fast evaluation of the distribu-
tion of the Durbin-Watson and other invariant test statistics in regression.
Mimeo, University of New South Wales.

Sp jotvoll, E., (1967). Optimum invariant tests in unbalanced variance compo-
nents models. Annals of Mathematical Statistics, 38, 422-428.

Theil, H., (1971). Principles of Econometrics. New York: Wiley.

Theil, H. Sz Nagar, A.L., (1961). Testing the independence of regression distur-
bances. Journal of the American Statistical Association, 63, 242-251.

Watson, G.S., (1955). Serial correlation in regression analysis I. Biometrica, 42,
327-341.

Watson, M.W. Sz Engle, R.F., (1985). Testing for regression coefficint stability
with a stationary AR(1) alternative. Review of Economics and Statistics, 67,
341-346.

Webb, G.I., (1973). Autocorrelations and the general linear model. Unpublished
Ph.D. thesis, The City University, London.

50


